
Body Models II

Gerard Pons-Moll and Paul Swoboda
Max Planck Institut für Informatik

December 19, 2018

Schedule
17.10.2018 An Optimization Perspective

24.10.2018 Introduction to probabilities and
directed/undirected graphs

31.10.2018 An Optimization Perspective
07.11.2018 An Optimization Perspective
14.11.2018 An Optimization Perspective
21.11.2018 An Optimization Perspective
12.12.2018 Body Models 1
19.12.2018 Body Models 2

09.01.2019 Body Models 3
16.01.2019 11.01.2019 Sampling and Tracking
23.01.2019 Graphical Models in Computer Vision
06.02.2019 Wrap-up

Our research goal: Virtual humans

What is a virtual human model?
Ground truth

shape Model Model with
texture

3D scan with
texture

M(~✓, ~�, ~u;�)

pose shape texture

3D mesh

Hyper-parameters to
learn

Applications

Tracking from
depth

Registration

Cloth modeling
and try-on

Tracking from
images

Animation

Virtual Reality

A Body Model is a function

What kind of function ?

f(x) = w1x+ w2

Pose & shape

Body vertices

Linear ?

What kind of function ?

Pose & shape

Body vertices

Polynomial ?

Given the function, what w ?

f(x;w)

f(x;w) = w1x
3 + w2x

2 + w1x+ w0

Hyper-parametersInput parameters

And also why our input X is
shape and pose ?

Notation: Xpose = ~✓ Xshape = ~�

How do we parameterize pose ?
• Parameterize every body part separately ?

R0, t0

Rj , tj

Xpose = {R0, t0, . . .RN , tN}

Problems ?

How do we parameterize pose?

Articulated constraints not satisfied!

Rotation parameterization

• Rotations are composed of 9 numbers

• 6 additional constraints to ensure that
the matrix is orthonormal

• Suboptimal for optimization

Rotation with Exponential Maps

k~!jk
~!j

: Angle of rotation

: scaled axis of rotation

Rotation obtained with Rodrigues formula:

~!j

k~!jk

R = e
b~! = I + b̄!j sin(k~!jk) + b̄!2

(1� cos(k~!jk)

Joint Rigid Body Motion
The transformation associated with a rotational
joint is

Rigid Body
Motion

~!j

k~!jk

j

G(~!, j) =

[e~!]3⇥3 j3⇥1

01⇥3 1

�

Joint location

Kinematic Chains

S

B

~!1 ~!2

j1
j2

pb

Kinematic Chains

S

B

k~!2k

~!1 ~!2

j1
j2

pb

Kinematic Chains

S

The coordinates of the point in the spatial
frame are:

B

k~!1k

k~!2k

~!1

~!2

j1

j2

pb

p̄s = G(~!1, ~!2, j1, j2) = G(~!1, j1)G(~!2, j2)p̄b

Pose Parameters

The pose defined as the vector
of concatenated part axis-angles

~✓ = (~!1, . . . , ~!k)
T

J = (j1, . . . , jK)T
Given a set of joint locations

j1

jK

T
Pons-Moll & Rosenhahn 2011
Model-based Pose Estimation. Looking at People.

Kinematic Chain Problems

~✓ = (~!1, . . . , ~!k)
T

Different poses

• Different poses using no blendweights
>>python visualize_ablated_smpl.py

Points transformed as blended linear combination
of joint transformation matrices

Blend weights

Number of parts

0.8 0.
2

Linear Blend Skinning

Part transformations

Binding Matrices

Zero pose Posed spaceSkinning space
~✓~0~✓⇤

pss

G(~✓,J)

Gk(~✓
⇤
k,J)

�1

t̄i = Gk(~✓k,J)
�1pss

t0i

ti

Linear Blend Skinning

Different poses using BW

• Different poses using no blendweights
>>python visualize_ablated_smpl.py

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

26

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

27

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

28

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

Standard skinning produces vertices from…

– Rest pose vertices:

– Joint locations:

– Weights:

– Pose parameters:

Standard Skinning

29

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

– Rest pose vertices:
– Joint locations:
– Weights:
– Pose parameters:

Skinning function

30

T 2 R3N

J 2 R3K

W 2 RN⇥K

~✓ 2 R3K

W (T,J,W, ~✓) 7! vertices

LBS problems

Solution: Blend Shapes

• A blend shape is a set of vertex
displacements in a rest pose

– Pose blend shapes: correct for LBS problems

Offset 1

P = vec(

2

66664

�x1 �y1 �z1
...
...

