Body Models II

Gerard Pons-Moll and Paul Swoboda

Max Planck Institut für Informatik December 19, 2018

Schedule

17.10.2018	An Optimization Perspective
24.10.2018	Introduction to probabilities and directed/undirected graphs
31.10.2018	An Optimization Perspective
07.11.2018	An Optimization Perspective
14.11.2018	An Optimization Perspective
21.11.2018	An Optimization Perspective
12.12.2018	Body Models 1
19.12.2018	Body Models 2
09.01.2019	Body Models 3
16.01.2019 11.01.2019	Sampling and Tracking
23.01.2019	Graphical Models in Computer Vision
06.02.2019	Wrap-up

Our research goal: Virtual humans

What is a virtual human model?

Applications

MPI Dynamic FAUST

Tracking from depth

Virtual Reality

Registration

Tracking from images

Animation

A Body Model is a function

What kind of function ?

Given the function, what w?

$$f(x; \mathbf{w}) = w_1 x^3 + w_2 x^2 + w_1 x + w_0$$

And also why our input **X** is shape and pose ?

Notation: $\mathbf{X}_{\text{pose}} = \vec{\theta} \quad \mathbf{X}_{\text{shape}} = \vec{\beta}$

How do we parameterize pose ?

Parameterize every body part separately ?

How do we parameterize pose?

Articulated constraints not satisfied!

Rotation parameterization

• Rotations are composed of 9 numbers

 6 additional constraints to ensure that the matrix is orthonormal

• Suboptimal for optimization

Rotation with Exponential Maps

Rotation obtained with Rodrigues formula:

$$\mathbf{R} = e^{\widehat{\vec{\omega}}} = \mathcal{I} + \widehat{\vec{\omega}}_j \sin(\|\vec{\omega}_j\|) + \widehat{\vec{\omega}}^2 (1 - \cos(\|\vec{\omega}_j\|))$$

Joint Rigid Body Motion

The transformation associated with a rotational joint is \vec{v} :

Kinematic Chains

Kinematic Chains

The coordinates of the point in the spatial frame are:

$$\bar{\mathbf{p}}_s = G(\vec{\omega_1}, \vec{\omega_2}, \mathbf{j}_1, \mathbf{j}_2) = G(\vec{\omega_1}, \mathbf{j}_1) G(\vec{\omega_2}, \mathbf{j}_2) \bar{\mathbf{p}}_b$$

Pose Parameters

 \mathbf{j}_1

- Given a set of joint locations

$$\mathbf{J} = (\mathbf{j}_1, \dots, \mathbf{j}_K)^T$$

The pose defined as the vector of concatenated part axis-angles

$$\vec{\theta} = (\vec{\omega}_1, \dots, \vec{\omega}_k)^T$$

Pons-Moll & Rosenhahn 2011 Model-based Pose Estimation. Looking at People.

Kinematic Chain Problems

Different poses

Different poses using no blendweights
>python visualize_ablated_smpl.py

Points transformed as blended linear combination of joint transformation matrices

Binding Matrices

Linear Blend Skinning

Different poses using BW

Different poses using no blendweights
>python visualize_ablated_smpl.py

Standard skinning produces vertices from...

– Joint locations: $\mathbf{J} \in \mathbb{R}^{3K}$

- Weights: $\mathcal{W} \in \mathbb{R}^{N imes K}$
- Pose parameters: $\vec{\theta} \in \mathbb{R}^{3K}$

Standard skinning produces vertices from...

Standard skinning produces vertices from...

Standard skinning produces vertices from...

Skinning function

- Rest pose vertices: $\mathbf{T} \in \mathbb{R}^{3N}$ - Joint locations: $\mathbf{J} \in \mathbb{R}^{3K}$
- Weights: $\mathcal{W} \in \mathbb{R}^{N \times K}$ – Pose parameters: $\vec{\theta} \in \mathbb{R}^{3K}$

 $W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$

LBS problems

Solution: Blend Shapes

 A blend shape is a set of vertex displacements in a rest pose

– Pose blend shapes: correct for LBS problems

$$\mathbf{P} = \operatorname{vec} \begin{pmatrix} \Delta x_1 & \Delta y_1 & \Delta z_1 \\ \vdots & \\ \Delta x_N & \Delta y_N & \Delta z_N \end{pmatrix} \rightarrow \text{Offset 1} \\ \in \mathbb{R}^{3N}$$

Pose Blend Shapes

• With blend shape correction

How to predict Blend Shapes ?

• Animators sculpt it manually!

• Time consuming, does not scale

Can we leverage training data ?

Scattered Data Interpolation

Problems Scattered Data Interpolation

- 1) Computationally expensive (need to find closest poses in a database)
- 2) Does not extrapolate very well to novel poses
Problems

- If we don't use scattered data interpolation, how do we define pose blend shapes ? $B_P(\vec{\theta'})$
- How to set the skinning parameters ?

