u"@'@ UNIVERSITAT

-
max planck institut
uuuu DES ' l l p l I informatik

I SAARLANDES

Boay Models -2

Gerard Pons-Moll and Paul Swoboda

Max Planck Institute for Informatics

December 12, 2018

What Is missing

* (Given correspondences, we can find the optimal rigid
alignment with Procrustes.

PROBLEMS:

« How do we find the correspondences between
shapes 7

 How do we align shapes non-rigidly

loday

» Optimising alignment and correspondences using
[terative Closest Point (ICP).

e Alignment through continuous optimisation.

|deas?

|deas?

|deas?

|deas

e The idea was to minimise the sum of distances between
the one set of points and the other set, transtormed

3
E = Z [sRx; +t —y;|* = Z Hf(XgHZ

|deas

e The idea was to minimise the sum of distances between
the one set of points and the other set, transtormed

3
E = Z [sRx; +t —y;|* = Z Hf(XgHZ

 What if we estimate the correspondences”

|deas

e The idea was to minimise the sum of distances between
the one set of points and the other set, transtormed

?
E = Z |sRx; +t — Yi||2 = Z Hf(XgHZ

 What if we estimate the correspondences”

j+1 _ TS DAY
X/ = arg min | /7 (x) - il

FH = argmin Y |16 — .l

|deas

e The idea was to minimise the sum of distances between
the one set of points and the other set, transtormed

?
E = Z |sRx; +t — Yi||2 = Z Hf(XgHZ

 What if we estimate the correspondences”

j+1 _ TS DAY
X/ = arg min |7 (x) - il

FH = argmin Y |16) — vl

Make up reasonable correspondences

Make up reasonable correspondences

fP={R=1,t=0,5s=1}

x = arg min || f°(x) — yo

Make up reasonable correspondences

fP={R=1,t=0,5s=1}

1

_ . 0 o 112
x! = argmin | (%) — yi

Solve for the best transformation

.....

,,,,,

.......

1 _ - 0 o~
; = argmin [|f7(x) —y;

fH=argmin [£(<) — il

X

Apply It ...

and Iterate!

b

f'=argmin Y | £(x) -y

x; = argmin || f(x) —y;

2
xeX ||

and Iterate!

1l = argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;

and Iterate!

1= argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;

and Iterate!

1l = argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;

and Iterate!

1l = argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;

and Iterate!

1l = argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;

N
iterative Closest Point (ICP)

1. Initialise fP={R=1It= 2Yi 2% s =1}
Y N N Y

N
iterative Closest Point (ICP)

1. Initialise 0 _ R:It:ZYi 2 Xi s=1
f { Y N N Y }
2. compute correspondences according to current best transform
" . |
X“ZJF = argmin || 7 (x) — y; |7

xeX

N
iterative Closest Point (ICP)

1. Initialise 0 _ R:It:ZYi 2 Xi s=1
f { Y N N Y }
2. compute correspondences according to current best transform
" . |
X“ZJF = argmin || 7 (x) — y; |7

xeX
3. compute optimal transformation (s, R, t) with Procrustes

frt = argmin 3 1F0T) — vl

iterative Closest Point (ICP)

DUV DX
=1
N Nk }

2. compute correspondences according to current best transform
J+1 : J 2
. = arg min X)—V;
I = argmin |/ (x) - yi
3. compute optimal transformation (s, R, t)with Procrustes

FH = argmin Y 156) — vl

1
4. terminate if converged (error below a threshold), otherwise
iterate

1. initialise fO ={R=1It=

X

N
iterative Closest Point (ICP)

1. Initialise 0 _ R:It:ZYi 2 Xi s=1
f { Y N N Y }
2. compute correspondences according to current best transform
" . |
X“ZJF = argmin || 7 (x) — y; |7

xeX
3. compute optimal transformation (s, R, t)with Procrustes

frt = argmin 3 1F0T) — vl

1
4. terminate if converged (error below a threshold), otherwise
iterate (go to step 2)

5. converges to local minima

s ICP the best we can do?
e |teration |

 compute closest points
e compute optimal transtormation with Procrustes
e apply transtormation

e terminate If converged, otherwise iterate

Closest points

e Brute force is nN\2

Closest points

* Tree based methods (e.g. kdtree) have avg. complexity log(n)

« Random point sampling also reduces the running time

s ICP the best we can do?
e |teration |

 compute closest points
 compute optimal transtormation with Procrustes
e apply transtormation

e terminate If converged, otherwise iterate

Best transformation®

* Procrustes gives us the optimal rigid transformation and
scale given correspondences

 What it the deformation model is not rigid ?

