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Face Tracking

 Face tracking using color histograms and image gradients along
contour:

e http://robotics.stanford.edu/~birch/headtracker/
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http://robotics.stanford.edu/~birch/headtracker/

Lane Tracking

e Lane tracking, e.g. for car navigation:

e http://path.berkeley.edu/~zuwhan/lanedetection/index.html
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http://path.berkeley.edu/~zuwhan/lanedetection/index.html

“Bee Tracking”

* Tracking is also very useful for facilitating behavioral research in
animals.



http://www.cc.gatech.edu/~borg/biotracking/recent-results.html

Topic: Tracking

 Tracking is the problem of finding the motion of an object in an
iImage sequence.

e Useful for a number of applications...

» Animation & Interaction, Navigation, Video surveillance, Medical applications,
Computer assisted living, etc.

 We typically distinguish 3 cases:
» Tracking rigid objects
» Tracking articulated objects, e.g. humans or animals
» Tracking fully non-rigid objects

»  We will talk only about: Rigid objects
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Hlustration

L
_

e (Goal: Estimate car position at each time instant (say, of the red car).
e Observations: Image sequence and known background.

[Michael Black]
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Hlustration

e Perform background subtraction.
e Obtain binary map of possible cars.

e But which one is the one we want to track?
[Michael Black]
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Bayesian Tracking

Likelihood:
noisy observation

p(FGlcar = (z,y))

J\ — Prior:
p(car = (z,y))

system state: car position Posterior:

observations: images Bayesian update
p(car = (z,y)|FG)

[Michael Black]




Notation

* I € R? : internal state at k-th frame (hidden random variable,
e.g., position of the object in the image).

e X = [ml, o, ... ,azk]T . history up to time step k

e 2z, € [R°:measurement at k-th frame (observable random
variable, e.g. the given image).

* Zi =][z1,29,...,2; " :history up to time step k

[Michael Black]
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Goal

Estimating the posterior probability p(x|Zx)

How 7?7

One idea:

Recursion pP(@k—1|Zk—1) = p(xi|Zy)

e How to realize the recursion ?
e What assumptions are necessary ?

[Michael Black]
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Recursive Estimation

Bavyes rule:
p(xk|Zy) d

a|lb) = p(bla)p(a)/p(b
— (@20, Zi 1) / p(alb) = p(bla)p(a)/p(b)

Assumption:

(
x p(zk|®k, Zi—1) - P(Tk|Zr—1)
Zk|T, Lg—1) = p(Zk|T
x p(zk wk)'p($k|Zk—1)/ P(2k| ) = p(zk|TK)
(

kS / ( Zs—1) d Marginalization:
X <L | L . Ty, T B T
P\=ZE| Lk P\LE, Lk—1|Lk—1 k—1 < p(a) = [ p(a,b)db

x p(zk|TK) - /p(afk\wk—h Zi 1) plg_1|Zg_1) doeg_1

X p(zk|xk) - /p(mk\wk—l) p(Tr—1]Zg—1) dTg_1

Assumption: ‘
p(xk|Tr—1,2ZK—1) = p(TK|TK_1)
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Bayesian Formulation

p(xk|Zy) = k- p(2k|xk) - /p($k|$k—1) -p(Tr—1]Zg—1) dTg—1

p(xg|Zy) posterior probability at current time step
zZi|xr) likelihood

Tp|Tr_1) temporal prior

xr_1|Zr_1) posterior probability at previous time step

K normalizing term

12



Bayesian Graphical Model

e Hidden Markov model:

Zl_1 A ~k+1

Assumptions:

p(zk|Tk, Zi—1) = p(zk|zK)  plak|Tr-1,Zk—1) = p(xk|TK_1)

p(xk| Xk—1) = p(Tx|Tr—1)

max planck institut
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Estimators

Assume the posterior probability p(mk\Zk) IS known:

e posterior mean

e maximum a posteriori (MAP)

Ty = argmaxg, p(Ti|Zy)

N

p(xk|Zg)

[Michael Black]
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General Model

e p(Tx|Zi) can be an arbitrary, non-Gaussian, multi-modal
distribution.

e The recursive equation often has no explicit solution, but can be
numerically approximated using Monte Carlo techniques.

e Special Case - Kalman filter [Kalman, 1960]

» If both likelihood and prior are Gaussian, the solution has closed form and the two
estimators (posterior mean & MAP) are the same.

» The important restrictions of the Kalman filter are that it assumes linear state and
output transformations, as well as Gaussian noise.

» There are many cases where this is inappropriate.

 We thus discuss only a more general version: Particle filtering

» more general recursive estimation technique.
» But also computationally much harder, and tricky to implement correctly...

[Michael Black]
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Multi-Modal Posteriors

e Measurement clutter in
natural images causes
likelihood functions to have
multiple, local maxima.

» In a particular frame, the
observation may be poor so that

there are multiple promising
looking locations.

