j\[,1'{._'.,_«-;_,5,«;. ] . ' l p I I max ;:' ck institut

©® UNIVERSITAT
w T W DES
ST SAARLANDES

Gerard Pons-Moll and Paul Swoboda

Max Planck Institut fur Informatik

December 19, 2018



Schedule
-

17.10.2018 An Opftimization Perspective
24.10.2018 Introduction to probabilities and
directed/undirected graphs
31.10.2018 An Optimization Perspective
07.11.2018 An Optimization Perspective
14.11.2018 An Opftimization Perspective
21.11.2018 An Opftimization Perspective
12.12.2018 Body Models 1
19.12.2018 Body Models 2
09.01.2019 Body Models 3
+6-:04-2612-11.01.2019 Sampling and Tracking
23.01.2019 Graphical Models in Computer Vision

06.02.2019 Wrap-up



Our research goal: Virtual humans




What is a virtual human model?

3D scan with Ground truth Model with
texture shape Model fexture
b (A
N I\
i N
0\ IR

\ \
pose shape texture  Hyper-parameters to
learn



ications

MPI Dynamic FAUST

\ive geometry

Tracking from Virtual Reality Registration
depth

Cloth modeling  Tracking from Animation
and try-on iImages



A Body Model is a function
6

ey

\\@/l
¥
X
|

1/ W
4\
M(Xpose; Xsha.pe)




What kind of function ?

A

BOdy vertices f(aj) = U _|_ W9

>

Pose & shape

Linear ?



What kind of function ?

A

Body vertices

>

Pose & shape

Polynomial ?



Given the function, what w ?

flx;w) = wiz® + wex® + w1 + W

f(x;w)

N

Input parameters Hyper-parameters



And also why our input X Is
shape and pose ?

—

NOtatlon Xpose — 9—) Xshape — /B



How do we parameterize pose ?

« Parameterize every body part separately ?

ROatOQ Xpose — {ROatOw-'RNvtN}

. , -~ Problems ?
_—

(




How do we parameterize pose”?

SR=

Articulated constraints not satisfied!



Rotation parameterization

* Rotations are composed of 9 numbers

6 additional constraints to ensure that
the matrix is orthonormal

« Suboptimal for optimization



Rotation with Exponential Maps

wj@

H(Dj H . Angle of rotation

a_}j . scaled axis of rotation

Rotation obtained with Rodrigues formula:

)

-~ ~ . . ~2 —
R=e“"=7+ W Sm(ijH) + W (1 — COS(H%’H)



Joint Rigid Body Motion

The transformation associated with a rotational
joint is

wj@

Joint location<—

Lo |[e¥]3x3 Jax1 Rigid Body
G(W,J) — _ 0.3 1 ~" Motion




Kinematic Chains




Kinematic Chains




Kinematic Chains

The coordinates of the point in the spatial
frame are:

Ps = G(wi, w2, j1,]j2) = G(517J1)'G(w3>j2)‘f)b




Pose Parameters

J1
== Given a set of joint locations

J=Gi,....jx)"

The pose defined as the vector
of concatenated part axis-angles

) K é’:(ﬁ’,%)T

Pons-Moll & Rosenhahn 2011
Model-based Pose Estimation. Looking at People.



Kinematic Chain Problems




Different poses

 Different poses using no blendweights
>>python visualize ablated smpl.py



Linear Blend Skinning

. e
k=1

Blend weights Part transformations

Points transformed as blended linear combination
of joint transformation matrices



Binding Matrices




Linear Blend Skinning




Different poses using BW

 Different poses using no blendweights
>>python visualize ablated smpl.py



Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < RBN
—Joint locations:  J < RSK
— Weights: 1)) ¢ RV XK

— Pose parameters: 676 R3K




Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < RBN

—Joint locations: J ¢ R3K &

— Weights: ))) ¢ RVXE

— Pose parameters: g <~ R3K




Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < R3N

—Joint locations: J ¢ R3K ——===

— Weights: ))) ¢ RVXE

— Pose parameters: g - R3K

28



Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T < RBN
—Joint locations:  J < RSK
— Weights: 1)) ¢ RV XK

— Pose parameters: 0 c R3K



Skinning function

_ Rest pose vertices: T € R3Y
_ Joint locations: J € R3%

— Weights: )V € RNXK
— Pose parameters: ) c R3K

—

W(T,J,W,0) — vertices



LBS problems




Solution: Blend Shapes

* A blend shape is a set of vertex
displacements in a rest pose

— Pose blend shapes: correct for LBS problems

Ar1 Ay Azp

‘ %(( P = vec( : ) - RgN
> \ _Aa:N AyN AZN_
\ ‘\ N




Pose Blend Shapes

* With blend shape correction




How to predict Blend Shapes ?