�xN �yN �zN

3

77775
) 2 R3N

Pose Blend Shapes
• With blend shape correction

How to predict Blend Shapes ?

• Animators sculpt it manually!

• Time consuming, does not scale

Can we leverage training data ?

Scattered Data Interpolation
Pose 1 Pose 2 Pose N

Query pose
J.P.Lewis et.al. 2000

�i / K(~✓0, ~✓i) = exp

�k~✓0 � ~✓ik2

⌧

!

BP (~✓
0) =

X

i

�i(~✓
0)Pi

Problems Scattered Data
Interpolation

• 1) Computationally expensive (need to find
closest poses in a database)

• 2) Does not extrapolate very well to novel
poses

Problems
• If we don’t use scattered data interpolation,

how do we define pose blend shapes ?

T 2 R3N J 2 R3K W 2 RN⇥K

BP (~✓
0) =

X

i

�iPi

• How to set the skinning parameters ?

More Problems
How do we model shape identity
variations ?

SMPL

SMPL Philosophy

We aim for the simplest possible model
while having state-of-the-art performance

• Makes training easier
• Enables compatibility

2015 Loper et.al. SIGGRAPH Asia

Pipeline

Pipeline

Pipeline

Pipeline

Standard Skinning

Parameterized Skinning

W (T,J,W, ~✓) 7! vertices

M(~✓, ~�) = W (TF (~�, ✓),J(~�),W, ~✓) 7! vertices

Standard skinning

SMPL model

SMPL is skinning parameterized by pose
and shape ~�

~✓

SMPL: BS are a parametric
function of pose

• We parameterize the skinning equation by pose

W (T,J,W, ~✓)

W (T (✓),J,W, ~✓)

Remember: Pose Blend Shapes
• With blend shape correction

Parameterized Skinning

• Our rest vertices are linear in

Each is
a blend shape

W (T (✓),J,W, ~✓) 7! vertices

T (~✓) = T+BP (~✓)

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

Parameterized Skinning

• What function ?

• Simplest possible:

50

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

f(~✓)

f(~✓) = ~✓

Neck Rotation

• What function ?

• Idea: we consider as the vectorized
joint rotation matrices

• Blend shapes are linear in rotation matrix
elements

Parameterized Skinning

52

f(~✓)

f(~✓)

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

Pose Blend Shapes

~✓ = (~!1, . . . , ~!k)
T

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes

f(~✓) = [ē!̂1
1,1 . . . ē

!̂1
3,3 . . . ē!̂K

1,1 . . . ē!̂K
3,3]

e!̂1 � I e!̂K � I

BP (~✓) =

|f(~✓)|X

i

fi(~✓)Pi

Not a minus

Neck Rotation

Pose Blendshapes demo

• >> python visualize_pose_blends.py

Joint Location Estimation

• How to get the joints for a new shape?
What is the simplest way?

• Joints are considered linear in rest vertices
(much like in Allen et al. ’06)

56

Joint regressor matrix

J

J = J(T;J) = JT

Joint Location Estimation

57

Adding a shape space
Problem: want a shape space with different identities

Pose
contribution{BP (~✓) =

|f(~✓|X

i

fi(~✓)Pi

T (~✓) = T+BP (~✓)

W (T (~✓), J(T),W, ~✓) 7! vertices

TP (~✓, ~�) = T+BP (~✓) +BS(~�)+BS(~�)

Adding a shape space
Solution: add blend shapes linear with

Pose
contribution{BP (~✓) =

|f(~✓|X

i

fi(~✓)Pi

{

~�

Shape
contribution

W (T (~✓, ~�), J(~�),W, ~✓) 7! vertices

S =
⇥
S1 S2 . . . SNsubj

⇤Shape Blend shape matrix

SMPL

VerticesBlendweights

Additive Model

Shape-bs Pose-bs

Parameterized Skinning

W (T,J,W, ~✓) 7! vertices

M(~✓, ~�) = W (TF (~�, ✓),J(~�),W, ~✓) 7! vertices

Standard skinning

SMPL model

SMPL is skinning parameterized by pose
and shape ~�

~✓

SMPL

M(~✓, ~�;T,S,P,W ,J)

pose shape

Input Model parameters to
be learned from data

S
P
W

T

J

Template (average shape)
Shape blend shape matrix
Pose blend shape matrix
Blendweights matrix
Joint regressor matrix

Remember ?