$\mathbf{T} \in \mathbb{R}^{3N} \quad \mathbf{J} \in \mathbb{R}^{3K} \quad \mathcal{W} \in \mathbb{R}^{N \times K}$

More Problems

How do we model shape identity variations ?

SMPL

SMPL Model Results

SMPL Philosophy

We aim for the simplest possible model while having state-of-the-art performance

- Makes training easier
- Enables compatibility

2015 Loper et.al. SIGGRAPH Asia

Template Mesh

Template Mesh

Shape Blend Shapes

Template Mesh

Shape Blend Shapes Pose Blend Shapes

Given Pose

Template Mesh

Shape Blend Shapes Pose Blend Shapes

Final Mesh

Standard Skinning

Parameterized Skinning

SMPL model $M(\vec{\theta}, \vec{\beta}) = W(\mathbf{\Gamma}_{F}(\vec{\beta}, \theta), \mathbf{J}(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$

SMPL is skinning parameterized by pose $\vec{\theta}$ and shape $\vec{\beta}$

SMPL: BS are a parametric function of pose

• We parameterize the skinning equation by pose

$$W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{\theta})$$

$$W(T(\theta), \mathbf{J}, \mathcal{W}, \vec{\theta})$$

Remember: Pose Blend Shapes

• With blend shape correction

Parameterized Skinning $W(T(\theta), \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$ $\overline{T(\vec{\theta})} = \mathbf{T} + B_P(\vec{\theta})$

• Our rest vertices are linear in $f(\theta)$

Parameterized Skinning

- What function $f(\vec{\theta})$? $B_P(\vec{\theta}) = \sum_i f_i(\vec{\theta}) \mathbf{P}_i$
- Simplest possible:

$$f(\vec{\theta}) = \vec{\theta}$$

Neck Rotation

Parameterized Skinning

• What function $f(\vec{\theta})$?

$$B_P(\vec{\theta}) = \sum_{i}^{|f(\vec{\theta})|} f_i(\vec{\theta}) \mathbf{P}_i$$

- Idea: we consider $f(\vec{\theta})$ as the vectorized joint rotation matrices
- Blend shapes are linear in rotation matrix elements

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes

Neck Rotation

Pose Blendshapes demo

>> python visualize_pose_blends.py

Joint Location Estimation

- How to get the joints J for a new shape?
 What is the simplest way?
- Joints are considered linear in rest vertices (much like in Allen et al. '06)

$$\mathbf{J} = J(\mathbf{T}; \mathcal{J}) = \mathcal{J}\mathbf{T}$$

$$\downarrow$$
Joint regressor matrix

Joint Location Estimation

Adding a shape space

Problem: want a shape space with different identities

$$W(T(\vec{\theta}), J(\mathbf{T}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$
$$T(\vec{\theta}) = \mathbf{T} + B_P(\vec{\theta})$$
$$\overset{\text{Pose}}{=} \left\{ B_P(\vec{\theta}) = \sum_{i}^{|f(\vec{\theta})|} f_i(\vec{\theta}) \mathbf{P}_i \right\}$$

Adding a shape space **Solution**: add blend shapes linear with $\vec{\beta}$

$$W(T(\vec{\theta}, \vec{\beta}), J(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$$

$$T_P(\vec{\theta}, \vec{\beta}) = \mathbf{T} + B_P(\vec{\theta}) + B_S(\vec{\beta})$$

$$\underset{\text{contribution}}{\overset{\text{Pose}}{}} \left\{ B_P(\vec{\theta}) = \sum_{j=1}^{|f(\vec{\theta})|} f_i(\vec{\theta}) \mathbf{P}_i$$

$$\underset{\text{Shape}}{\overset{\text{Shape Blend shape matrix}}{}} \underset{\mathcal{S} = [\mathbf{S}_1 \quad \mathbf{S}_2 \ \dots \ \mathbf{S}_{N_{\text{subj}}}]}{\overset{\text{Shape Blend shape matrix}}{}} \right\}$$

SMPL Skinning

Parameterized Skinning

SMPL model $M(\vec{\theta}, \vec{\beta}) = W(\mathbf{\Gamma}_{F}(\vec{\beta}, \theta), \mathbf{J}(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$

SMPL is skinning parameterized by pose $\vec{\theta}$ and shape $\vec{\beta}$

- **T** Template (average shape)
- ${\cal S}$ Shape blend shape matrix
- \mathcal{P} Pose blend shape matrix
- ${\cal W}$ Blendweights matrix
- \mathcal{J} Joint regressor matrix

DATA

Model Training

Multipose database: 20 males, 24 females 1800 registrations

Model Training Multishape database: PCA on ~2000 single-pose registrations per gender

Model Training

 $\mathbf{2}$

Training

$$\arg \min_{\mathbf{T}, \mathcal{S}, \mathcal{P}, \mathcal{W}, \mathcal{J}} \sum_{j} \min_{\vec{\theta}_{j}, \vec{\beta}_{j}} \|M(\vec{\theta}_{j}, \vec{\beta}_{j}; \mathbf{T}, \mathcal{S}, \mathcal{P}, \mathcal{W}, \mathcal{J}) - \mathbf{V}_{j}\|^{2}$$

$$\downarrow$$
Model
Registrations

Ideally one wants to find the model parameters that minimize a single objective measuring the distance between **model** and **registrations**

Gradient based optimization!

