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Visual Inference of Humans

Why do humans require special attention ? 

• At the centre of many applications 
• Humans are complex with variation in articulation, shape, 

clothing and appearance



Bayesian Inference in Computer 
Vision



How to Model the Likelihood?

p(x|z) = p(z|x)p(x)

x
z

State (variables of interest)
Observations from sensors such as images, audio, IMU

Posterior Likelihood Prior



How does this relate to 
discrete energy minimization?

p(x|z) = p(z|x)p(x)

minx2XV  (z,x) + �(x)
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How to Model the Energy?
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What is the Right Level of Abstraction? 

[	Sminchisescu		
and	Triggs	’03	]	

[	Plänkers	and	
Fua	’01	]	

Marr	and	Nishihara	’78	

Neva0a	and	Binford	‘73	



Goal: Generative Model of People



Body Model Function

M(~✓, ~�, ~u;�)

pose shape texture 

3D mesh 

Hyper-parameters to 
learn 



Pons-Moll et al. Siggraph 2015

Modelling Soft-Tissue



Models of Clothing

Pons-Moll et al. Siggraph 2017



Analysis by Synthesis

We	can	render,	mocap	markers,	depth	maps,	point	
clouds,	meshes,	images,		video,	IMUs,	measurements,	
…	and	fit	this	to	data	or	use	it	for	training.	



Zhang et al. CVPR 2017

Estimating Shape Under Clothing



von Marcard et al. Eurographics 2017  (best paper award)



Fitting the Model to RGB-D

Tao et al. CVPR'18



3D reconstruction from a 
Single Video

Alldieck et al. CVPR'18





Identify People



3D reconstructions from 
Video and IMU



3D Human Pose and Shape from a 
Single Image

Omran et al. 3DV Best student paper



Face, Hands, Body



Building the generative model:  

• How do we represent the body ? 
• How do we learn the model from data ?  

If we learned the generative model: 

• How do we extract information about people from 
different sensors ?  

• What inference techniques should we use ?  



Attractive People: Assembling Loose-Limbed Models using Non-parametric Belief Propagation, Sigal et al.

Xi = (xi,⇥i)

xi 2 R3

⇥i 2 SO(3)





Goal



Xi = argmin
Xi

�i(I,Xi)
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Can we do something better?



Can we do something better?

… with something that you 
already know?
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The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose, Zuffi and Black



Questions before we start

• What is a good unary      for the pose estimation problem? 

• What is a good pair-wise term         ?  i,j

�i



Holistic Models

• With these ingredients we could attack the problem of 
pose estimation, but…  

• Can we use another representation? 



Holistic Models
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Why not all at once?
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SMPL: A Skinned Multi-Person Linear Model, Loper et al.

X



Part-based models VS holistic models

• Part-based 
• Efficient  

• Fast exploration of 
parameter space

• Holistic 
• Part relation imposed by 

model, not optimised 

• Realistic solutions  
(up to the model’s realism) 



Part-based models VS holistic models

• Holistic 
• Part relation imposed by 

model, not optimised 

• Realistic solutions  
(up to the model’s realism) 

X

SMPL: A Skinned Multi-Person Linear Model, Loper et al.



3D Holistic Body Models

M(X) ! R3

Transform parameters into geometry in 3D  



X = {Xpose,Xshape}

M(0,Xshape) M(Xpose,0) M(Xpose,Xshape)

YM(Xpose,Xshape)R ·M(Xpose,Xshape)



Scan a Lot of People



In Lots of Poses



To Learn a Model We Need 
Correspondence





3D Body Models Basics
• Today: Geometry and alignment 

• Points, triangles and triangulated meshes 

• Similarity transformations 

• Procrustes Method 



Triangulated Mesh

V ⌘
⇢

F 2 NM⇥3

V 2 RN⇥3

V ⌘ R2 ! R3



Triangulated Mesh

V ⌘
⇢

F 2 NM⇥3

V 2 RN⇥3

V ⌘ R2 ! R3



Similarity deformations
• How can we rigidly transform a set of points ? 

• Translate it 

• Rotate it   

• Today we’ll consider also 

• Scale it 

V0 = V + t, t 2 R3

V
0T = R ·VT,R 2 SO(3)

V0 = s ·VT, s 2 R



Rotation

v

v0 R : R3 ! R3

v0 = Rv



Rotation + Scale

v

v0

sk
v
k R : R3 ! R3

v0 = sRv



Rotation + Scale + Translation

v

v0

R : R3 ! R3

v0 = sRv + t



Rotation + Scale + Translation

v

v0

R : R3 ! R3

v0 = sRv + t
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Similarity transform
V0V S

?