M(~✓, ~�;T,S,P,W ,J)

f(x;w)

Hyper-parameters ?Input parameters

DATA

Model Training
Multipose database: 20 males, 24 females

1800 registrations

66

Model Training
Multishape database: PCA on ~2000
single-pose registrations per gender

67

Model Training

w = argmin
w

X

j

kM(~✓, ~�;w)� k2

Training

T,S,P,W,J = arg min
T,S,P,W,J

X

j

min
~✓j ,~�j

kM(~✓j , ~�j ;T,S,P,W,J)�Vjk2

Registrations

Ideally one wants to find the model parameters
that minimize a single objective measuring the
distance between model and registrations

Gradient based optimization!

Model

Number of Parameters Learned

• 9x23x6890 = 4,278,690

• 4x3x6890 = 82,680
• 3x6890x23x3 = 1,426,230
• 3x6890 + 3x6890x10blendshapes = 227,370T,S

P

W
J

A total of 6.014.970 parameters are learned

For a model with 6890 vertices

…

Average of shapes Shape blend shapes are
the first eigenvectors

⇥
V1 V2 . . . VNsubj

⇤
= T+

⇥
S1 S2 . . . SNsubj

⇤
B

…

Average of shapes Shape blend shapes matrix

Before doing PCA all shapes have to be in the same
pose (pose needs to be optimized)

⇥
V1 V2 . . . VNsubj

⇤
⇡ T+ SB

Shape Blend Shapes- Female

Shape Blend Shapes- Male

Pose Blendshapes

Conclusion

• Speed: fast run-time
• Fidelity: superior accuracy to Blend-

SCAPE, trained on the same data
• Compatibility: works in Maya, other

platforms soon
• Is publicly available for research purposes

Download: http://smpl.is.tue.mpg.de

77

http://smpl.is.tue.mpg.de

SMPL results

Model Decomposition

Dynamics of Soft Tissue

DMPL exaggeration

Applications 1

• Given a new registration, find the pose
and shape. Correspondences are known.

• >> align_3Dpoints.py

Fitting SMPL to a scan/mesh

• Problem: Given a registration, find the
model pose and shape.

~✓, ~� = argmin
~✓,~�

kM(~✓, ~�)�Vk2

RegistrationModel

Chumpy does it for you but you
have to know what you are doing!!

• Chumpy minimizes the sum of squares of
a vector valued error function

e(x) =
X

i

ei(x)
2 = e(x)T e(x)

Sum of squares
(scalar)

Residuals
(vector valued error function)

Optimization variables (vector)

Je(x) =
de(x)

dx
=

2

64

@e1
@x1

. . . @e1
@xP

. . .
@eN
@x1

. . . @eN
@xP

3

75

Jacobian of the vector valued error function:

P parameters

N
 residuals

Gradient

g(x) =
de

dx
=

2

66664

@e
@x1

...

...
@e
@xP

3

77775
= JT

e (x)e(x)

Gradient of sum
of squares

Jacobian of
vector valued
error function

Gauss Newton method

e(x+�x) = e(x+�x)T e(x+�x) ' (e(x) + J�x))T (e(x) + J�x))

Gradient of the
sum of squares

Hessian
Approximation

Levenberg-Marquadt method

e(x+�x) = e(x+�x)T e(x+�x) ' (e(x) + J�x))T (e(x) + J�x))

Gradient of the
sum of squares

Hessian
Approximation

When do we need to compute the
Jacobian ?

• Gradient is just a direction not a step.

• To compute the step most optimizers need to
approximate the Hessian which requires the
Jacobian.

• Many optimizers exploit the structure of the
Jacobian.

• Direct application of chain rule requires
computing Jacobians

If optimization takes too long, or breaks
etc.
Ask yourself the following:

• What is the dimension of the Jacobian?

• Is it dense? (sparsity is exploited for speed).

• Is the Jacobian full rank? If Jacobian loses rank
optimization can break. This is a typical case is
when the error function does not depend on a
particular variable x_i.

How do we use the model to solve
computer vision problems ?

• Model the 3D world first, then explain image
observations

• In the next lecture we will cover modeling
appearance and fitting models to images

