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Visual Inference of Humans

Why do humans require special attention ?

* At the centre of many applications
e Humans are complex with variation in articulation, shape,
clothing and appearance



Bayesian Inference in Computer
Vision

Bayesian Tracking

Likelihood:
noisy observation
p(FG|car = (z,y))

/\ — Prior:

p(car = (z,y))

system state: car position Posterior:
observations: images Bayesian update
p(car = (z,y)|FG)




e
How to Model the Likelihood?

p(x|z) = p(z|x)p(x)

/ VN

Posterior | Ikelihood Prior

X State (variables of interest)
Z, Observations from sensors such as images, audio, IMU



How does this relate to
discrete energy minimization®

maxxexy p(X|z) = p(z]|X)p(X)



R
How to Model the Energy?

mianXv Z wU(Z,XU) + Z ¢uv(Xu7XfU)
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What is the Right Level of Abstraction”

[ Sminchisescu

Marr and Nishihara ’78
and Triggs ‘03 ]

Nevatia and Binford ‘73

[ Plankers and
Fua’01 ]



Goal: Generative Model of People




.
Body Model Function

z/// l \\\&
pose shape texture Hyper-parameters to

learn



Modelling Soft-Tissue

Pose a
Blend Shapes Blend Shapes

Pons-Moll et al. Siggraph 2015

DMPL



S
Models of Clothing

ClothCap Result ClothCap Cloth on
new Body

Pons-Moll et al. Siggraph 2017



Analysis by Synthesis

We can render, mocap markers, depth maps, point
clouds, meshes, images, video, IMUs, measurements,
... and fit this to data or use it for training.




I
Estimating Shape Under Clothing

Scan Result

We Introduce a novel method to estimate accurate
and detailed shape from 3D scan sequences

/hang et al. CVPR 2017



Sparse Inertial Poser

Automatic 3D Human Pose Estimation from
Sparse IMUs

Supplementary material

Eurographics'17
Paper ID 1112

von Marcard et al. Eurographics 2017 (best paper award)
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3D reconstruction from a
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|[dentity People

All 2D Poses Assigned 2D Poses
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Animated 3D Pose

Projected 3D Pose



3D Human Pose and Shape from a
Single Image

Omran et al. 3DV Best student paper



Face, Hands, Body

Monocular Total Capture Results

Input: a monocular video
Output: total body (face, hands, body, feet) motion



Bullding the generative model:

 How do we represent the body ?
* How do we learn the model from data 7

It we learned the generative model:

 How do we extract information about people from
different sensors ?
 What inference techniques should we use 7




ju]
] X; € Rg

0; € SO(3)
%Q ?

Attractive People: Assembling Loose-Limbed Models using Non-parametric Belief Propagation, Sigal et al.









X, = arg min oi (L, X;)










N
Can we do something better?



N
Can we do something better?

... with something that you
already know"









iter. 16

The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose, Zuffi and Black



L
Questions before we start

« What is a good unary @; for the pose estimation problem?

« What is a good pair-wise term W, ; ?



e
Holistic Models

* With these ingredients we could attack the problem of
pose estimation, but...

 Can we use another representation?



e
Holistic Models

5
R
9




I
Why not all at once”




SMPL: A Skinned Multi-Person Linear Model, Loper et al.



Part-based models VS holistic models

e Part-based e Holistic

o Efficient * Part relation imposed by
model, not optimised
* Fast exploration of
parameter space * Realistic solutions
(up to the model’s realism)



Part-based models VS holistic models

e Holistic

* Part relation imposed by
model, not optimised

* Realistic solutions
(up to the model’s realism)

SMPL: A Skinned Multi-Person Linear Model, Loper et al.



R
3D Holistic Body Models

M(X) — R*

Transform parameters into geometry in 3D
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R
Scan a Lot of People




e
N Lots of Poses




Jo Learn a Model We Need
Correspondence







R
3D Boady Models Basics

* Today: Geometry and alignment
* Points, triangles and triangulated meshes
o Similarity transtformations

e Procrustes Method



R
Triangulated Mesn

V € RIVX3

R? 5 R
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R
Triangulated Mesn

) VI




R
Similarity deformations

 How can we rigidly transform a set of points 7

» Translate it V =V +t,tc¢ R

. T
* Rotate it V" =R-VI Rc SO(3)
* Joday we'll consider also

» Scale it Vi=s- Vi seR



Rotation

y R:R° & R’
v =

N



Rotati_on + Scale




Rotation + Scale + Translation




Rotation + Scale + Translation
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How can we estimate S ?
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PFOCFUSTGS a.k.a. he who stretches




I
Procrustes Analysis

R, t = j Rx; +t — ¥;|°
s, R,t =argmin » |[sRa + ¢t — il

warning: change of variable names V->X, V'->Y



Robert Collins

CSESSS Steps In Similarity Alignment

Given a set of K points: Configuration

Translation normalization: Centered Configuration
(center of mass at origin)

Scale normalization: Pre-shape
(divide by Sqrt of SSQ centered coordinates)

Rotation normalization: Shape
(rotate to alignment with ref shape)



I
Procrustes Analysis

XTY— __ UZVT Ophmall rotation obtained by
computing SVD on the
point cross-covariance

R=UV"
t=>» Rx—y
. tr(X1Y)




