

max planck institut informatik

What is missing

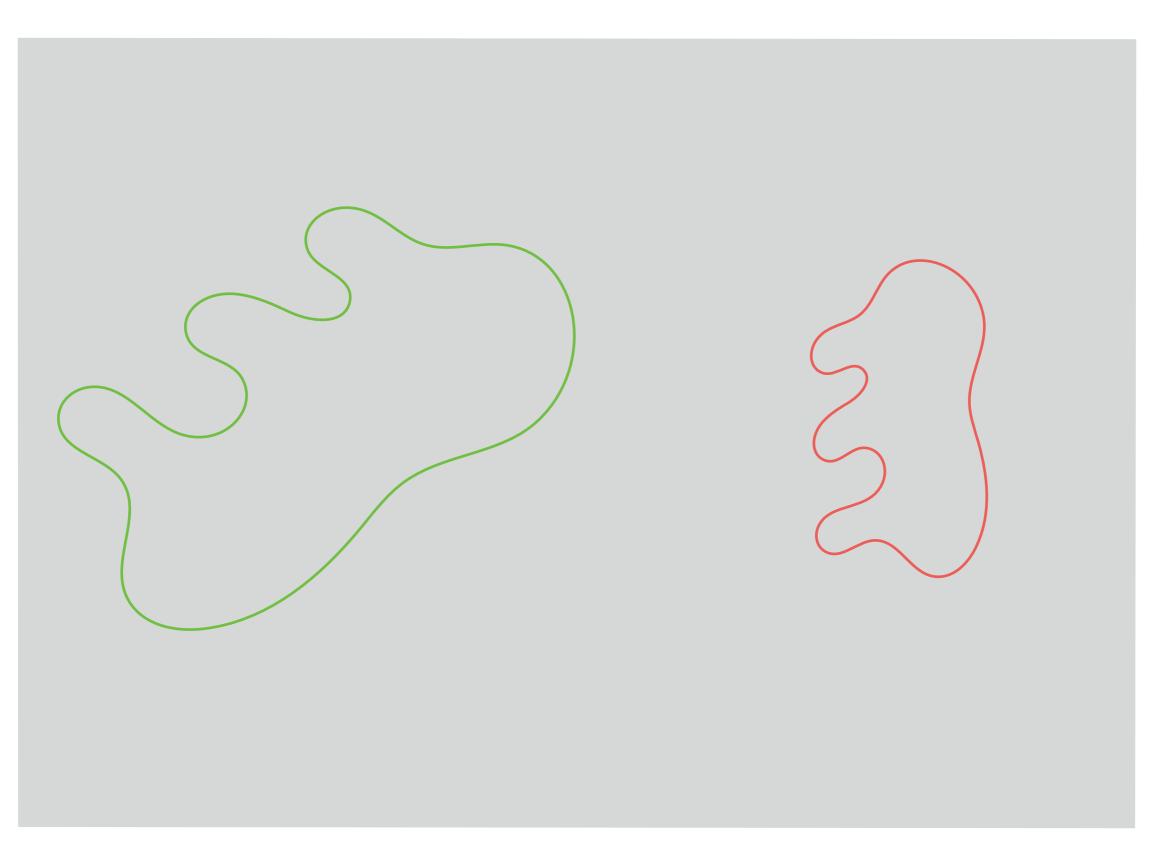
• Given correspondences, we can find the optimal rigid alignment with Procrustes.

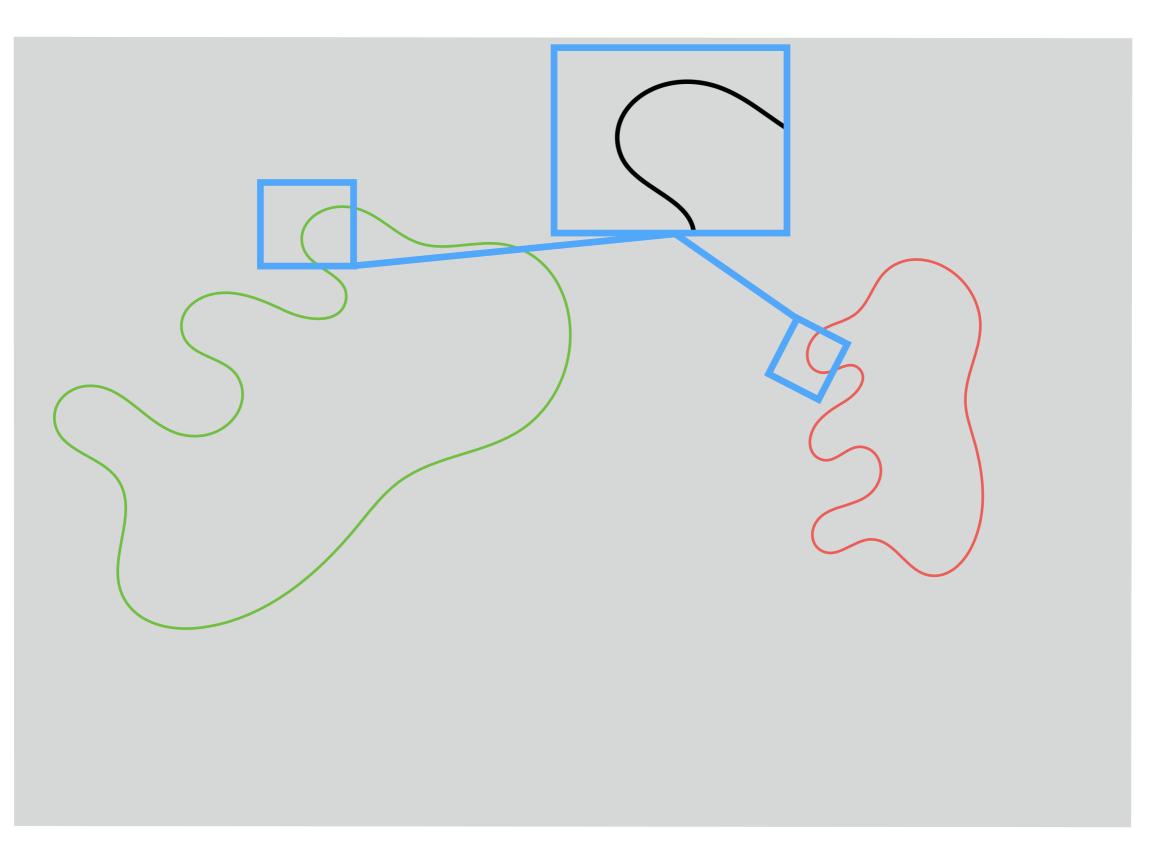
PROBLEMS:

