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Face Tracking

• Face tracking using color histograms and image gradients along 
contour: 
 
 
 
 
 
 
 

• http://robotics.stanford.edu/~birch/headtracker/
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http://robotics.stanford.edu/~birch/headtracker/


Lane Tracking
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• Lane tracking, e.g. for car navigation: 
 
 
 
 

• http://path.berkeley.edu/~zuwhan/lanedetection/index.html

http://path.berkeley.edu/~zuwhan/lanedetection/index.html


“Bee Tracking”

• Tracking is also very useful for facilitating behavioral research in 
animals.
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http://www.cc.gatech.edu/~borg/biotracking/recent-results.html

http://www.cc.gatech.edu/~borg/biotracking/recent-results.html


Topic: Tracking

• Tracking is the problem of finding the motion of an object in an 
image sequence. 

• Useful for a number of applications… 
‣ Animation & Interaction, Navigation, Video surveillance, Medical applications, 

Computer assisted living, etc. 

• We typically distinguish 3 cases: 
‣ Tracking rigid objects 

‣ Tracking articulated objects, e.g. humans or animals 

‣ Tracking fully non-rigid objects 

‣ We will talk only about: Rigid objects
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Illustration

• Goal: Estimate car position at each time instant (say, of the red car). 
• Observations: Image sequence and known background.

[Michael Black]



Illustration
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• Perform background subtraction. 
• Obtain binary map of possible cars. 
• But which one is the one we want to track?

[Michael Black]



Bayesian Tracking

system state: car position 

observations: images 
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Likelihood: 
noisy observation 
p(FG|car = (x, y))

Prior:  
p(car = (x, y))

Posterior: 
Bayesian update 

p(car = (x, y)|FG)

[Michael Black]



Notation

•                 : internal state at k-th frame (hidden random variable, 
e.g., position of the object in the image).  

•                                            : history up to time step k  

•                 : measurement at k-th frame (observable random 
variable, e.g. the given image). 

•                            : history up to time step k
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xk � Rd

zk � Rc

Xk = [x1,x2, . . . ,xk]T

Zk = [z1,z2, . . . ,zk]T

[Michael Black]



Goal

How ???
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Estimating the posterior probability                     p(xk|Zk)

One idea: 
Recursion p(xk�1|Zk�1) � p(xk|Zk)

•   How to realize the recursion ? 
•   What assumptions are necessary ?

[Michael Black]



Recursive Estimation

!11

p(xk|Zk)
= p(xk|zk,Zk�1)
⇥ p(zk|xk,Zk�1) · p(xk|Zk�1)
⇥ p(zk|xk) · p(xk|Zk�1)

⇥ p(zk|xk) ·
�

p(xk,xk�1|Zk�1) dxk�1

⇥ p(zk|xk) ·
�

p(xk|xk�1,Zk�1) · p(xk�1|Zk�1) dxk�1

⇥ p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

Bayes rule:
p(a|b) = p(b|a)p(a)/p(b)

Assumption:
p(zk|xk,Zk�1) = p(zk|xk)

Marginalization:
p(a) =

�
p(a, b) db

Assumption:
p(xk|xk�1,Zk�1) = p(xk|xk�1)



Bayesian Formulation

posterior probability at current time step 

likelihood 

temporal prior 

posterior probability at previous time step 

normalizing term
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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

p(xk|Zk)
p(zk|xk)
p(xk|xk�1)
p(xk�1|Zk�1)
�



• Hidden Markov model:

Bayesian Graphical Model
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xkxk�1 xk+1

zk+1zkzk�1

Assumptions:         

p(zk|xk,Zk�1) = p(zk|xk) p(xk|xk�1,Zk�1) = p(xk|xk�1)

p(xk|Xk�1) = p(xk|xk�1)



• posterior mean 
 
 

• maximum a posteriori (MAP)

Assume the posterior probability                     is known:

Estimators

!14

x̂k = E(xk|Zk)

x̂k = arg maxxk p(xk|Zk)

p(xk|Zk)

p(xk|Zk)

[Michael Black]



General Model

•                   can be an arbitrary, non-Gaussian, multi-modal 
distribution.  