» We cannot resolve these ambiguities
until we have seen more data
(additional frames).

e To do that, we have to allow for the posterior at each frame to be
multi-modal.
» This rules out many parametric distributions, including the Gaussian.
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Multi-Modal Posteriors

posterior

State (e.g. position)

e How can we represent the posterior at each time step in a flexible
way that allows for:

» Multiple modes
- To encode multiple promising locations.
» Varying number of modes

- Modes may appear and disappear again when they are ruled out.
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Non-Parametric Approximation

* We could sample at regular intervals.

» Instead of representing a continuous function, we approximate it using a
discrete set of samples (or particles) each of which has a weight.

5= w?); i=1,... N)

» We usually use normalized weights:
N
Z () —
1=1
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Non-Parametric Approximation

* We could sample at reqular intervals.

» Since there is no underlying parametric form, we call this a non-parametric
representation or approximation.

» If needed, we can convert this back to a continuous density by assuming that
each sample is represented by a small Gaussian mixture component:

px) =) wN(z; =, 0%

- Note though that this is typically not necessary!
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Non-Parametric Approximation

* We could sample at reqular intervals.

e Problems?
» Most samples have low weight — wasted computation.
» How finely do we need to discretize?

» High dimensional space — discretization impractical
(exponential in the number of dimensions).
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Non-Parametric Approximation

e |dea: Sample at irregular intervals and (optionally) weigh samples.

RV VAE

weighted
samples @@ @O .. ©

» Weighted samples: S = {(il?(i), UJ(?;)); 1 = 1, ce ,N}

N
» Normalized weights E w(z) —
1=1
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Importance Sampling

e Approach:
» approximate expectation directly

» goal:

3] = / F(2)p(2)

e grid-sampling:
» discretize z-space into a uniform grid

» evaluate the integrand as a sum of the form:

HEDSFCRIED

» but: number of terms grows exponentially with number of dimensions
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Importance Sampling

e |dea:
» use a proposal distribution q(z) from which it is easy to draw samples

» express expectation in the form of a finite sum over samples {z(l)}
drawn from q(z)

) = [ ra@az= | f(Z)%q(Z)dz

[
—Zp e )
Z(l)

l
»  with importance weights: r; = pgzilii p(z/\ a() /f(z)
g\ %

max planck institut
T 2



Importance Sampling

e typical setting:

» p(z) can be only evaluated up to a normalization constant (unknown):

p(z) = p(z)/Z,

» d(z) can be also treated in a similar fashion

q(z) = 4(z)/Z,

» then:
n _ Zq zﬁ(z) 2\ 7
17 / fz =7 [ 1@ ety
- ()
Z Lz 1"”‘zf( )
» with: -~ pz®)

"= G=m)
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Importance Sampling

e Ratio of normalization constants can be evaluated:
. L

Z 1 /~ /p(z) 1 5

— = — [ plz)dz = | —=q(z)dz ~ — T

» and therefore:

L
B[f]~ ) wf(z")
(=1

»  with:

5 p(z'")
Tl q(z(l))

S P 9 p(z(™))

m G(z0m)
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How does this help us?

e Remember the filtering recursion:

p(xk|Zy) = k- p(2k|Tk) - /p(il?k\wk—l) p(Tr—1|ZK—1) dTK—1

e We need to be able to compute integrals of the type:

[ @) pla) de

e Monte-Carlo approximation:

[ f@) pe)de~ Y f@D), 2l ~pla
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Monte-Carlo Approximation

[ f@) by de~ Y f@D), 2l ~pla

* |n other terms, the :c(i) are a sample representation
of the density p(x)

e What if we have a weighted sample representation?

» Just as easy...

[ @) ple) do = 3w )

» Note however that in these cases the () are usually not the same as before.
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Filtering Step-by-Step

p(xr|Zy) = K - p(zk|Tk) - /p(a?k|33k—1) - p(Xk—1|Zk—1) dTiK—_1

 We start with assuming that we have a weighted sample
representation for the posterior p(@r_1|Zk_1)
at the previous time step:

Sk—1 = {(w](;zlaw](:ll)a i=1,...,N}
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Filtering Step-by-Step

p(xr|Zy) = K - p(zk|Tk) - /p(a?k|$k—1) - p(Xk—1|Lk—1) dTiK—_1

 We start with assuming that we have a welghted sample
representation for the posterior p(@r_1|Zk_1)
at the previous time step:

Seo1={(@” ,w” ) i=1,...,N}

e Use this to carry out Monte-Carlo integration:

/p(wk|$k—1) p(Tr—1|Zg—1) deg— 1~Zwk 1b( wkz‘w” )
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Filtering Step-by-Step

p(xr|Zy) = K - p(zk|Tk) - /p(wk|$k—1) - p(Xk—1|Lk—1) dTiK—_1

e Represent the approximation ' T a:'( )
again using another particle set Z k= 1p( | )
(we discuss in a minute how...):