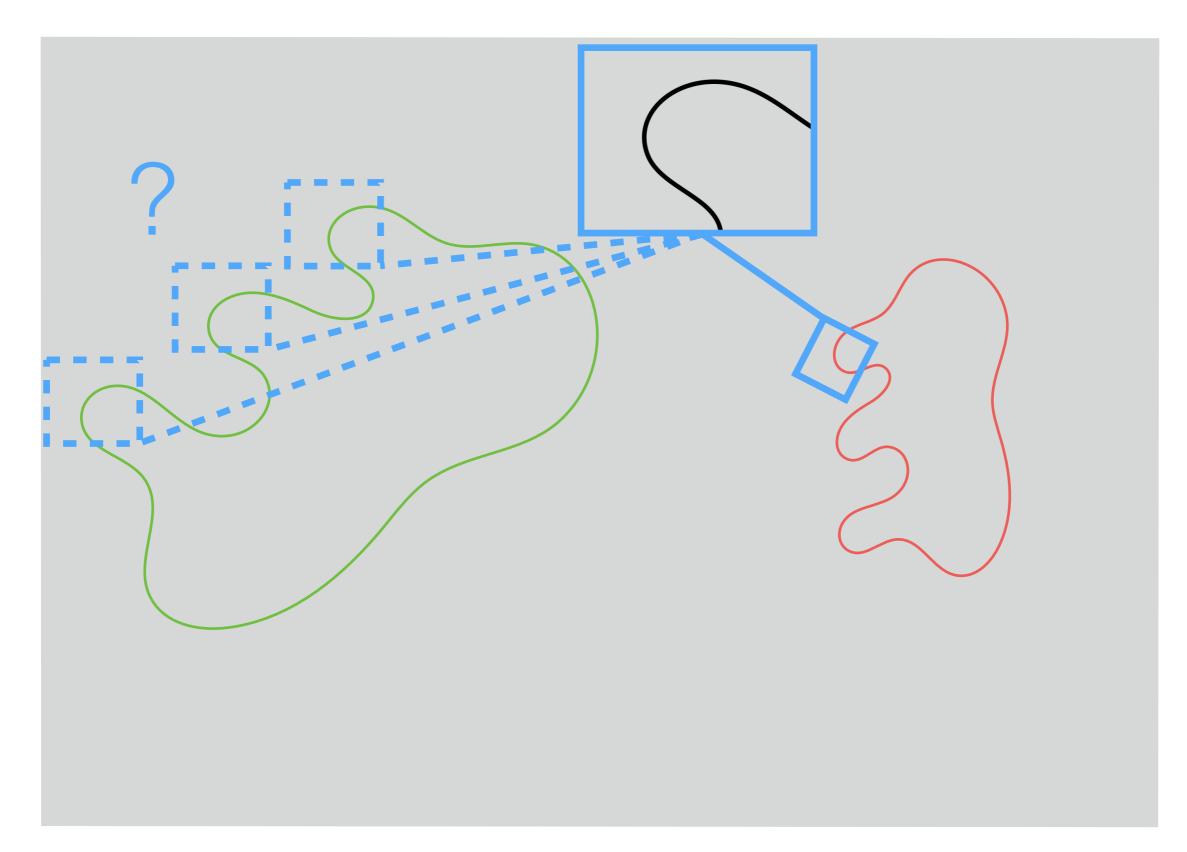
- How do we find the correspondences between shapes ?
- How do we align shapes non-rigidly ?

- Optimising alignment and correspondences using Iterative Closest Point (ICP).
- Alignment through *continuous* optimisation.

Ideas?







• The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$E \equiv \sum_{i} \|s\mathbf{R}\mathbf{x}_{i} + \mathbf{t} - \mathbf{y}_{i}\|^{2} \equiv \sum_{i} \|f(\mathbf{x}_{i}) - \mathbf{y}_{i}\|^{2}$$

compact notation: f contains translation, rotation and isotropic scale

• The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$E \equiv \sum_{i} \|s\mathbf{R}\mathbf{x}_{i} + \mathbf{t} - \mathbf{y}_{i}\|^{2} \equiv \sum_{i} \|f(\mathbf{x}_{i}) - \mathbf{y}_{i}\|^{2}$$

compact notation: f contains translation, rotation and isotropic scale

• What if we estimate the correspondences?

• The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$E \equiv \sum_{i} \|s\mathbf{R}\mathbf{x}_{i} + \mathbf{t} - \mathbf{y}_{i}\|^{2} \equiv \sum_{i} \|f(\mathbf{x}_{i}) - \mathbf{y}_{i}\|^{2}$$

compact notation: f contains translation, rotation and isotropic scale

• What if we estimate the correspondences?

$$\mathbf{x}_{i}^{j+1} = \arg\min_{\mathbf{x}\in\mathbf{X}} \|f^{j}(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

iteration

original unsorted points

$$f^{j+1} = \arg\min_{f} \sum_{i} ||f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}||^{2}$$

 The idea was to minimise the sum of distances between the one set of points and the other set, transformed

$$E \equiv \sum_{i} \|s\mathbf{R}\mathbf{x}_{i} + \mathbf{t} - \mathbf{y}_{i}\|^{2} \equiv \sum_{i} \|f(\mathbf{x}_{i}) - \mathbf{y}_{i}\|^{2}$$

compact notation: f contains translation, rotation and isotropic scale

• What if we estimate the correspondences?

$$\mathbf{x}_{i}^{j+1} = \arg\min_{\mathbf{x}\in\mathbf{X}} \|f^{j}(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