Number of Parameters Learned

For a model with 6890 vertices

- \mathcal{P} 9x23x6890 = 4,278,690
- W 4x3x6890 = 82,680
- \mathcal{J} 3x6890x23x3 = 1,426,230
- T, S 3x6890 + 3x6890x10blendshapes = 227,370

A total of 6.014.970 parameters are learned

Before doing PCA all shapes have to be in the same pose (pose needs to be optimized)
Shape Blend Shapes- Female

PC 1 varied between +/-3 std dev

Shape Blend Shapes- Male

PC 1 varied between +/-3 std dev

Pose Blendshapes

Conclusion

- **Speed**: fast run-time
- **Fidelity**: superior accuracy to Blend-SCAPE, trained on the same data
- Compatibility: works in Maya, other platforms soon
- Is publicly available for research purposes

Download: <u>http://smpl.is.tue.mpg.de</u>

SMPL results

SMPL Model

Model Decomposition

Dynamics of Soft Tissue

DMPL exaggeration

Applications 1

- Given a new registration, find the pose and shape. Correspondences are known.
- >> align_3Dpoints.py

Fitting SMPL to a scan/mesh

• Problem: Given a registration, find the model pose and shape.

$$\vec{ heta}, \vec{eta} = rg \min_{\vec{ heta}, \vec{eta}} \|M(\vec{ heta}, \vec{eta}) - \mathbf{V}\|^2$$

Model Registration

Chumpy does it for you but you have to know what you are doing!!

 Chumpy minimizes the sum of squares of a vector valued error function

Optimization variables (vector) $e(\mathbf{x}) = \sum_{i} \mathbf{e}_{i}(\mathbf{x})^{2} = \mathbf{e}(\mathbf{x})^{T} \mathbf{e}(\mathbf{x})$ Residuals Sum of squares (scalar) (vector valued error function) Jacobian of the vector valued error function:

$$J_{\mathbf{e}}(\mathbf{x}) = \frac{d\mathbf{e}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{e}_1}{\partial \mathbf{x}_1} & \cdots & \frac{\partial \mathbf{e}_1}{\partial \mathbf{x}_P} \\ & \ddots & \\ \frac{\partial \mathbf{e}_N}{\partial \mathbf{x}_1} & \cdots & \frac{\partial \mathbf{e}_N}{\partial \mathbf{x}_P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathsf{Z}_{\mathsf{residuals}} \\ \mathsf{residuals} \\ \mathsf{P}_{\mathsf{parameters}} \end{bmatrix}$$

of squares

Jacobian of vector valued error function

Gauss Newton method

 $e(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{e}(\mathbf{x} + \Delta \mathbf{x})^T \mathbf{e}(\mathbf{x} + \Delta \mathbf{x}) \simeq (e(\mathbf{x}) + \mathbf{J}\Delta \mathbf{x}))^T (e(\mathbf{x}) + \mathbf{J}\Delta \mathbf{x}))$

 $\mathbf{J}^T \mathbf{J} \Delta \mathbf{x} = -\mathbf{J}^T \mathbf{e}$ Hessian Gradient of the Approximation sum of squares

Levenberg-Marquadt method

 $e(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{e}(\mathbf{x} + \Delta \mathbf{x})^T \mathbf{e}(\mathbf{x} + \Delta \mathbf{x}) \simeq (e(\mathbf{x}) + \mathbf{J}\Delta \mathbf{x})^T (e(\mathbf{x}) + \mathbf{J}\Delta \mathbf{x}))$ $(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I})\Delta\mathbf{x} = -\mathbf{J}^T\mathbf{e}$ Hessian Gradient of the Approximation sum of squares

When do we need to compute the Jacobian ?

- Gradient is just a direction not a step.
- To compute the step most optimizers need to approximate the Hessian which requires the Jacobian.
- Many optimizers exploit the structure of the Jacobian.
- Direct application of chain rule requires computing Jacobians

If optimization takes too long, or breaks etc.

Ask yourself the following:

- What is the dimension of the Jacobian?
- Is it dense? (sparsity is exploited for speed).
- Is the Jacobian full rank? If Jacobian loses rank optimization can break. This is a typical case is when the error function does not depend on a particular variable x_i.

How do we use the model to solve computer vision problems ?

 Model the 3D world first, then explain image observations

• In the next lecture we will cover modeling appearance and fitting models to images