» Animators sculpt it manually!

* Time consuming, does not scale

Can we leverage training data ?




Scattered Data Interpolation

Pose N \\

2
Query pose
{ J.P.Lewis et.al. 2000



Problems Scattered Data
Interpolation

* 1) Computationally expensive (need to find
closest poses in a database)

» 2) Does not extrapolate very well to novel
poses



Problems

 If we don’t use scattered data interpolation,
how do we define pose blend shapes ?

—

Bp(6)

* How to set the skinning parameters ?

TcRY JeR¥P WeRVNXE



More Problems

How do we model shape identity
variations ?

MRS




SMPL

SMPL Model Results




SMPL Philosophy

We aim for the simplest possible model
while having state-of-the-art performance

 Makes training easier
* Enables compatibility

2015 Loper et.al. SIGGRAPH Asia



Pipeline

i1

Template Mesh



Pipeline

D

B 1
Template Mesh Shape
Blend Shapes



Pipeline

)

A 1
Template Mesh Shape Pose Given Pose
Blend Shapes Blend Shapes



Pipeline

D

|

Template Mesh Shape Pose Final Mesh
Blend Shapes Blend Shapes



Standard Skinning




Parameterized Skinning

SMPL model

,0) — vertices

—

SMPL is skinning parameterized by pose 0
and shape /3




SMPL: BS are a parametric
function of pose

* We parameterize the skinning equation by pose




Remember: Pose Blend Shapes

* With blend shape correction

¢




Parameterized Skinning

—

W(r@),J, W, 0) — vertices

— —

T(@) =T+ Bp(0)

* Our rest vertices are linear in f(0)

Each is

) ") | . / a blend shape
Bp(0) = Z fi(0)P;



Parameterized Skinning

—

* What function f(6)?

—

— —

Bp(0) = fi(0)P;



Neck Rotation

Joint Angles
C




Parameterized Skinning

—

- What function f(6) 7

. Idea: we consider f(0) as the vectorized
joint rotation matrices

- Blend shapes are linear in rotation matrix
elements

52



Pose Blend Shapes

Not a minus / \
f(0) =lery ... é35 er’yf ... e35]
\ J \ - y,

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes



Neck Rotation

Joint Angles




Pose Blendshapes demo

« >> python visualize pose blends.py



Joint Location Estimation

 How to get the joints J for a new shape?
What is the simplest way?

e Joints are considered linear in rest vertices
(much like in Allen et al. '06)

J=J(T;9)=JT

Joint regressor matrix



Joint Location Estimation




Adding a shape space

Problem: want a shape space with different identities

— —

W(r@),J(T),W,0) — vertices

COﬂTl’ibLFJ)’f(i);i { BP( —)) — fz( )Pz



Adding a shape space

Solution: add blend shapes linear with g

W(T(é; ), J(ﬁ),W, 5) — vertices

Shape Blend shape matrix

Bs(B)=>» BiS; | .S=[S, Sy ... Sn..]

Shape
conftribution

COﬂTl’ibLFJ)’f(i);i { BP( —)) — Z fz( _))Pz



SMPL

Additive Model

fgzzwmc:k(e J(6)) @] +bs,i(B) + br.:(6))

Blendwelghts

Vertices Shape-bs Pose-bs




SMPL Skinning




Parameterized Skinning

SMPL model

,0) — vertices

—

SMPL is skinning parameterized by pose 0
and shape /3




SMPL
pose shape

(Hf,TSPWJ)

Input Model parameters to
be learned from data

T Template (average shape)
S Shape blend shape matrix

P Pose blend shape matrix

VYV Blendweights matrix
J Joint regressor matrix




Remember ?