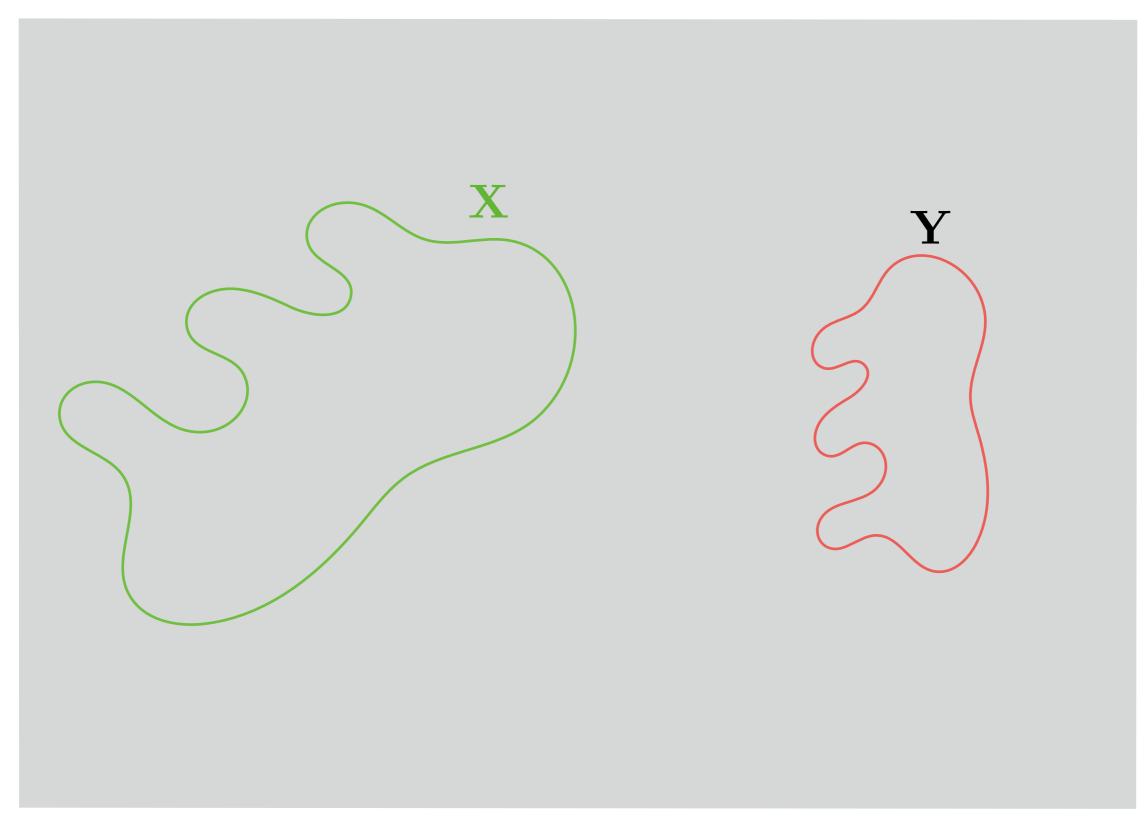
iteration

 $f^{j+1} = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}\|^{2}$

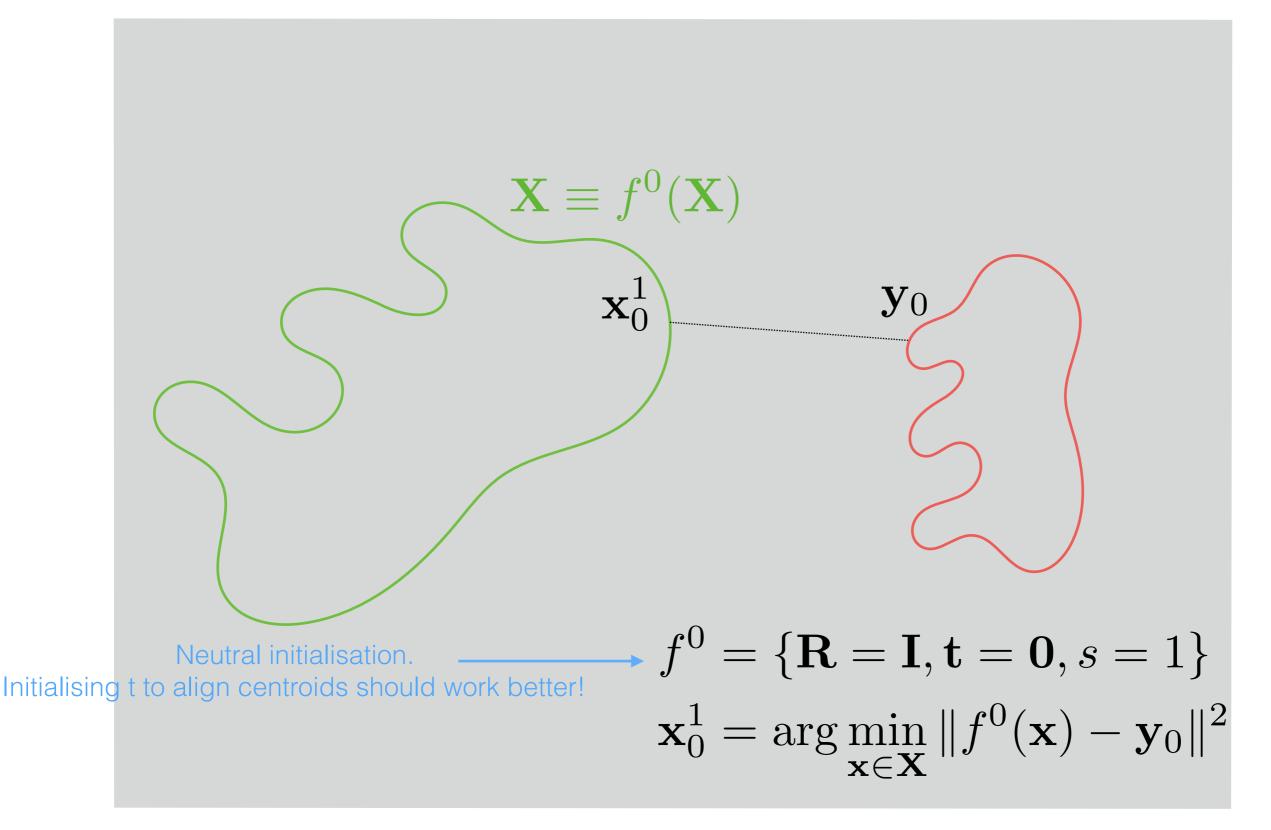
Given current best transformation, which are the closest correspondences?

Given current best correspondences, which is the best transformation?

