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What Is missing

* (Given correspondences, we can find the optimal rigid
alignment with Procrustes.

PROBLEMS:

« How do we find the correspondences between
shapes 7

 How do we align shapes non-rigidly



loday

» Optimising alignment and correspondences using
[terative Closest Point (ICP).

e Alignment through continuous optimisation.
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e The idea was to minimise the sum of distances between
the one set of points and the other set, transtormed
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Make up reasonable correspondences

fP={R=1,t=0,5s=1}
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Solve for the best transformation
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Apply It ...



and Iterate!

b

f'=argmin Y | £(x) -y

x; = argmin || f(x) —y;
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and Iterate!

1l = argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;



and Iterate!

1= argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;



and Iterate!

1l = argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;



and Iterate!

1l = argmj}nz | f(x]) = yill

j+1 _ £ () v
x/*! = argmin | £1(x) — y;



and Iterate!
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iterative Closest Point (ICP)
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2. compute correspondences according to current best transform
J+1 : J 2
. = arg min X)—V;
I = argmin |/ (x) - yi
3. compute optimal transformation (s, R, t )with Procrustes

FH = argmin Y 156 ) — vl

1
4. terminate if converged (error below a threshold), otherwise
iterate
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iterative Closest Point (ICP)

1. Initialise 0 _ R:It:ZYi 2 Xi s=1
f { Y N N Y }
2. compute correspondences according to current best transform
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X“ZJF = argmin || 7 (x) — y; |7

xeX
3. compute optimal transformation (s, R, t )with Procrustes

frt = argmin 3 1F0T) — vl

1
4. terminate if converged (error below a threshold), otherwise
iterate (go to step 2)

5. converges to local minima



s ICP the best we can do?
e |teration |

 compute closest points
e compute optimal transtormation with Procrustes
e apply transtormation

e terminate If converged, otherwise iterate



Closest points

e Brute force is nN\2




Closest points

* Tree based methods (e.g. kdtree) have avg. complexity log(n)

« Random point sampling also reduces the running time



s ICP the best we can do?
e |teration |

 compute closest points
 compute optimal transtormation with Procrustes
e apply transtormation

e terminate If converged, otherwise iterate



Best transformation®

* Procrustes gives us the optimal rigid transformation and
scale given correspondences

 What it the deformation model is not rigid ?

 Can we generalise ICP to non-rigid deformation “?
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N
iterative Closest Point (ICP)

e |teration |

* compute closest points »In which direction should | move?

 compute optimal transtormation with Procrustes
» compute a transform that reduces the error

e apply transtormation

e terminate If converged, otherwise iterate



e
Gradient-based ICP

e |teration |

* compute closest points » Jacobian of distance-based energy
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» compute descent step by linearising the energy

e apply transtormation

e terminate If converged, otherwise iterate



e
Gradient-based ICP

arg mj_in E(f) = arg m}nz Hf(X‘ZJFl) — ;I

e |t fis arigid transtormation we can solve this
minimisation using Procrustes

* |f fis a general non-linear function
» Gradient descent:
At = = AV E(f)

e [or least squares, is there a better optimisation
method ? yes: Gauss-Newton based methods.



e
Gradient-based ICP

1. Energy: E = Z | min f(x) — yill”

2. Consider the correspondences fixed in each iteration j+1

j+1 _ TS VAT
x; 1 = argmin || f7(x) — i

3. Compute gradient of the energy around current estimation
g’ = VE(f’)
4. Apply step (gradient descent, dogleg, LM, BFGS...)

f‘7+1 — kstep(go"'j+1, fo"'j) (for example f7T = f7 — ag’th)

5. terminate if converged, otherwise iterate (go to step 2)






e
Gradient-based ICP

 Compute gradient of the energy around current estimation
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Gradient-based ICP

g’ = VE(f)

e gradient: derivative of the sum of squared distances between

target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation
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e \Who takes the chalk and writes it down?



e
Gradient-based ICP

g’ =VE(f7)
e gradient: derivative of the sum of squared distances between
target points and scale, rotated and translated source points,
with respect to the the scale, rotation and translation

 Each derivative is easy

e \Who takes the chalk and writes it down?

e Chain rule and automatic differentiation!



R
Chumpy

* https://pypi.python.org/pypi/chumpy

e Automatic differentiation compatible with numpy

e Jacobian: matrix encoding partial derivative of outputs (rovvs)

with respect to inputs (columns) . Seb e Bl
J — ; . ;

%:
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* The Jacobians of each operation are encoded for you

 The composed Jacobian is computed with the chain rule

Jaob(c) = Ja(b(c))Jn(c)



Chumpy

E:Z||3RXi+t_YiH2 <D




e
Gradient-based ICP

* Apply step (gradient descent, dogleg, LM, BFGS...)

fj+1 _ kstep(go...j—kl’fo...j)



e
Gradient-based ICP

* However, lots of standard ways are available in scientific
ibraries like scipy

* And chumpy integrates well with it
* Minimisation in a single line:

ch.minimize(fun=energy, x0=[scale, rot, trans], method="dogleg’)



R
Why Gradient-based |CP?

 Formulation is much more generic: the energy can
iIncorporate other terms, more parameters, etc

* A lot of available software for solving this least squares
poroblem (cvx, ceres, ...)

 However, the resulting energy is non-convex for general
deformation models. Optimisation can get trapped in local
minima.



N
lake-nome message

* Procrustes is optimal given optimal correspondences and
for rigid alignment problems. For other problems:

* \We can compute correspondences and solve for the best
transformation iteratively with Iterative Closest Point (ICP)



