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Today’s topics

I Sampling
I Barber Sections 27.1, 27.2, 27.3, 27.4
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What to infer?

I Mean
Ep(x)[x] =

∑
x∈X

xp(x)

I Mode (most likely state)

x∗ = argmax
x∈X

p(x)

I Conditional Distributions

p(xi, xj | xk, xl) or p(xi | x1, . . . , xi−1, xi+1, . . . , xn)

I Max-Marginals

x∗i = argmax
xi∈Xi

p(xi) = argmax
xi∈Xi

∑
j 6=i

p(x1, . . . , xn)
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Approximate Inference – Sampling

Inference in General Graphs – Approximate Inference
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Approximate Inference – Sampling

Approximate Inference?

I Approximate Inference comes into play whenever exact inference is
not tractable.

I E.g. the model is not tree structured

I What would we like to approximate?
I E.g. posterior distribution p(z | x)
I Expectations

I continuous: integrals may be intractable
I discrete: sum over exponentially many states ⇒ infeasible

I Conceptually there are two approaches
I Deterministic Approximation
I Numerical Sampling (e.g. Markov Chain Monte Carlo)
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Approximate Inference – Sampling

Two approaches

1. Deterministic Approximation
I Approximate the quantity of interest
I Solve the approximation analytically
I Results depends on the quality of the approximation

2. Numerical Sampling
I Take the quantity of interest
I Use random samples to approximate it
I Results depends on the quality and amount of random samples

I The correct answer to the wrong question, or
the wrong answer to the correct question?

I Only sampling allows to get the golden standard
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Approximate Inference – Sampling

Different methods

I For trees: one algorithm only (efficient)

I In general graphs: difficult, therefore many algorithms have been
proposed

I Sampling:
I Markov Chain Monte Carlo
I Gibbs Sampling
I ...

I Deterministic Approximate Inference
I Variational Bounds
I Loopy Belief Propagation
I Mean field
I Junction Tree
I Expectation Propagation
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Approximate Inference – Sampling

Approximate Inference: Sampling
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Approximate Inference – Sampling

Motivation: Sampling

I Draw random samples from some distribution p(x)
I discrete or continuous
I univariate or multi-variate

I For example Gaussian, Poisson, Uniform, Dirichlet, ...
I All of the above already available in Matlab

I More general: what about sampling from some joint distribution p(x)
e.g. defined by a graphical model?

I e.g. a distribution over body parts, we want to find likely body poses
I e.g. a distribution over images, we want to look at likely images.
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Approximate Inference – Sampling

Example: Expectation

I We want to evaluate

E[f ] =
∫
f(x)p(x)dx or E[f ] =

∑
x∈X

f(x)p(x)

I Sampling idea:
I draw L independent samples x1, x2, . . . , xL from p(·): xl ∼ p(·)
I replace the integral/sum with the finite set of samples

f̂ =
1

L

L∑
l=1

f(xl)

I as long as xl ∼ p(·) then

E[f̂ ] = E[f ]
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Approximate Inference – Sampling

So how to sample? A Simple case
Just to get an idea of what’s going on
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Approximate Inference – Sampling

Pre-Requiste

I Assume we can draw a value uniformly at random from the unit
interval [0, 1]

I How? Pseudo-Random number generators

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 12 / 53



Approximate Inference – Sampling

Pre-Requiste

I Assume we can draw a value uniformly at random from the unit
interval [0, 1]

I How? Pseudo-Random number generators

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 12 / 53



Approximate Inference – Sampling

Univariate Sampling – discrete example

I Target distribution with K = 3 states

p(x) =


0.6 x = 1
0.1 x = 2
0.3 x = 3

(1)

1 2 3

0 1
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Approximate Inference – Sampling

Univariate Sampling – discrete

Slightly more formal:
I Consider we want to sample from a univariate discrete distribution p

I one-dimensional
I K states

I So we have p(x = k) = pk
I Calculate the cumulant

ci =
∑
j≤i

pj (2)

I Draw u ∼ [0, 1]

I Find that i for which ci−1 < u ≤ ci
I Return state i as sample from p
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Approximate Inference – Sampling