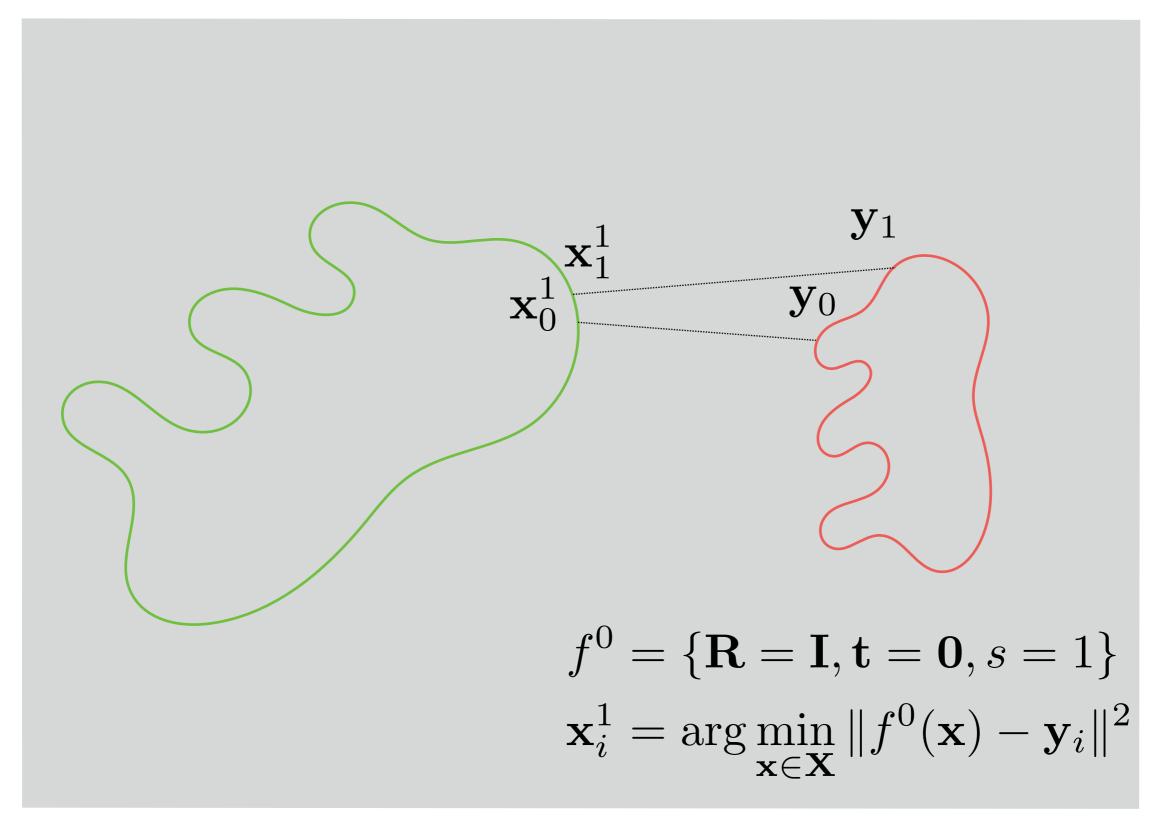
Make up reasonable correspondences



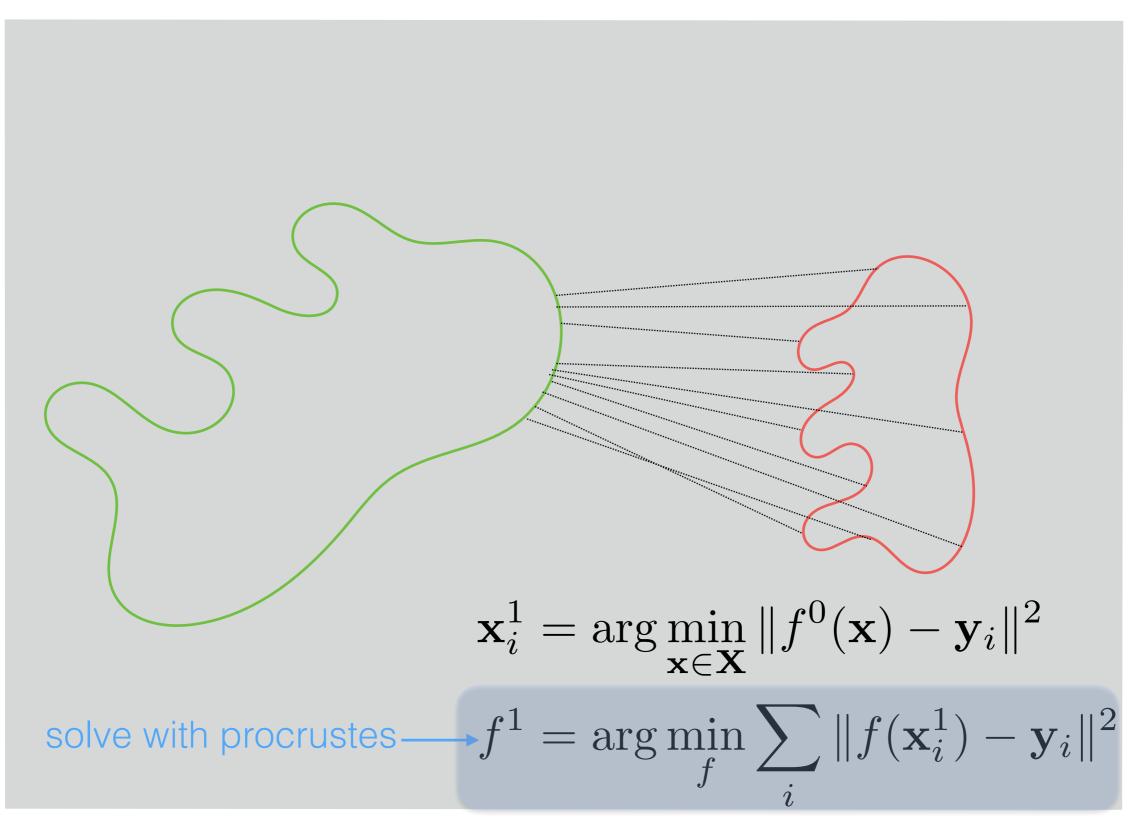
Make up reasonable correspondences



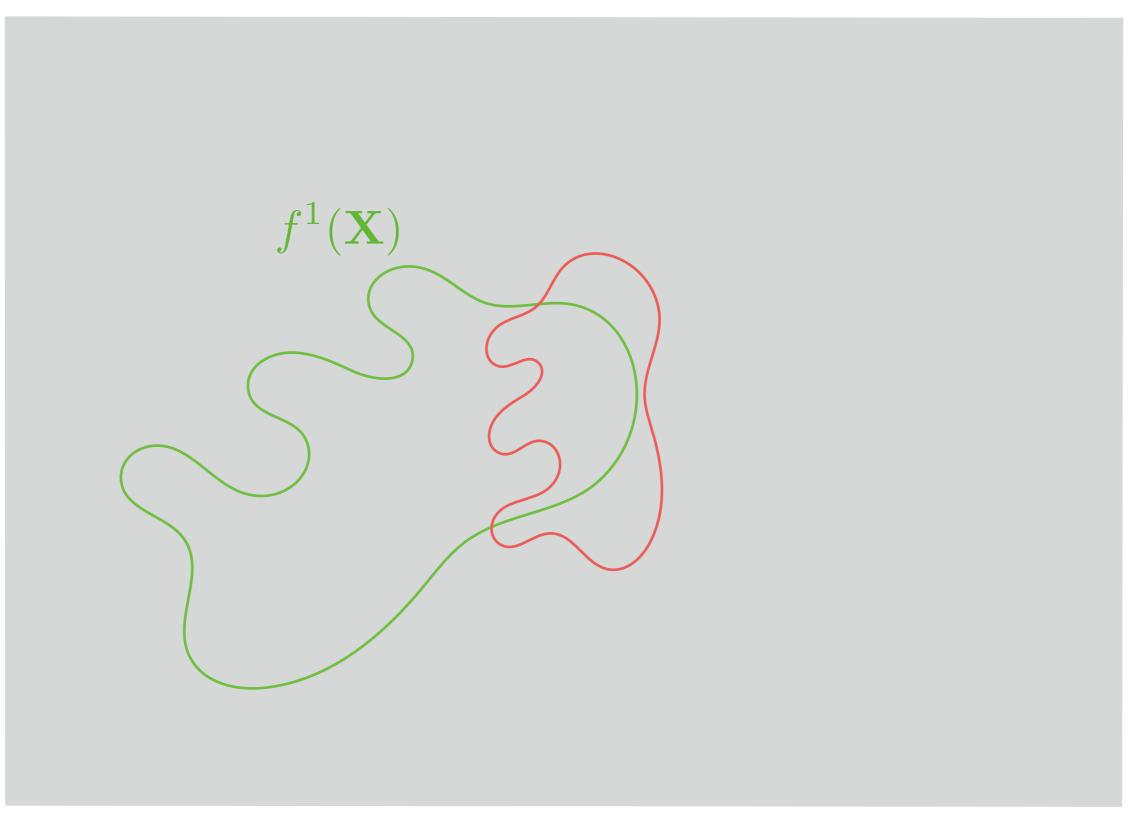
Make up reasonable correspondences