• The recursive equation often has no explicit solution, but can be 
numerically approximated using Monte Carlo techniques. 

• Special Case - Kalman filter [Kalman, 1960] 
‣ If both likelihood and prior are Gaussian, the solution has closed form and the two 

estimators (posterior mean & MAP) are the same. 

‣ The important restrictions of the Kalman filter are that it assumes linear state and 
output transformations, as well as Gaussian noise. 

‣ There are many cases where this is inappropriate. 

• We thus discuss only a more general version: Particle filtering 
‣ more general recursive estimation technique. 

‣ But also computationally much harder, and tricky to implement correctly...
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p(xk|Zk)

[Michael Black]



• Measurement clutter in 
natural images causes 
likelihood functions to have 
multiple, local maxima. 
‣ In a particular frame, the 

observation may be poor so that 
there are multiple promising 
looking locations. 

‣ We cannot resolve these ambiguities  
until we have seen more data  
(additional frames). 

• To do that, we have to allow for the posterior at each frame to be 
multi-modal. 
‣ This rules out many parametric distributions, including the Gaussian.

Multi-Modal Posteriors
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Multi-Modal Posteriors

State (e.g. position)

posterior
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• How can we represent the posterior at each time step in a flexible 
way that allows for: 
‣ Multiple modes 

- To encode multiple promising locations. 

‣ Varying number of modes 
- Modes may appear and disappear again when they are ruled out.



• We could sample at regular intervals. 
 
 
 

‣ Instead of representing a continuous function, we approximate it using a  
discrete set of samples (or particles) each of which has a weight. 
 
 

‣ We usually use normalized weights:

Non-Parametric Approximation
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S =
�
(x(i), w(i)); i = 1, . . . , N

⇥

N�

i=1

w(i) = 1



• We could sample at regular intervals. 
 
 
 

‣ Since there is no underlying parametric form, we call this a non-parametric 
representation or approximation. 

‣ If needed, we can convert this back to a continuous density by assuming that 
each sample is represented by a small Gaussian mixture component: 

- Note though that this is typically not necessary!

Non-Parametric Approximation
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p̃(x) =
�

i

w(i)N (x; x(i),�2)



• We could sample at regular intervals. 
 
 
 
 

• Problems? 
‣ Most samples have low weight – wasted computation. 

‣ How finely do we need to discretize? 

‣ High dimensional space – discretization impractical  
(exponential in the number of dimensions).

Non-Parametric Approximation
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• Idea: Sample at irregular intervals and (optionally) weigh samples. 
 
 
 
 

‣ Weighted samples: 

‣ Normalized weights

Non-Parametric Approximation

weighted 
samples
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S =
�
(x(i), w(i)); i = 1, . . . , N

⇥

N�

i=1

w(i) = 1



Importance Sampling

• Approach: 
‣ approximate expectation directly  

‣ goal: 

• grid-sampling:  
‣ discretize z-space into a uniform grid 

‣ evaluate the integrand as a sum of the form: 

‣ but: number of terms grows exponentially with number of dimensions
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E[f ] =
�

f(z)p(z)

E[f ] �
L�

l=1

f(z(l))p(z(l))



Importance Sampling

• Idea: 
‣ use a proposal distribution q(z) from which it is easy to draw samples 

‣ express expectation in the form of a finite sum over samples 
drawn from q(z) 

‣ with importance weights: 
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{z(l)}

E[f ] =
⇥

f(z)p(z)dz =
⇥

f(z)
p(z)
q(z)

q(z)dz

� 1
L

L�

l=1

p(z(l))
q(z(l))

f(z(l))

rl = p(z(l))
q(z(l))

p(z) f(z)

z

q(z)