Univariate Sampling – continuous

Extension to continuous variable is clear

I Compute the cumulant

C(y) =

∫ y

−∞
p(x)dx (3)

I Then sample u ∼ [0, 1]

I Compute x = C−1(u)

I So sampling is possible if we can compute the integral
I e.g. Gaussian distribution
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Approximate Inference – Sampling

Univariate Sampling Example: Gaussian

I 1-dimensional Gaussian pdf (probability density function) p(x|µ, σ2)
and the corresponding cumulative distribution:

Fµ,σ2(x) =

∫ x

−∞
p(z|µ, σ2)dz

I to draw a sample from a Gaussian, we invert the cumulative
distribution function

u ∼ uniform(0, 1)⇒ x = F−1
µ,σ2(u) ∼ p(x|µ, σ2)
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Approximate Inference – Sampling

Univariate Sampling

I assume pdf (probability density function) p(x) and the corresponding
cumulative distribution:

F (x) =

∫ x

−∞
p(z)dz

I to draw a sample from this pdf, we invert the cumulative distribution
function

u ∼ uniform(0, 1)⇒ x = F−1(u) ∼ p(x)

p(y)

h(y)

y0

1

F (x)

p(x)
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Approximate Inference – Sampling

Overview: Sampling Methods

I Rejection Sampling

I Ancestral Sampling

I Importance Sampling

I Gibbs Sampling

I Markov Chain Monte Carlo methods

I Metropolis-Hastings

I Hybrid Monte Carlo

I Do I need to know them all?

I Yes! Sampling is an “art”, most efficient technique depends on model
structure
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Approximate Inference – Sampling

Rejection Sampling
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Approximate Inference – Sampling

Rejection Sampling

I Suppose we want to sample from p(x) (but that is difficult)

I Furthermore assume we can evaluate p(x) up to a constant
(think of Markov Networks)

p(x) =
1

Z
p̃(x) =

1

Z

∏
c

φc(Xc) (4)

I Instead sample from a proposal distribution q(x)

I Choose q such that we can easily sample and a k exists such that

kq(x) ≥ p̃(x) ∀x (5)
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Approximate Inference – Sampling

Rejection Sampling

I Sample two random variables:

1. z0 ∼ q(x)
2. u0 ∼ [0, kq(z0)] uniform

I reject sample z0 if u0 > p̃(z0)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 21 / 53



Approximate Inference – Sampling

Rejection Sampling

I Sample two random variables:

1. z0 ∼ q(x)
2. u0 ∼ [0, kq(z0)] uniform

I reject sample z0 if u0 > p̃(z0)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 21 / 53



Approximate Inference – Sampling

Probability of acceptance

I Sample z drawn from q and accepted with probability p̃(z)/kq(z)

I So (overall) acceptance probability

p(accept) =

∫
p̃(z)

kq(z)
q(z)dz =

1

k

∫
p̃(z)dz (6)

I So the lower k the better (more acceptance)
I subject to constraint kq(z) ≥ p̃(z)
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Approximate Inference – Sampling

Efficiency of Rejection Sampling: Example

I Depends on k

I If q(x) = p(x) and k = 1 then p(accept) = 1

I But k > 1 is typical

I For the easiest case of factorizing distribution p(x) =
∏D
i=1 p(xi)

we have

p(accept | x) =
D∏
i=1

p(accept | xi) = O(γD) (7)

where 0 ≤ γ ≤ 1 typical value for p(accept | xi)
I Thus rejection sampling is usually impractical in high dimensions
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Approximate Inference – Sampling

Efficiency of Rejection Sampling

I Example:
I assume p(x) is Gaussian with

covariance matrix: σ2
pI

I assume q(x) is Gaussian with
covariance matrix: σ2

qI
I clearly: σ2

q ≥ σ2
p

I in D dimensions: k =
(
σq

σp

)D z

p(z)

−5 0 5
0

0.25

0.5

I assume:
I σq is 1% larger than σp, D = 1000
I then k = 1.011000 ≥ 20000
I and p(accept) ≤ 1

20000

I therefore: often impractical to find good proposal distribution q(x) for
high dimensions
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Approximate Inference – Sampling