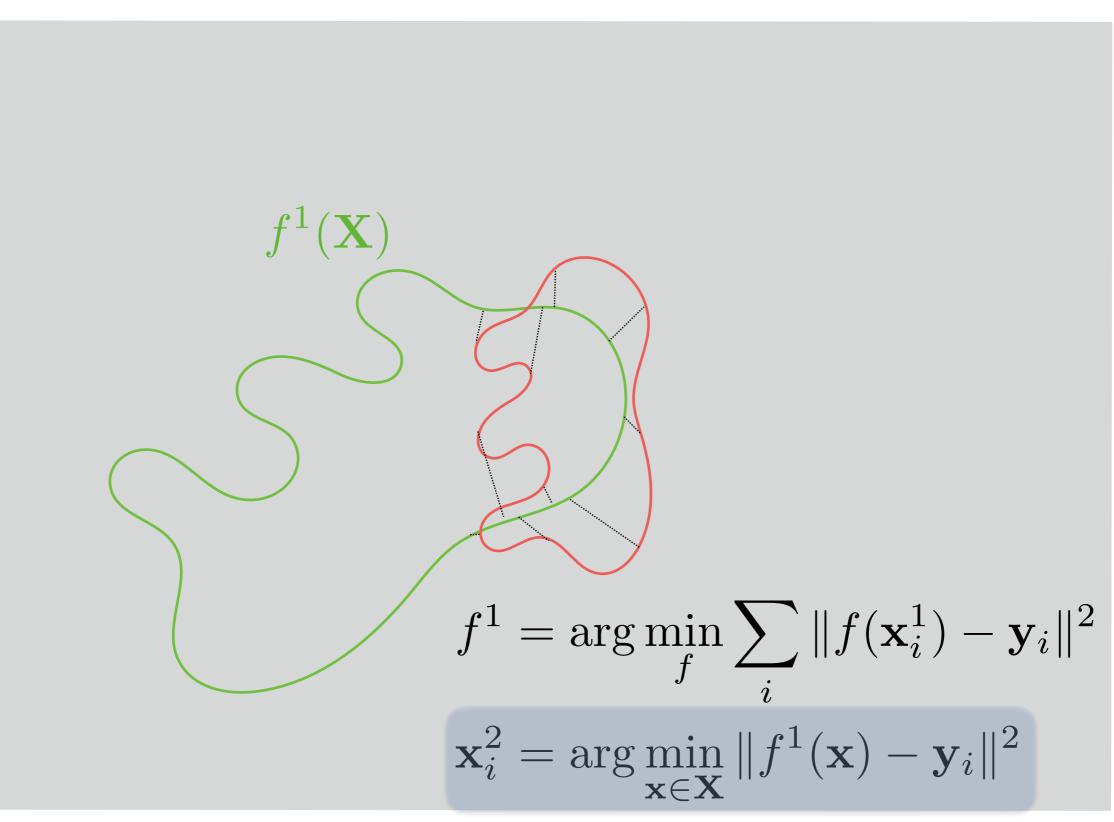


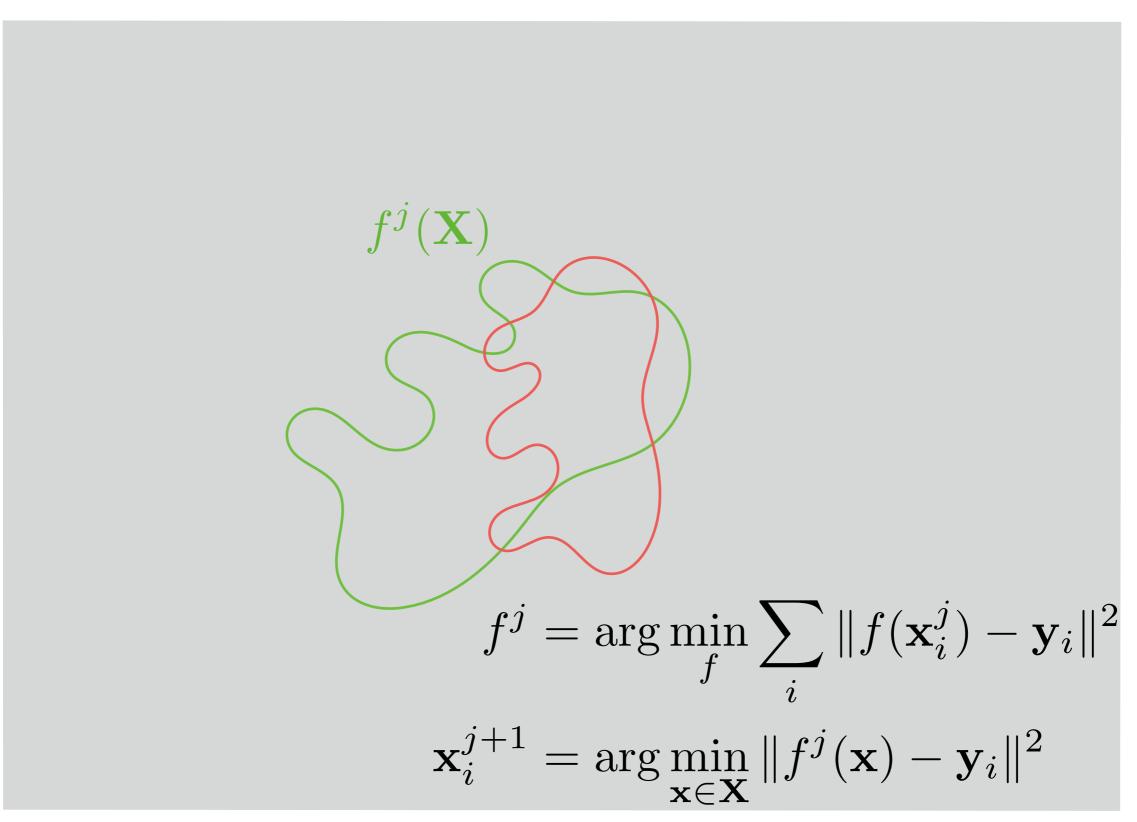
Solve for the best transformation

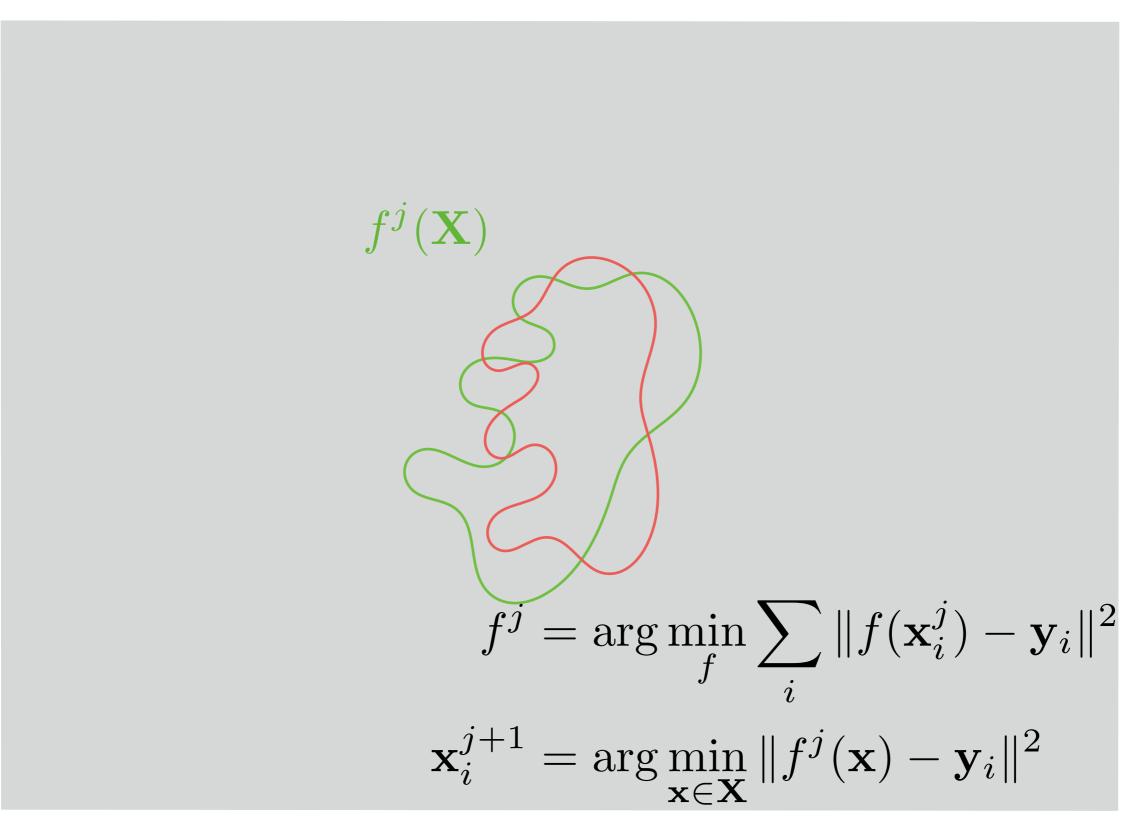


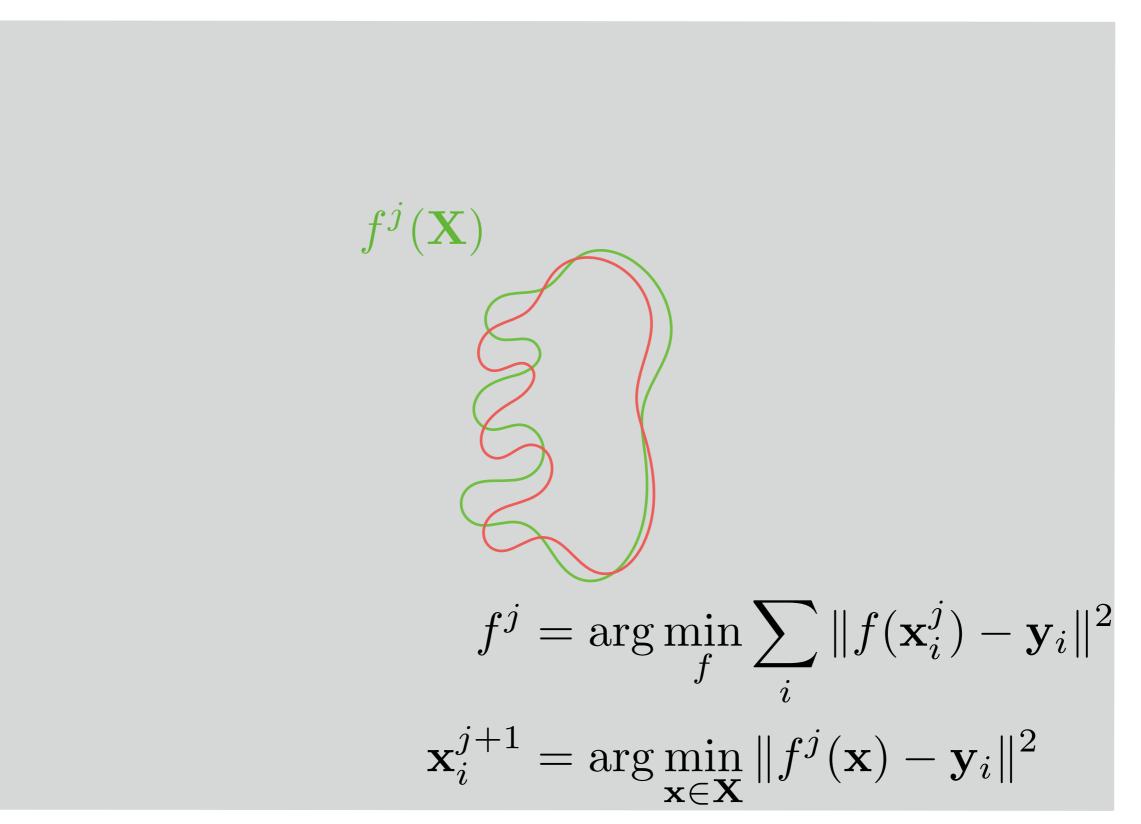
Apply it ...