Importance Sampling

• typical setting: 
‣ p(z) can be only evaluated up to a normalization constant (unknown): 

‣ q(z) can be also treated in a similar fashion   

‣ then: 

‣ with: 
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p(z) = p̃(z)/Zp

q(z) = q̃(z)/Zq

E[f ] =
⇥

f(z)p(z)dz =
Zq

Zp

⇥
f(z)

p̃(z)
q̃(z)

q(z)dz

� Zq

Zp

1
L

L�

l=1

r̃lf(z(l))

r̃l = p̃(z(l))
q̃(z(l))



Importance Sampling

• Ratio of normalization constants can be evaluated: 

‣ and therefore: 

‣ with:
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Zp

Zq
=

1
Zq

⇥
p̃(z)dz =

⇥
p̃(z)
q̃(z)

q(z)dz � 1
L

L�

l=1

r̃l

E[f ] �
L�

l=1

wlf(z(l))

wl =
r̃l�
m r̃m

=
p̃(z(l))
q̃(z(l))

�
m

p̃(z(m))
q̃(z(m))



How does this help us?

• Remember the filtering recursion: 

• We need to be able to compute integrals of the type: 

• Monte-Carlo approximation: 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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

�
f(x) · p(x) dx

⇥
f(x) · p(x) dx ⇤

�

i

f(x(i)), x(i) ⇥ p(x)



Monte-Carlo Approximation

• In other terms, the          are a sample representation  
of the density 

• What if we have a weighted sample representation? 
‣ Just as easy... 

 
 
 

‣ Note however that in these cases the          are usually not the same as before.
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⇥
f(x) · p(x) dx ⇤

�

i

f(x(i)), x(i) ⇥ p(x)

⇥
f(x) · p(x) dx ⇥

�

i

w(i)f(x(i))

x(i)

p(x)

x(i)



• We start with assuming that we have a weighted sample 
representation for the posterior 
at the previous time step: 
 
 
 
 

Sk�1 =
�
(x(i)

k�1, w
(i)
k�1); i = 1, . . . , N

⇥

Filtering Step-by-Step
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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

p(xk�1|Zk�1)



• We start with assuming that we have a weighted sample 
representation for the posterior 
at the previous time step: 
 
 
 

• Use this to carry out Monte-Carlo integration: 
 
 ⇥

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1 ⇥
�

i

w(i)
k�1p(xk|x(i)

k�1)

Filtering Step-by-Step
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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

Sk�1 =
�
(x(i)

k�1, w
(i)
k�1); i = 1, . . . , N

⇥

p(xk�1|Zk�1)



• Represent the approximation 
again using another particle set 
(we discuss in a minute how…):

Filtering Step-by-Step
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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

�
i w(i)

k�1p(xk|x(i)
k�1)

Ŝk�1 =
�
(x̂(i)

k�1, ŵ
(i)
k�1); i = 1, . . . , N

⇥



x(i)
k = x̂(i)

k�1

w(i)
k = p(zk|x̂(i)

k�1)ŵ
(i)
k�1

Sk =
�
(x(i)

k , w(i)
k ); 1, . . . , N

⇥

• Represent the approximation 
again using another particle set 
(we discuss in a minute how…): 
 

• Take into account the likelihood by re-weighting the particles: 

Filtering Step-by-Step
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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

�
i w(i)

k�1p(xk|x(i)
k�1)

Ŝk�1 =
�
(x̂(i)

k�1, ŵ
(i)
k�1); i = 1, . . . , N

⇥



Sk =
�
(x(i)

k , w(i)
k ); 1, . . . , N

⇥

• We obtain a weighted sample representation for the posterior                  
at the current time step: 

Filtering Step-by-Step
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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

p(xk|Zk)



• We obtain a weighted sample representation for the posterior                  
at the current time step: 

• Remaining question: How do we represent 
                                   using a sample set?