Input parameters |Hyper-parameters ? |




DATA



Model Training

Multipose database: 20 males, 24 females
1800 registrations

et t T4
Aryisits



Model Training

Multishape database: PCA on ~2000
single-pose registrations per gender

# ‘ .' - s :
y . e 4 . '
g 4 =8 »
2 3 s P
: )




Model Training

W:argmviHZ\|M(§,g§W)— K |7
J

|
et KN4
b e 1S



Training

min meHM J,BJ,TSPWJ) jH2

TSPWJ / l

Model Registrations

|ldeally one wants to find the model parameters
that minimize a single objective measuring the
distance between model and registrations

Gradient based optimization!



Number of Parameters Learned

For a model with 6890 vertices

« P 9x23x6890 = 4,278,690

* W 4x3x6890 = 82,680

o 7 3x6890x23x3 = 1,426,230

T, S 3x6890 + 3x6890x10blendshapes = 227,370

A total of 6.014.970 parameters are learned




P

[Vl ]ZT—|— SNubJ]B
Average of shapes Shape blend shapes are

the first eigenvectors



Average of shapes Shape blend shapes matrix

Before doing PCA all shapes have to be in the same
pose (pose needs to be optimized)



Shape Blend Shapes- Female

PC 1 varied between +/-3 std dev



Shape Blend Shapes- Male

PC 1 varied between +/-3 std dev



Pose Blendshapes




Conclusion

Speed: fast run-time

Fidelity: superior accuracy to Blend-
SCAPE, trained on the same data

Compatibility: works in Maya, other
platforms soon

Is publicly available for research purposes

Download: http://smpl.is.tue.mpg.de



http://smpl.is.tue.mpg.de

SMPL results

> J

SMPL Model



Model Decomposition

Template Pose & Shape Blend Shapes Dynamics Final Mesh
T Bp(0) + Bg(p) Bp(D,p) M(Tp, Jg, W, 0)




Dynamics of Soft Tissue

Pose Dynamic DMPL
Blend Shapes Blend Shapes



DMPL exaggeration

Registrations to
4D Scans



Applications 1

* Given a new registration, find the pose
and shape. Correspondences are known.

* >> align_3Dpoints.py



Fitting SMPL to a scan/mesh

* Problem: Given a registration, find the
model pose and shape.

H,B—argmmHM( , ) VH2

,6/ l

Model Registration









Chumpy does it for you but you
have to know what you are doing!!



* Chumpy minimizes the of
a vector valued error function

Optimization variables (vector)

T
e(x) = ) ei(x)” = e(x)"e(x)

j i
Vv
Sum of squares Residuals
(scalar) (vector valued error function)




Jacobian of the vector valued error function:

B ael ael ]
8x1 CUe aXp
8eN 8eN

— 8x1 to aXp—
\ J

Y

P parameters

-

s|jenpisal N



Gradient of sum
of squares

Gradient

— 86 —_
8x1

Oe

_9x p -

Jacobian of
vector valued
error function



Gauss Newton method

e(x + Ax) = e(x + Ax) e(x + Ax) ~ (e(x) + JAX)) ! (e(x) + JAX))
¢
J'JAx =—J"e

v v

Hessian Gradient of the
Approximation sum of squares



Levenberg-Marquadt method

e(x + Ax) = e(x + Ax) e(x + Ax) ~ (e(x) + JAX)) ! (e(x) + JAX))

(J' T+ MD)Ax = —J'e

v

Hessian
Approximation

v

Gradient of the
sum of squares



When do we need to compute the

Jacobian ?
Gradient is just a direction not a step.

To compute the step most optimizers need to
approximate the Hessian which requires the
Jacobian.

Many optimizers exploit the structure of the
Jacobian.

Direct application of chain rule requires
computing Jacobians



If optimization takes too long, or breaks
etc.
Ask yourself the following:

« What is the dimension of the Jacobian?

* |Is it dense? (sparsity is exploited for speed).

* |s the Jacobian full rank? If Jacobian loses rank
optimization can break. This is a typical case is
when the error function does not depend on a
particular variable x_1.



How do we use the model to solve
computer vision problems ?

* Model the 3D world first, then explain image
observations

* In the next lecture we will cover modeling
appearance and fitting models to images