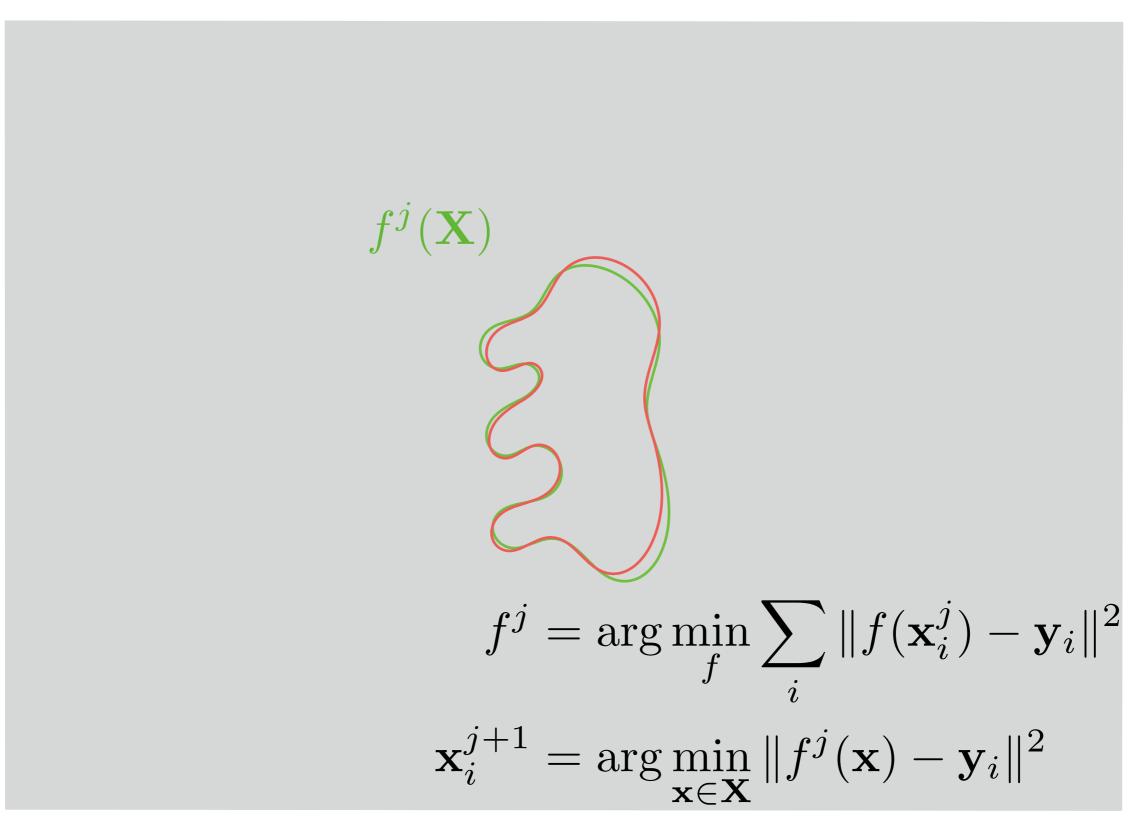


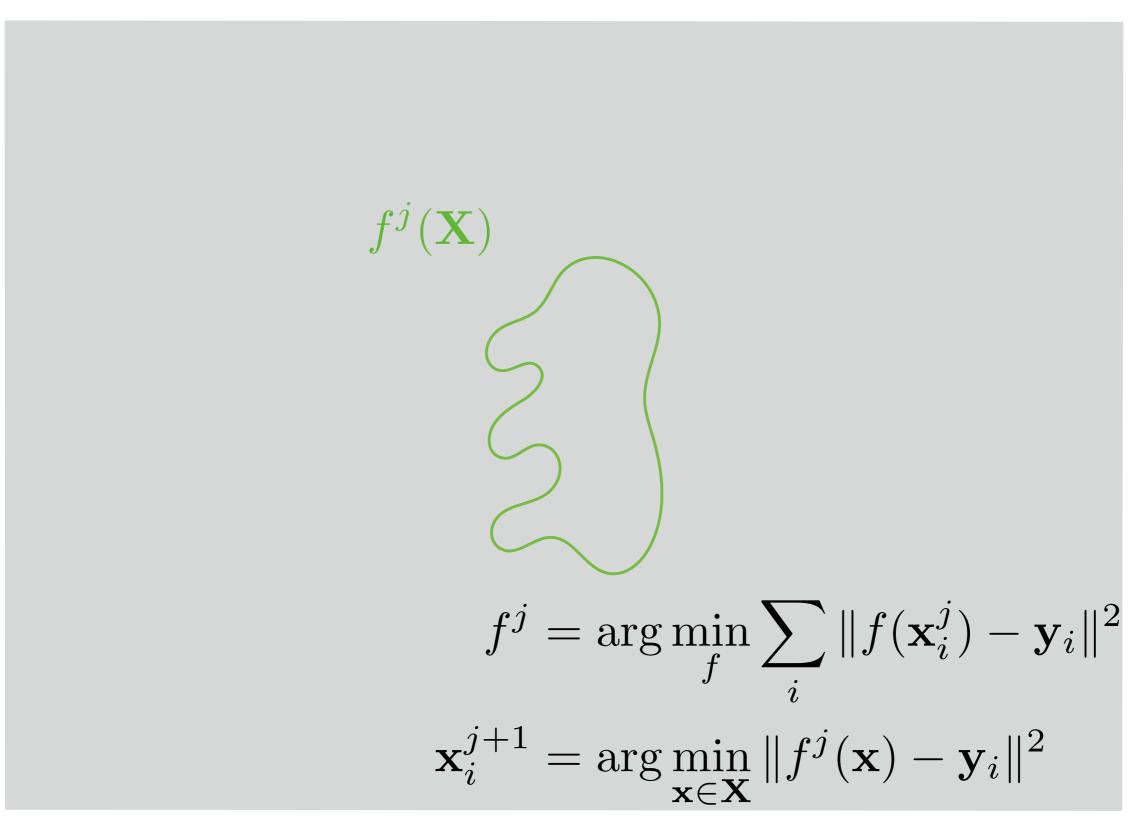












initialise $f^{0} = \{\mathbf{R} = \mathbf{I}, \mathbf{t} = \frac{\sum \mathbf{y}_{i}}{N} - \frac{\sum \mathbf{x}_{i}}{N}, s = 1\}$

1.