Filtering Step-by-Step
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p(xk|Zk) = � · p(zk|xk) ·
�

p(xk|xk�1) · p(xk�1|Zk�1) dxk�1

Sk =
�
(x(i)

k , w(i)
k ); 1, . . . , N

⇥

�
i w(i)

k�1p(xk|x(i)
k�1)

p(xk|Zk)



Temporal Propagation

• The simplest way to deal with the problem of representing the 
result of the Monte-Carlo integration is to propagate each sample 
independently according to the temporal dynamics and keeping 
the weight:  
 
 
 

• Problem: Sample Impoverishment 
‣ Solution: Resampling

!34

�
i w(i)

k�1p(xk|x(i)
k�1)

x̂(i)
k�1 � p(xk|x(i)

k�1)

ŵ(i)
k�1 = w(i)

k�1



• Given weighted sample set 
 

• Draw unweighted samples by sampling from the weight 
distribution:

Resampling

sample

N

1

0
1

Cumulative distribution of weights
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Sk�1 =
�
(x(i)

k�1, w
(i)
k�1); i = 1, . . . , N

⇥

u � U(0, 1)



Particle Filter
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Posterior p(xk�1|Zk�1)

Isard & Blake ‘96



Particle Filter
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Posterior p(xk�1|Zk�1)

Isard & Blake ‘96

resample



Particle Filter
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p(xk�1|Zk�1)Posterior

p(xk|xk�1)

Isard & Blake ‘96

resample

Apply temporal dynamics



Particle Filter
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resample

p(xk�1|Zk�1)Posterior

Apply temporal dynamics
p(xk|xk�1)

reweight

Likelihood p(zk|xk)

Isard & Blake ‘96



Particle Filter
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resample

p(xk�1|Zk�1)Posterior

Apply temporal dynamics
p(xk|xk�1)

reweight

Likelihood p(zk|xk)

normalize

Posterior p(xk|Zk)
Isard & Blake ‘96



[Michael Isard]
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Some Properties

• It can be shown that in the infinite particle limit this converges to the 
correct solution [Isard & Blake]. 

• In practice, we of course want to use a finite number. 
‣ In low-dimensional spaces we might only need 100s of particles for the procedure 

to work well. 

‣ In high-dimensional spaces sometimes 1,000s or even 10,000s particles are 
needed. 

• There are many variants of this basic procedure, some of which are 
more efficient (e.g. need fewer particles) 
‣ See e.g.: Arnaud Doucet, Simon Godsill, Christophe Andrieu: On sequential 

Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 
vol. 10, pp. 197-- 208, 2000.
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Contour Tracking

[Isard & Blake, “Condensation - conditional density propagation for 
visual tracking.”  IJCV, 1998]

State: control points of spline-
based contour representation

Measurements: edge strength 
perpendicular to contour 

Dynamics: 2nd–order Markov 
(often learned)
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High-Dimensional State Spaces

• Tracking a hand (high-dimensional state space)
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[Michael Isard]



Tracking in Clutter

• Tracking a leaf that moves fast in a very cluttered scene:
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[Michael Isard]



Tracking the unpredictable… 

• They called it “dance”

!46

[Michael Isard]



Summary

• Particle filtering is a very general tool for temporal inference that we 
can exploit for tracking. 
‣ Nonetheless, it applies in a variety of other applications as well. 

‣ It has problems in high-dimensional spaces, however, but there are a number of 
variants that alleviate some of these issues. 

• Human tracking (“Marker-less mocap”) can be performed using 
particle filtering: 
‣ Wide range of applications, especially in entertainment. 

‣ Only a small part of the problems is solved to date.
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• For those interested in the Kalman filter: 
‣ Greg Welch and Gary Bishop: An Introduction to the Kalman Filter 

• Background for Particle Filtering: 
‣ Simon Maskell and Neil Gordon: A Tutorial on Particle Filtering for On-Line 

Nonlinear/Non-Gaussian Bayesian Tracking
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