V0 = S(V) = (sR ·VT + t)T

V0V S

Similarity transform



V0V

How can we estimate     ?S

?argmin
S

k(sR ·VT + t)�V0T k



Procrustes   a.k.a. he who stretches



Procrustes Analysis

s,R, t = arg min
s,R,t

X

i

ksRxi + t� yik2

warning: change of variable names V->X, V’->Y



Procrustes Analysis



Procrustes Analysis

R = UVT

t =
X

Rx̄� ȳ

X̄T Ȳ = U⌃VT

s =
tr(X̄T Ȳ)

kX̄k2

Optimal rotation obtained by  
computing SVD on the  
point cross-covariance



Take-home messages
• A human body can be represented as a graphical model with 

pairwise terms modelling the relation between parts 

• We will study a holistic model with a representation learned from 
real people scans 

• To learn a statistical 3D model from data we need 
correspondence across examples 

• The optimal similarity transformation between two point sets can 
be obtained with the Procrustes algorithm 



Appendix: Derivation of 
Procrustes Analysis



Appendix Slides: Derivation of 
Procrustes Analysis

s,R, t = arg min
s,R,t

X

i

ksRxi + t� yik2

warning: change of variable names V->X, V’->Y



SVD
in general, applied to a real matrix: 

A = U⌃VT

A ⌘ (M ⇥N) real

U ⌘ (M ⇥M) orthogonal, unit norm

V ⌘ (N ⇥N) orthogonal, unit norm

⌃ ⌘ (M ⇥N) diagonal

warning: this is not the vertex matrix!



SVD

A = U⌃VT

A ⌘ (3⇥ 3) real

U ⌘ (3⇥ 3) rotation + mirroring matrix

V ⌘ (3⇥ 3) rotation + mirroring matrix

⌃ ⌘ (3⇥ 3) 3D scaling

applied to a 3D matrix 



SVD
A

A = U⌃WT

T



Procrustes

X,Y 2 R(N⇥3)

xi,yi 2 R(3⇥1)

s,R, t = arg min
s,R,t

E

E ⌘
X

i

ksRxi + t� yik2

=
X

i

(sRxi + t� yi)
T(sRxi + t� yi)

=
X

i

s2xTi xi + tTt+ yTi yi + 2sxTiR
Tt� 2sxTiR

Tyi � 2tTyi

Let’s call V and V’, X and Y

minimize the L2 distance between 
transformed source points and target points



Procrustes
If we remove the elements that do not  depend on the 

translation and solve for t
t = argmin

t
E = argmin

t

X

i

s2xTi xi + tTt+ yTi yi + 2sxTiR
Tt� 2sxTiR

Tyi � 2tTyi

= argmin
t

X

i

tTt+ 2sxTiR
Tt� 2tTyi

x̄ ⌘
P

i xi

N
, ȳ ⌘

P
i yi

N
t = argmin

t
E = argmin

t
(tT(2sRx̄+ t� 2ȳ)) = ȳ � sRx̄

compute the centroid of the point clouds

So given s and R, we can compute the translation t



Procrustes

subtract the centroid from the points to obtain a simpler expression for E

define the cross-covariance of X and Y

x̄i ⌘ xi � x̄, ȳi ⌘ yi � ȳ

E =
X

i

ksRxi + t� yik2 =
X

i

ksRx̄i � ȳik2 =
X

i

s2x̄i
Tx̄i + ȳi

Tȳi � 2sx̄i
TRTȳi

A ⌘ X̄TȲ =
X

i

x̄ȳT

R = argmin
R

E = argmin
R

(
X

i

s2x̄i
Tx̄i + ȳi

Tȳi � 2sx̄i
TRTȳi)

= argmax
R

(
X

i

x̄i
TRTȳi) = argmax

R
(
X

i

tr(x̄iȳi
TR)) = argmax

R
(tr(AR))



Procrustes

Decompose the cross-covariance with SVDA = U⌃VT, through SVD

R = VUT because

AR = (U⌃VT)(VUT) = U⌃UT symmetric positive semidefinite, so R maximizes tr(AR)

Theorem 1: The trace of a square matrix is smaller than the sum of its
eigenvalues, equal if an only if the matrix is symmetric and positive semi-definite

Theorem 2: For a square matrix B, there is an orthogonal matrix C such
that BC is symmetric and positive semi-definite. If D is any other orthogonal
matrix, tr(BD)  tr(BC), equal if and only if BD is symmetric and positive
semi-definite

formulation thanks to Dr. Dan Curtis



Procrustes
Optimize scale given the rotation

s = argmin
s

E = argmin
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=
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kX̄k2
=

tr(⌃)

kX̄k2



Procrustes
whole algorithm

X,Y 2 R(N⇥3)
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Tȳi � 2sx̄i
TRTȳi
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A = U⌃VT, through SVD

R = VUT because

AR = (U⌃VT)(VUT) = U⌃UT symmetric positive semidefinite, so R maximizes tr(AR)
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