1. initialise
$$f^0 = \{\mathbf{R} = \mathbf{I}, \mathbf{t} = \frac{\sum \mathbf{y}_i}{N} - \frac{\sum \mathbf{x}_i}{N}, s = 1\}$$

2. compute correspondences according to current best transform

$$\mathbf{x}_i^{j+1} = \arg\min_{\mathbf{x}\in\mathbf{X}} \|f^j(\mathbf{x}) - \mathbf{y}_i\|^2$$

1. initialise
$$f^0 = \{\mathbf{R} = \mathbf{I}, \mathbf{t} = \frac{\sum \mathbf{y}_i}{N} - \frac{\sum \mathbf{x}_i}{N}, s = 1\}$$

2. compute correspondences according to current best transform

$$\mathbf{x}_i^{j+1} = \arg\min_{\mathbf{x}\in\mathbf{X}} \|f^j(\mathbf{x}) - \mathbf{y}_i\|^2$$

3. compute optimal transformation (${f s}, {f R}, {f t}$) with Procrustes

$$f^{j+1} = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}\|^{2}$$

1. initialise
$$f^0 = \{\mathbf{R} = \mathbf{I}, \mathbf{t} = \frac{\sum \mathbf{y}_i}{N} - \frac{\sum \mathbf{x}_i}{N}, s = 1\}$$

2. compute correspondences according to current best transform

$$\mathbf{x}_{i}^{j+1} = \arg\min_{\mathbf{x}\in\mathbf{X}} \|f^{j}(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

3. compute optimal transformation ($\mathbf{s}, \mathbf{R}, \mathbf{t}$)with Procrustes

$$f^{j+1} = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}\|^{2}$$

4. terminate if converged (error below a threshold), otherwise iterate

1. initialise
$$f^0 = \{\mathbf{R} = \mathbf{I}, \mathbf{t} = \frac{\sum \mathbf{y}_i}{N} - \frac{\sum \mathbf{x}_i}{N}, s = 1\}$$

2. compute correspondences according to current best transform

$$\mathbf{x}_i^{j+1} = \arg\min_{\mathbf{x}\in\mathbf{X}} \|f^j(\mathbf{x}) - \mathbf{y}_i\|^2$$

3. compute optimal transformation (${f s}, {f R}, {f t}$)with Procrustes

$$f^{j+1} = \arg\min_{f} \sum_{i} ||f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}||^{2}$$

- 4. terminate if converged (error below a threshold), otherwise iterate (go to step 2)
- 5. converges to local minima

Is ICP the best we can do?

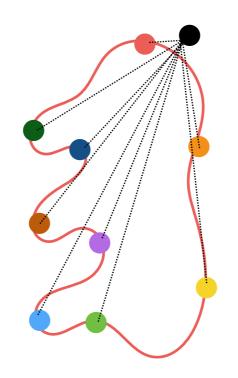
- iteration j
- compute closest points

• compute optimal transformation with Procrustes

• apply transformation

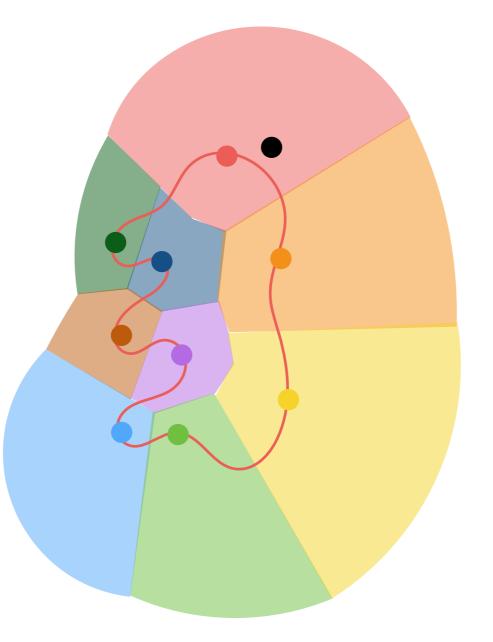
Closest points

• Brute force is n^2



Closest points

• Tree based methods (e.g. kdtree) have avg. complexity log(n)



Random point sampling also reduces the running time

Is ICP the best we can do?

- iteration j
- compute closest points

• compute optimal transformation with Procrustes

• apply transformation

Best transformation?

- Procrustes gives us the optimal **rigid** transformation and scale given correspondences
- What if the deformation model is **not rigid** ?
- Can we generalise ICP to non-rigid deformation ?

- iteration j
- compute closest points
 In which direction should I move?
- compute optimal transformation with Procrustes

• apply transformation

- iteration j
- compute closest points
 In which direction should I move?

- compute optimal transformation with Procrustes
 compute a transform that reduces the error
- apply transformation

- iteration j
- compute closest points Jacobian of distance-based energy

- compute optimal transformation with Procrustes
 compute descent step by linearising the energy
- apply transformation

$$\arg\min_{f} E(f) = \arg\min_{f} \sum_{i} \|f(\mathbf{x}_{i}^{j+1}) - \mathbf{y}_{i}\|^{2}$$

- If f is a rigid transformation we can solve this minimisation using Procrustes
- If f is a general non-linear function ?
 - Gradient descent:

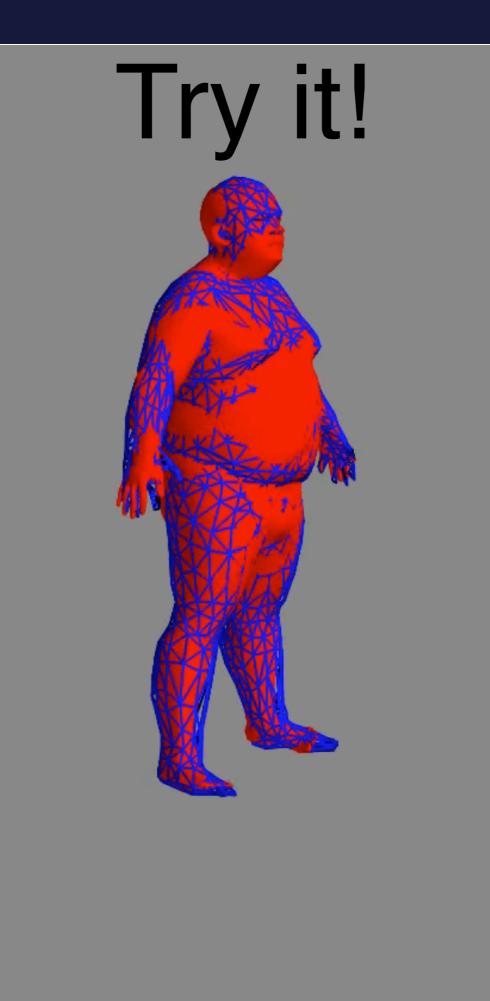
$$f^{k+1} = f^k - \lambda \nabla_f E(f)$$

• For least squares, is there a better optimisation method ? yes: *Gauss-Newton* based methods.

