
Body Models I-2
Gerard Pons-Moll and Paul Swoboda

Max Planck Institute for Informatics
December 12, 2018

What is missing

• Given correspondences, we can find the optimal rigid
alignment with Procrustes.

PROBLEMS:

• How do we find the correspondences between
shapes ?

• How do we align shapes non-rigidly ?

Today

• Optimising alignment and correspondences using
Iterative Closest Point (ICP).

• Alignment through continuous optimisation.

Ideas?

Ideas?

Ideas?

?

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we make up some reasonable correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we estimate the correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we estimate the correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

original unsorted points

Ideas

• The idea was to minimise the sum of distances between
the one set of points and the other set, transformed  
 
 

• What if we estimate the correspondences?  
 
 
 

compact notation: f contains translation, rotation and isotropic scale

E ⌘
X

i

ksRxi + t� yik2 ⌘
X

i

kf(xi)� yik2
?

iteration

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

Given current best transformation,
which are the closest correspondences?

Given current best correspondences,
which is the best transformation?

Make up reasonable correspondences

Y
X

Make up reasonable correspondences

x1
0

y0

Neutral initialisation.
Initialising t to align centroids should work better!

f0 = {R = I, t = 0, s = 1}
x1
0 = argmin

x2X
kf0(x)� y0k2

X ⌘ f0(X)

y1

Make up reasonable correspondences

f0 = {R = I, t = 0, s = 1}
x1
i = argmin

x2X
kf0(x)� yik2

x1
0

x1
1

y0

Solve for the best transformation

solve with procrustes

x1
i = argmin

x2X
kf0(x)� yik2

f1 = argmin
f

X

i

kf(x1
i)� yik2

Apply it …

f1(X)

and iterate!

f1 = argmin
f

X

i

kf(x1
i)� yik2

x2
i = argmin

x2X
kf1(x)� yik2

f1(X)

and iterate!

f j = argmin
f

X

i

kf(xj
i)� yik2

xj+1
i = argmin

x2X
kf j(x)� yik2

f j(X)

and iterate!

f j = argmin
f

X

i

kf(xj
i)� yik2

xj+1
i = argmin

x2X
kf j(x)� yik2

f j(X)

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

xj+1
i = argmin

x2X
kf j(x)� yik2

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

xj+1
i = argmin

x2X
kf j(x)� yik2

and iterate!

f j(X)

f j = argmin
f

X

i

kf(xj
i)� yik2

xj+1
i = argmin

x2X
kf j(x)� yik2

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

typically better than 0

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation () with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

1. initialise

2. compute correspondences according to current best transform  

3. compute optimal transformation ()with Procrustes  
 

4. terminate if converged (error below a threshold), otherwise
iterate (go to step 2)

5. converges to local minima

f0 = {R = I, t =

P
yi

N
�

P
xi

N
, s = 1}

Iterative Closest Point (ICP)

xj+1
i = argmin

x2X
kf j(x)� yik2

f j+1 = argmin
f

X

i

kf(xj+1
i)� yik2

s,R, t

Is ICP the best we can do?
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

Closest points

• Brute force is n^2

Closest points
• Tree based methods (e.g. kdtree) have avg. complexity log(n)

• Random point sampling also reduces the running time

Is ICP the best we can do?
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

Best transformation?

• Procrustes gives us the optimal rigid transformation and
scale given correspondences

• What if the deformation model is not rigid ?

• Can we generalise ICP to non-rigid deformation ?

Iterative Closest Point (ICP)
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

In which direction should I move?

Iterative Closest Point (ICP)
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

In which direction should I move?

compute a transform that reduces the error

Gradient-based ICP
• iteration j

• compute closest points 

• compute optimal transformation with Procrustes 

• apply transformation  

• terminate if converged, otherwise iterate

Jacobian of distance-based energy

compute descent step by linearising the energy

Gradient-based ICP

• If f is a rigid transformation we can solve this
minimisation using Procrustes

• If f is a general non-linear function ?
• Gradient descent:

• For least squares, is there a better optimisation
method ? yes: Gauss-Newton based methods.

argmin
f

E(f) = argmin
f

X

i

kf(xj+1
i)� yik2

fk+1 = fk � �rfE(f)

1. Energy:  

2. Consider the correspondences fixed in each iteration j+1  

3. Compute gradient of the energy around current estimation  

4. Apply step (gradient descent, dogleg, LM, BFGS…)  

5. terminate if converged, otherwise iterate (go to step 2)

Gradient-based ICP
E ⌘

X

i

kmin
x

f(x)� yik2

xj+1
i = argmin

x2X
kf j(x)� yik2

(for example) f j+1 = kstep(g
0...j+1, f0...j)

gj+1 = rE(f j)

f j+1 = f j � ↵gj+1

Try it!

Gradient-based ICP
• Energy:  

• Consider the correspondences fixed in each iteration j+1  

• Compute gradient of the energy around current estimation  

• Apply step (gradient descent, dogleg, LM, BFGS…)  

• terminate if converged, otherwise iterate

Gradient-based ICP

• gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

• Each derivative is easy

• Who takes the chalk and writes it down?

• Chain rule and automatic differentiation!

E ⌘
X

i

kmin
x

f(x)� yik2

gj+1 = rE(f j)

Gradient-based ICP

• gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

• Each derivative is easy

• Who takes the chalk and writes it down?

• Chain rule and automatic differentiation!

E ⌘
X

i

kmin
x

f(x)� yik2

gj+1 = rE(f j)

Gradient-based ICP

• gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

• Each derivative is easy

• Who takes the chalk and writes it down?

• Chain rule and automatic differentiation!

E ⌘
X

i

kmin
x

f(x)� yik2

gj+1 = rE(f j)

Chumpy
• https://pypi.python.org/pypi/chumpy

• Automatic differentiation compatible with numpy

• Jacobian: matrix encoding partial derivative of outputs (rows)
with respect to inputs (columns)  

• The Jacobians of each operation are encoded for you

• The composed Jacobian is computed with the chain rule

Ja�b(c) = Ja(b(c))Jb(c)

J =
db

dc
=

2

664

�b1
�c1

. . . �b1
�cn

...
. . .

...
�bm
�c1

. . . �bm
�cn

3

775

Chumpy

E =
X

i

ksRxi + t� yik2

write as if it was numpy code

results in expression tree 
with jacobians available at each step

Gradient-based ICP
• Energy:  

• Consider the correspondences fixed in each iteration j+1  

• Compute gradient of the energy around current estimation  

• Apply step (gradient descent, dogleg, LM, BFGS…)  

• terminate if converged, otherwise iterate
f j+1 = kstep(g

0...j+1, f0...j)

Gradient-based ICP

• However, lots of standard ways are available in scientific
libraries like scipy

• And chumpy integrates well with it

• Minimisation in a single line:  
 
ch.minimize(fun=energy, x0=[scale, rot, trans], method=‘dogleg')

Why Gradient-based ICP?

• Formulation is much more generic: the energy can
incorporate other terms, more parameters, etc

• A lot of available software for solving this least squares
problem (cvx, ceres, …)

• However, the resulting energy is non-convex for general
deformation models. Optimisation can get trapped in local
minima.

Take-home message

• Procrustes is optimal given optimal correspondences and
for rigid alignment problems. For other problems:

• We can compute correspondences and solve for the best
transformation iteratively with Iterative Closest Point (ICP)