 Can we generalise ICP to non-rigid deformation “?

N
iterative Closest Point (ICP)

e |teration |

* compute closest points »In which direction should | move?
e compute optimal transtormation with Procrustes
e apply transtormation

e terminate If converged, otherwise iterate

N
iterative Closest Point (ICP)

e |teration |

* compute closest points »In which direction should | move?

 compute optimal transtormation with Procrustes
» compute a transform that reduces the error

e apply transtormation

e terminate If converged, otherwise iterate

e
Gradient-based ICP

e |teration |

* compute closest points » Jacobian of distance-based energy

n " n
) AVIAAlA ANNAl A aa A A (Y AN A \ () B () ()
J \J _/ o _/ V'V _/ W

» compute descent step by linearising the energy

e apply transtormation

e terminate If converged, otherwise iterate

e
Gradient-based ICP

arg mj_in E(f) = arg m}nz Hf(X‘ZJFl) — ;I

e |t fis arigid transtormation we can solve this
minimisation using Procrustes

* |f fis a general non-linear function
» Gradient descent:
At = = AV E(f)

e [or least squares, is there a better optimisation
method ? yes: Gauss-Newton based methods.

e
Gradient-based ICP

1. Energy: E = Z | min f(x) — yill”

2. Consider the correspondences fixed in each iteration j+1

j+1 _ TS VAT
x; 1 = argmin || f7(x) — i

3. Compute gradient of the energy around current estimation
g’ = VE(f’)
4. Apply step (gradient descent, dogleg, LM, BFGS...)

f‘7+1 — kstep(go"'j+1, fo"'j) (for example f7T = f7 — ag’th)

5. terminate if converged, otherwise iterate (go to step 2)

e
Gradient-based ICP

 Compute gradient of the energy around current estimation

e
Gradient-based ICP

g’ = VE(f)

e gradient: derivative of the sum of squared distances between

target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

e
Gradient-based ICP

g =VE(f)

e gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,

with respect to the the scale, rotation and translation

 Each derivative is easy

e \Who takes the chalk and writes it down?

e
Gradient-based ICP

g’ =VE(f7)
e gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

 Each derivative is easy

e \Who takes the chalk and writes it down?

e Chain rule and automatic differentiation!

R
Chumpy

* https://pypi.python.org/pypi/chumpy

e Automatic differentiation compatible with numpy

e Jacobian: matrix encoding partial derivative of outputs (rovvs)

with respect to inputs (columns) . Seb e Bl
J — ; . ;

%:

Obm by,
L dca "t den

* The Jacobians of each operation are encoded for you

 The composed Jacobian is computed with the chain rule

Jaob(c) = Ja(b(c))Jn(c)

Chumpy

E:Z||3RXi+t_YiH2 <D

e
Gradient-based ICP

* Apply step (gradient descent, dogleg, LM, BFGS...)

fj+1 _ kstep(go...j—kl’fo...j)

e
Gradient-based ICP

* However, lots of standard ways are available in scientific
ibraries like scipy

* And chumpy integrates well with it
* Minimisation in a single line:

ch.minimize(fun=energy, x0=[scale, rot, trans], method="dogleg’)

R
Why Gradient-based |CP?

 Formulation is much more generic: the energy can
iIncorporate other terms, more parameters, etc

* A lot of available software for solving this least squares
poroblem (cvx, ceres, ...)

 However, the resulting energy is non-convex for general
deformation models. Optimisation can get trapped in local
minima.

N
lake-nome message

* Procrustes is optimal given optimal correspondences and
for rigid alignment problems. For other problems:

* \We can compute correspondences and solve for the best
transformation iteratively with Iterative Closest Point (ICP)

