

Schedule

17.10.2018	An Optimization Perspective
24.10.2018	Introduction to probabilities and
31.10.2018	An Optimization Perspective
07.11.2018	An Optimization Perspective
14.11.2018	An Optimization Perspective
21.11.2018	An Optimization Perspective
12.12.2018	Body Models 1
19.12.2018	Body Models 2
09.01.2019	Body Models 3
16.01.2019 11.01.2019	Sampling and Tracking
23.01.2019	Graphical Models in Computer Vision
06.02.2019	Wrap-up

What have we learned so far about bodies?

• BM1: Procrustes for rigid alignment

What have we learned so far about bodies?

- BM1: Procrustes for rigid alignment
- BM2: ICP, gradient-based ICP

What have we learned so far about bodies?

- BM1: Procrustes for rigid alignment
- BM2: ICP, gradient-based ICP
- BM3: Articulated models, Blendshapes, SMPL

SMPL Model Pipeline

Template Mesh

Shape Blend Shapes

Pose Blend Shapes

Final Mesh

Parameterized Skinning

Standard skinning $W(\mathbf{T}, \mathbf{J}, \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$

SMPL model $M(\vec{\theta}, \vec{\beta}) = W(\mathbf{T}_F(\vec{\beta}, \theta), \mathbf{J}(\vec{\beta}), \mathcal{W}, \vec{\theta}) \mapsto \text{vertices}$

SMPL is skinning parameterized by pose $\vec{\theta}$ and shape $\vec{\beta}$

What is missing: today

- How do we fit SMPL to meshes without correspondences?
- Where is the color in those meshes?
- Autodiff in images? OpenDR
- Fitting bodies to images

 Problem: Given a registration, find the model pose and shape.

 Problem: Given a registration, find the model pose and shape.

from smpl.serialization import load_model
sm = load_model(path_to_downloaded_model)
ch.minimize(point2point_squared(dst_pts=sm, org_pts=Xch),
x0=[sm.betas, sm.pose])

Scan

Model

SMPL tree: sm.show_tree()

Chumpy minimizes the sum of squares of a vector valued error function

Optimization variables (vector)

Α

$$e(\mathbf{x}) = \sum_{i} \mathbf{e}_{i}(\mathbf{x})^{2} = \mathbf{e}(\mathbf{x})^{T} \mathbf{e}(\mathbf{x})$$

Sum of squares (scalar)

Residuals (vector valued error function)

Chumpy minimizes the sum of squares of a vector valued error function

$$e(\mathbf{x}) = \sum_{i} \mathbf{e}_{i}(\mathbf{x})^{2} = \mathbf{e}(\mathbf{x})^{T} \mathbf{e}(\mathbf{x})$$

ipdb> p2p_yx = point2point_squared(org_pts=Xch, dst_pts=sm)
ipdb> print(p2p_yx)

- $\begin{bmatrix} 0.001 & 0.001 & ..., & 0.012 & 0.012 & 0.012 \end{bmatrix}$
- ipdb> p2p_yx.shape

(6890,) as many elements as correspences between model and scan

Jacobian of the vector valued error function:

$$J_{\mathbf{e}}(\mathbf{x}) = \frac{d\mathbf{e}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{e}_1}{\partial \mathbf{x}_1} & \cdots & \frac{\partial \mathbf{e}_1}{\partial \mathbf{x}_P} \\ & \ddots & \\ \frac{\partial \mathbf{e}_N}{\partial \mathbf{x}_1} & \cdots & \frac{\partial \mathbf{e}_N}{\partial \mathbf{x}_P} \end{bmatrix} \end{bmatrix} \mathbf{x}$$

P parameters

P parameters

ipdb> print(p2p_yx.dr_wrt(sm.betas).shape) (6890, 10) ipdb> print(p2p_yx.dr_wrt(sm.betas)[:5, :5].todense()) [[-1.144e-04 -1.148e-04 3.350e-05 -2.048e-05 8.550e-06] [3.490e-04 -4.617e-05 -1.243e-04 -7.371e-05 3.262e-05] [5.642e-04 -1.518e-04 -2.017e-04 -1.487e-04 9.339e-05] [2.437e-04 -2.448e-04 -9.368e-05 -1.272e-04 9.360e-05] [8.284e-04 -1.090e-04 -2.925e-04 -1.700e-04 9.579e-05]]

Which one will fail?

Which one will fail?

Problems?

Unlikely pose

Problems?

- Unlikely pose
- Unlikely shape

Problems?

- Difficult pose
- Difficult shape
- Bad initialization

$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} \|M(\vec{\theta}, \vec{\beta}) - \mathbf{V}\|^2$

$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} \|M(\vec{\theta}, \vec{\beta}) - \mathbf{V}\|^2 + E_{\theta}(\vec{\theta})$

$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} \|M(\vec{\theta}, \vec{\beta}) - \mathbf{V}\|^2$

$\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} \|M(\vec{\theta}, \vec{\beta}) - \mathbf{V}\|^2$

$+ E_{\theta}$	$(\vec{ heta})$
----------------	-----------------

Mahalanobis distance induced by distribution $\mathcal{N}(\vec{\mu}_{\theta}, \Sigma_{\theta})$

 $E_{\theta}(\vec{\theta}) \equiv (\vec{\theta} - \vec{\mu_{\theta}})^T \Sigma_{\theta}^{-1} (\vec{\theta} - \vec{\mu_{\theta}})$ $E_{\beta}(\vec{\beta}) \equiv (\vec{\beta} - \vec{\mu_{\beta}})^T \Sigma_{\beta}^{-1} (\vec{\beta} - \vec{\mu_{\beta}})$

- What makes it so jumpy?
 - Correspondences change abruptly!