- 1. Energy: $E \equiv \sum_{i} \|\min_{\mathbf{x}} f(\mathbf{x}) \mathbf{y}_{i}\|^{2}$
- 2. Consider the correspondences fixed in each iteration j+1 $\mathbf{x}_i^{j+1} = \arg\min_{\mathbf{x}\in\mathbf{X}} \|f^j(\mathbf{x}) - \mathbf{y}_i\|^2$
- 3. Compute gradient of the energy around current estimation

$$g^{j+1} = \nabla E(f^j)$$

- 4. Apply step (gradient descent, dogleg, LM, BFGS...) $f^{j+1} = k_{step}(g^{0...j+1}, f^{0...j}) \qquad \text{(for example } f^{j+1} = f^j - \alpha g^{j+1})$
- 5. terminate if converged, otherwise iterate (go to step 2)



• Energy:

• Consider the correspondences fixed in each iteration j+1

• Compute gradient of the energy around current estimation

• Apply step (gradient descent, dogleg, LM, BFGS...)

Gradient-based ICP

$$E \equiv \sum_{i} \|\min_{\mathbf{x}} f(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

$$g^{j+1} = \nabla E(f^{j})$$

 gradient: derivative of the sum of squared distances between target points and scale, rotated and translated source points, with respect to the the scale, rotation and translation

Gradient-based ICP

$$E \equiv \sum_{i} \|\min_{\mathbf{x}} f(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

$$g^{j+1} = \nabla E(f^{j})$$

- gradient: derivative of the sum of squared distances between target points and scale, rotated and translated source points, with respect to the the scale, rotation and translation
- Each derivative is easy
 - Who takes the chalk and writes it down?

Gradient-based ICP

$$E \equiv \sum_{i} \|\min_{\mathbf{x}} f(\mathbf{x}) - \mathbf{y}_{i}\|^{2}$$

$$g^{j+1} = \nabla E(f^{j})$$

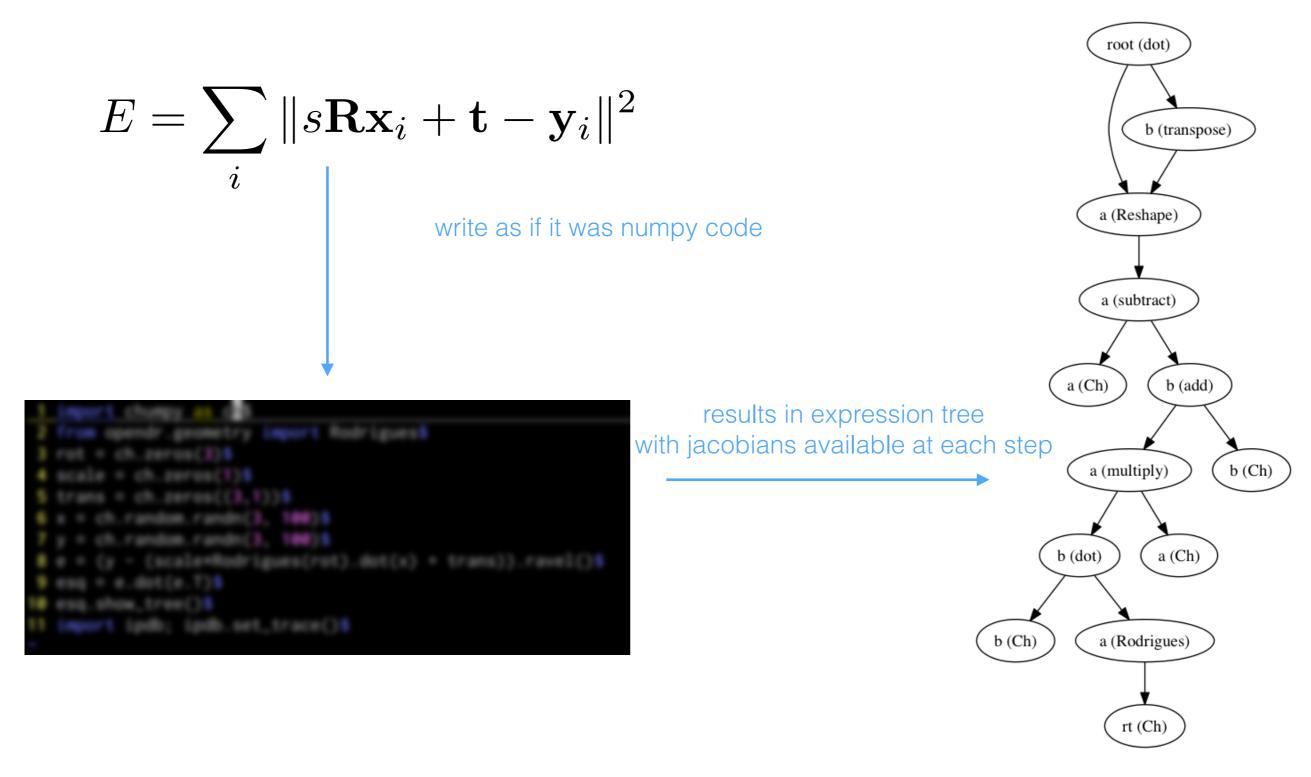
- gradient: derivative of the sum of squared distances between target points and scale, rotated and translated source points, with respect to the the scale, rotation and translation
- Each derivative is easy
 - Who takes the chalk and writes it down?
- Chain rule and automatic differentiation!

Chumpy

- https://pypi.python.org/pypi/chumpy
- Automatic differentiation compatible with numpy
- Jacobian: matrix encoding partial derivative of outputs (rows) with respect to inputs (columns) $\mathbf{J} = \frac{d\mathbf{b}}{d\mathbf{c}} = \begin{bmatrix} \frac{\delta b_1}{\delta c_1} & \cdots & \frac{\delta b_1}{\delta c_n} \\ \vdots & \ddots & \vdots \\ \frac{\delta b_m}{c} & \cdots & \frac{\delta b_m}{c} \end{bmatrix}$
- The Jacobians of each operation are encoded for you
- The composed Jacobian is computed with the chain rule

$$\mathbf{J}_{\mathbf{a}\circ\mathbf{b}}(\mathbf{c}) = \mathbf{J}_{\mathbf{a}}(\mathbf{b}(\mathbf{c}))\mathbf{J}_{\mathbf{b}}(\mathbf{c})$$

Chumpy



• Energy:

• Consider the correspondences fixed in each iteration j+1

• Compute gradient of the energy around current estimation

• Apply step (gradient descent, dogleg, LM, BFGS...)

$$f^{j+1} = k_{step}(g^{0\dots j+1}, f^{0\dots j})$$

- However, lots of standard ways are available in scientific libraries like scipy
 - And chumpy integrates well with it
 - Minimisation in a single line:

ch.minimize(fun=energy, x0=[scale, rot, trans], method='dogleg')

Why Gradient-based ICP?

- Formulation is much more generic: the energy can incorporate other terms, more parameters, etc
- A lot of available software for solving this least squares problem (cvx, ceres, ...)
- **However,** the resulting energy is non-convex for general deformation models. Optimisation can get trapped in local minima.

Take-home message

- Procrustes is optimal given optimal correspondences and for rigid alignment problems. For other problems:
- We can compute correspondences and solve for the best transformation iteratively with Iterative Closest Point (ICP)