Multivariate Sampling

I Multivariate: more than one dimension

I Idea: translate multivariate case into a univariate case:

I Enumerate all joint states (x1, x2, . . . , xn) (assume discrete), i.e. give
them each a unique i from 1 to the total (exponential) number of
states

I Now we have to sample from univariate distributions again

I Problem: Exponential growth of states (with n)
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Approximate Inference – Sampling

Multivariate Sampling

I Another idea, use Bayes rule

p(x1, x2) = p(x2 | x1)p(x1) (8)

I Now first sample x1, then x2 both of which are univariate

I Now we have a one dimensional distribution again

I Problem: Need to know the conditional distributions
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Approximate Inference – Sampling

Ancestral Sampling
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Approximate Inference – Sampling

Ancestral Sampling

I For Belief Networks (remember) p(x) =
∏
i p(xi | pa(xi))

I So the sampling algorithm should be clear

p(a, t, e, x, l, s, b, d) = p(a)p(s)p(t|a)p(l|s)p(b|s)p(e|t, l)p(x|e)p(d|e, b)

I Forward sampling: from parents to children

I sampling from each distribution (p(a), p(t | a), . . .)
may be (in itself / as a subproblem) difficult

t l

e

a
s

b

dx
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Approximate Inference – Sampling

Perfect Sampling

I Each instance drawn using forward sampling is independent!

I This is called perfect sampling

I In contrast to MCMC methods, where samples are dependent

I Remark: there is also a perfect sampling technique for MCMC, but
that is applicable only to some special cases [Propp&Wilson, 1996]
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Approximate Inference – Sampling

Problem of Ancestral Sampling

I Problem: Evidence!
I when a subset of the variables is observed

I Example, we have the following distribution
p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

I and have observed x3.

I We want to sample from

p(x1, x2, | x3) =
p(x1)p(x2)p(x3 | x1, x2)∑
x1,x2

p(x1)p(x2)p(x3 | x1, x2)
(9)

I Observing x3 makes x1, x2 dependent

I Sample and discard inconsistent ones (in-efficient)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 30 / 53



Approximate Inference – Sampling

Problem of Ancestral Sampling

I Problem: Evidence!
I when a subset of the variables is observed

I Example, we have the following distribution
p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

I and have observed x3.

I We want to sample from

p(x1, x2, | x3) =
p(x1)p(x2)p(x3 | x1, x2)∑
x1,x2

p(x1)p(x2)p(x3 | x1, x2)
(9)

I Observing x3 makes x1, x2 dependent

I Sample and discard inconsistent ones (in-efficient)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 30 / 53



Approximate Inference – Sampling

Problem of Ancestral Sampling

I Problem: Evidence!
I when a subset of the variables is observed

I Example, we have the following distribution
p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

I and have observed x3.

I We want to sample from

p(x1, x2, | x3) =
p(x1)p(x2)p(x3 | x1, x2)∑
x1,x2

p(x1)p(x2)p(x3 | x1, x2)
(9)

I Observing x3 makes x1, x2 dependent

I Sample and discard inconsistent ones (in-efficient)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 30 / 53



Approximate Inference – Sampling

Problem of Ancestral Sampling

I Problem: Evidence!
I when a subset of the variables is observed

I Example, we have the following distribution
p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

I and have observed x3.

I We want to sample from

p(x1, x2, | x3) =
p(x1)p(x2)p(x3 | x1, x2)∑
x1,x2

p(x1)p(x2)p(x3 | x1, x2)
(9)

I Observing x3 makes x1, x2 dependent

I Sample and discard inconsistent ones (in-efficient)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 30 / 53



Approximate Inference – Sampling

Problem of Ancestral Sampling

I Problem: Evidence!
I when a subset of the variables is observed

I Example, we have the following distribution
p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

I and have observed x3.