Point-to-point distance

Point-to-point distance

Point-to-point distance

Point-to-surface distance

Point-to-surface distance

Point-to-surface distance

Implementation requires taking care of special cases when v falls in edges or points

Advanced registration

- Better pose priors
 - Non-parametric

A Non-parametric Bayesian Network Prior of Human Pose, Lehrman et al

Fitting SMPL to a scan/mesh

- Better pose priors
 - Non-parametric
 - Dynamic

Efficient Nonlinear Markov Models for Human Motion, Lehrman et al

Fitting SMPL to a scan/mesh

- Better pose priors
 - Non-parametric
 - Dynamic
- Better initialisation

 From previous frame, from discriminative approaches, from graphical models

The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose, Zuffi and Black

Fitting SMPL to a scan/mesh

- Better pose priors
 - Non-parametric
 - Dynamic
- Better initialisation

- From previous frame, from discriminative approaches, from graphical models
- Other information: appearance (color)!

Why appearance

More realism

More accurate correspondences

Representing appearance

Vertex coloring

Decouple geometry and appearance resolution

Representing appearance

Texture mapping

Texture mapping

How do we create texture maps?

Problem: combining multiple views of a 3D surface

Problem: combining multiple views of a 3D surface

original pixels mapped to U

visibility of original pixels in U

original image

image

image

image

That's all, no?

This slide is wrong: have all the vertices the same shading ?

This one has a single shading

Albedo and shading

Albedo is constant: depends on physical properties of the surface Shading is transient: given by the interplay between surface reflectance and lighting

real image

shading

Reflectance models

Lambertian reflectance

Lighting models

Point light sources

Lighting models

Spherical Harmonics (SH)

Lighting as a function over the sphere, projected onto a low-order SH basis

Simple and efficient for diffuse environments

Sloan et al., SIGGRAPH 2002. Basri et al., IEEE TPAMI, 2003
Lighting models

Spherical Harmonics (SH)

Lighting as a function over the sphere, projected onto a low-order SH basis

Simple and efficient for diffuse environments

Sloan et al., SIGGRAPH 2002. Basri et al., IEEE TPAMI, 2003

Modeling all together

Forward rendering process

Gradient-based optimization?

- We want to exploit images to obtain better registrations
- We saw that we can optimise a function given its derivatives
- Most of the functions involved in the rendering are linear operators
- Anybody wants to write the jacobians by hand?

OpenDR

An open source differentiable rendering framework for:

- approximating a rendering process
- differentiating this approximation
- finding parameter estimates

http://open-dr.org

Loper and Black, ECCV 2014.

OpenDR

Appearance-based registration

Building an appearance model

Appearance-based error term

texture map U

New registration objective

 $\vec{\theta}, \vec{\beta} = \arg\min_{\vec{\theta}, \vec{\beta}} \|M(\vec{\theta}, \vec{\beta}) - \mathbf{V}\|^2$ $+ E_{\theta}(\vec{\theta})$ $+ E_{\beta}(\vec{\beta})$ + $E_U(\mathbf{I}, \mathbf{K}, \mathbf{U}, M(\vec{\theta}, \vec{\beta}))$ $E_U \equiv \sum \|\mathbf{I}_i - r(M(\vec{\theta}, \vec{\beta}), \mathbf{U}, \mathbf{K}_i)\|^2$

With OpenDR...

import chumpy as ch
import cv2
from opendr.camera import ProjectPoints
from opendr.renderers import TexturedRenderer

Load meshes, create other objectives...
...

```
# Define the error term
obj = rn - cv2.imread(real_img_path)
```

```
# Minimize
ch.minimize(obj, x0=[m.v], method='dogleg')
```

• The appearance objective function has MANY local minima

- The appearance objective function has MANY local minima
 - Pyramids of blurred images help

scan model
gradient

- The appearance objective function has MANY local minima
 - Pyramids of blurred images help
- The dimensionality of this objective is much bigger than the geometric one
 - Optimisation will be slower

- The appearance objective function has MANY local minima
 - Pyramids of blurred images help
- The dimensionality of this objective is much bigger than the geometric one
 - Optimisation will be slower
- Open problems: Lighting optimisation? Occlusions?

Take-home message

- Optimising SMPL pose and shape with chumpy is easy
 - But the devil is in the details: point2surface, regularisers
- We can add color to our model either with per-vertex colors, or texture maps
- Apart from making the model match the scan geometrically, we can make it match in terms of COLOR
- OpenDR differentiates the rendering process for us