S ={@" o)) i=1,...,N}

max planck institut
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Filtering Step-by-Step

p(xi|Zy) = k - p(zK|Tk) - /p(a?k|a?k—1) - p(xk—1|Zr—1) dK_1
e Represent the approximation Zw/(;) 1p(mk|a:'(i)
; Wi~

again using another particle set k—l)
(we discuss in a minute how...):

Spor = {(&)),0),) i=1,...,N}

e Take into account the likelihood by re-weighting the particles:

) = ),
wy) = pzglzl” )"

S {(m,ii),wlii)); 1,...,N}

max planck institut
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Filtering Step-by-Step

p(xr|Zy) = K - p(zk|Tk) - /p(a?k|33k—1) - p(Xp—1|Lk—1) dTiK—_1

e We obtain a weighted sample representation for the posterior
at the current time step: p(ay|Z; )

SL = {(mg),w?); l,... ,N}
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Filtering Step-by-Step

p(xr|Zy) = K - p(zk|Tk) - /p(wk|33k—1) - p(Xp—1|Lk—1) dTiK—_1

e We obtain a weighted sample representation for the posterior
at the current time step: p(ay|Z; )

(@ w1, N

o Remalnlng ques’?cin How do we represent
f)
Z wk 1p( |m ) using a sample set”

max planck institut
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Temporal Propagation

Zz‘ w,(lep(mk \a?;(ﬁl)

e The simplest way to deal with the problem of representing the
result of the Monte-Carlo integration is to propagate each sample

Independently according to the temporal dynamics and keeping
the weight:

2~ plaglz)

~ (%) (4)

W1 — W

e Problem: Sample Impoverishment
» Solution: Resampling
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Resampling

e Given weighted sample set

Sk—1 = {(w,@pw;@l), i=1,...,N}

e Draw unweighted samples by sampling from the weight

distribution:
1
sample
u~ U(0,1) u
1 N g

(

Cumulative distribution of weights
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Particle Filter

Posterior p(wk_l\Zk_l)

e ¥ /
/ /r’ f//&é/m D

drlft

diffuse

observation

density \ .
A\ et T i, MOGSUTS
Y )
e 1
et &

Isard & Blake ‘96
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Particle Filter

Posterior p(@i_1|Zj_1)

l resample - {4 i ¥ }DN}:\
Y VAN

%

observation D)

density \
. N “ T measure
o, oot MRS S S S S S S S %M“
' .A /
Xk &/

Isard & Blake ‘96

)
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Particle Filter

Posterior p(@i_1|Zj_1)

l resample
Apply temporal dynamics

p($k|wk—1)

Isard & Blake ‘96
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Particle Filter

Posterior p(@i_1|Zj_1)
l resample

Apply temporal dynamics
p(Tk|Tr—1)
l reweight

Likelihood  p(zg|xk)

Isard & Blake ‘96
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Particle Filter

Posterior p(@i_1|Zj_1)

l resample
Apply temporal dynamics

p($k|wk—1)
l reweight
Likelihood  p(zk|Tk)

l normalize

Posterior p(x|Zs)

Isard & Blake ‘96
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Time

0Oms

400 ms

800 ms

1200 ms

1600 ms

2000 ms

2400 ms

2800 ms

[Michael Isard]

HIaL
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Some Properties

|t can be shown that in the infinite particle limit this converges to the
correct solution [Isard & Blake].

 |n practice, we of course want to use a finite number.

» In low-dimensional spaces we might only need 100s of particles for the procedure
to work well.

» In high-dimensional spaces sometimes 1,000s or even 10,000s particles are
needed.
* There are many variants of this basic procedure, some of which are

more efficient (e.g. need fewer particles)
» See e.g.: Arnaud Doucet, Simon Godsill, Christophe Andrieu: On sequential

Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing,
vol. 10, pp. 197-- 208, 2000.
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Contour Tracking

State: control points of spline-
based contour representation

Measurements: edge strength
perpendicular to contour

Dynamics: 2nd—order Markov
(often learned)

[Isard & Blake, “Condensation - conditional density propagation for
visual tracking.” IJCV, 1998]
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High-Dimensional State Spaces

 Tracking a hand (high-dimensional state space)

[Michael Isard]
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Tracking in Clutter

 Tracking a leaf that moves fast in a very cluttered scene:

[Michael Isard]
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Tracking the unpredictable...

e They called it "dance”
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Summary

e Particle filtering is a very general tool for temporal inference that we
can exploit for tracking.

» Nonetheless, it applies in a variety of other applications as well.

» It has problems in high-dimensional spaces, however, but there are a number of
variants that alleviate some of these issues.

e Human tracking ("Marker-less mocap”) can be performed using
particle filtering:

» Wide range of applications, especially in entertainment.
» Only a small part of the problems is solved to date.
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 For those interested in the Kalman filter:
» Greg Welch and Gary Bishop: An Introduction to the Kalman Filter

e Background for Particle Filtering:

» Simon Maskell and Neil Gordon: A Tutorial on Particle Filtering for On-Line
Nonlinear/Non-Gaussian Bayesian Tracking
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