N
lake-nome messages

A human body can be represented as a graphical model with
pairwise terms modelling the relation between parts

 We will study a holistic model with a representation learned from
real people scans

e To learn a statistical 3D model from data we need
correspondence across examples

e The optimal similarity transtormation between two point sets can
be obtained with the Procrustes algorithm



Appendix: Derivation of
Procrustes Analysis



R
Appendix Slides: Derivation of

Procrustes Analysis

R,t = j Rx; +t — yil|°
s, R,t =argmin » |[sRa + ¢t — il

warning: change of variable names V->X, V'->Y



-
SVD

in general, applied to a real matrix:

A =UxV'

A = (M x N) real

U = (M x M) orthogonal, unit norm
V = (N x N) orthogonal, unit norm
> = (M x N) diagonal

warning: this is not the vertex matrix!



-
SVD

applied to a 3D matrix

A =UxV'

A = (3 x 3) real
U = (3 x 3) rotation + mirroring matrix
V = (3 x 3) rotation + mirroring matrix
>, = (3 x 3) 3D scaling






o
Procrustes

X, Y € RW*3) LetscallVand V', Xand Y

s,R,t = arg min &
s,R.,t

- 5 minimize the L2 distance between
b= § HSRXz' +t— YzH transtormed source points and target points
)

— Z(SRXZ' +t—y;) (sRx; +t —y;)

— s*xix; +t't+yly; +2sx Rt — 2sx) Ry, — 2t'y;



o
Procrustes

It we remove the elements that do not depend on the
translation and solve for t

t = arg mm FE = arg mm Zﬁﬁfq +t't + fyzly@- + ZSXZTRTt — %%R,lyz— —2t'y;

T TRT T
:argmtht t+2sx, Rt —2t'y;

g= X g Z Yi compute the centroid of the point clouds
N Y

t = arg mtinE = arg mtm(tT(Qstc +t—-2y)) =y — sRx

SO given s and R, we can compute the translation t



o
Procrustes

subtract the centroid from the points to obtain a simpler expression for E
Xi =X —X,Yi=Yi—Y
E = Z [sRx; +t — y;||? = Z 1sRX; — yvil|* = Zs X' X +yiyi —2s%; R'y;

XTY Z T define the cross—covariance of Xand Y

R = arg mfi{nE = arg min( g 2% % +v 1y — 2s%;, ' R'y))
R ;

_ CTRT ) - TR —
= argm}zgx(z x; R'y;) argmf%x(z tr(x;y; R)) argm}zgx(tr(AR))



o
Procrustes

A =UxV', through SVD Decompose the cross-covariance with SVD
R = VU' because

AR = (UXV")(VU") = UXU' symmetric positive semidefinite, so R maximizes tr(AR)

Theorem 1: The trace of a square matrix is smaller than the sum of its
eigenvalues, equal if an only if the matrix is symmetric and positive semi-definite

Theorem 2: For a square matrix B, there is an orthogonal matrix C such
that BC is symmetric and positive semi-definite. If D is any other orthogonal
matrix, tr(BD) < tr(BC), equal if and only if BD is symmetric and positive
semi-definite

formulation thanks to Dr. Dan Curtis



o
Procrustes

Optimize scale given the rotation

s = argmin I/ = arg min(z $*%; ' X; + Vol QSXiTRT}?z‘)

= arg nflsin(s2 Z(}ZJ)EZ-) — 25 Z(fiTRTYi))

1

b X;' R'y;
a

X;' X;

— arg min(s“a — 2sb) =

tr(AR) tr(X)
X2 X3




X, Y € RWx3)
x;,y; € RGXD

s, R,t = arg min &/

s,R,t
E = Z |sRx; +t — yi||2
= i(SRXi +t — yi)T(sti +t—y;)
= i szxZTxi +tTt + yZTyi + QSX—Z!—RTt — 23X1TRTyi —2t'y;
t= alz*g mtinE = arg mtin Zs%f;rﬁ»q +t't + iy + QSXZTRTt — 25% Ry — 2Ty,
i
= arg mtin Z tTt 4 23xlTRTt — 2tTyi

2

Zixi = iYi
N VTN
t = arg mtinE = arg mtin(tT(ZsRSc +t—-2y)) =y —sRx

bl
Ii

Xi =X —X,Yi=Yi—Y

E= Z [sRx; +t — yil|* = Z |sRx; — yil|* = Z $°X; X +yi' yi — 2s% Ry,
A=X"Y=) xy'
R = in B = i 2T Eyyr — 25% Ry,
arg min arg mﬁn(z sX Vi)
—TRTo "
= i Ry;) = tr(x;y; R)) = tr(AR
arg mI%X(Zx yi) = arg mlgx(z r(x;y; R)) = arg mfz%x( r(AR))

A =UXVT, through SVD
R = VU because

AR = (ULV")(VU'") = UXU' symmetric positive semidefinite, so R maximizes tr(AR)

s = argmin E' = arg min( g $°%X;' X; + ¥y — 2s%; R'y;)
S S
i

— arg min(s? Z()ZJ)Q) —2s Z(fiTRTYz’))
b xRy,
_ n(s2q — 2gh) — 2 = Xi i
arg msm(s a — 2sb) " FAr
trf(AR) (%)

X[z X2

Procrustes

whole algorithm