I We want to sample from

p(x1, x2, | x3) =
p(x1)p(x2)p(x3 | x1, x2)∑
x1,x2

p(x1)p(x2)p(x3 | x1, x2)
(9)

I Observing x3 makes x1, x2 dependent

I Sample and discard inconsistent ones (in-efficient)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 30 / 53



Approximate Inference – Sampling

Importance Sampling
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Approximate Inference – Sampling

Importance Sampling

Approach:

I approximate expectation directly
(but does not enable to draw samples from p(z) directly)

I setting: p(z) can be evaluated (up to a normalization constant)

I goal:

E[f ] =
∫
f(z)p(z)dz

Näıve method: grid-sampling

I discretize z-space into a uniform grid

I evaluate the integrand as a sum of the form:

E[f ] '
L∑
l=1

f(zl)p(zl)

I but: number of terms grows exponentially with number of dimensions
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Approximate Inference – Sampling

Importance Sampling

Idea:

I use a proposal distribution q(z) from which it is easy to draw samples

I express expectation in the form of a finite sum over samples {zl}
drawn from q(z):

E[f ] =

∫
f(z)p(z)dz =

∫
f(z)

p(z)

q(z)
q(z)dz

' 1

L

L∑
l=1

p(zl)

q(zl)
f(zl)

I with importance weights: rl = p(zl)
q(zl)
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Approximate Inference – Sampling

Importance Sampling

Typical setting:

I p(z) can be only evaluated up to a normalization constant (unkown):
p(z) = p̃(z)/Zp

I q(z) can be also treated in a similar way:
q(z) = q̃(z)/Zq

I then:

E[f ] =

∫
f(z)p(z)dz =

Zq
Zp

∫
f(z)

p̃(z)

q̃(z)
q(z)dz

' Zq
Zp

1

L

L∑
l=1

r̃lf(zl)

I with: r̃l = p̃(zl)
q̃(zl)
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Approximate Inference – Sampling

Importance Sampling

Ratio of normalization constants can be evaluated :

Zp
Zq

=
1

Zq

∫
p̃(z)dz =

∫
p̃(z)

q̃(z)
q(z)dz ' 1

L

L∑
l=1

r̃l

I and therefore:

E[f ] ' Zq
Zp

1

L

L∑
l=1

r̃lf(zl) =

L∑
l=1

wlf(zl)

I with:

wl =
r̃l∑
m r̃

m
=

p̃(zl)
q̃(zl)∑
m
p̃(zm)
q̃(zm)
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Approximate Inference – Sampling

Importance Sampling

Observations:

I success of importance sampling depends crucially on how well the
sampling distribution q(z) matches the desired distribution p(z)

I often, p(z)f(z) is strongly varying and has significant proportion of
its mass concentrated over small regions of z-space

I as a result weights r̃l may be dominated by a few weights having
large values

I practical issues: if none of the samples falls in the regions where
p(z)f(z) are large . . .

I the results may be arbitrarily wrong
I and no diagnostic indication !

(because there is no large variance in r̃l then)
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Approximate Inference – Sampling

Gibbs Sampling
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Approximate Inference – Sampling

Gibbs Sampling

I Sample from this distribution p(x)
I Idea: Sample sequence x0, x1, x2, . . . by updating one variable at a

time
I Eg. update x4 by conditioning on the set of shaded variables

p(x4 | x1, x2, x3, x5, x6) = p(x4 | x3, x5, x6)
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Approximate Inference – Sampling

Gibbs Sampling

I Sample from this distribution p(x)
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time
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Approximate Inference – Sampling

Gibbs Sampling: General Recipe

I Update xi

p(xi | x\i) =
1

Z
p(xi | pa(xi))

∏
j∈ch(i)

p(xj | pa(xj)) (10)

I and the normalisation constant is

Z =
∑
xi

p(xi | pa(xi))
∏

j∈ch(i)

p(xj | pa(xj)) (11)
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Approximate Inference – Sampling

Gibbs Sampling: Remarks

I Think of Gibbs sampling as

xl+1 ∼ q(· | xl) (12)

I Problem: States are highly dependent (x1, x2, . . .)

I Need a long time to run Gibbs sampling to forget the initial state, this
is called burn in phase

I Dealing with evidence is easy: simply clamp the variables to the
values.

I Widely adopted technique for approximate inference (BUGS package
www.mrc-bsu.cam.ac.uk/bugs)
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Approximate Inference – Sampling

Gibbs Sampling: Remarks

I In this example the samples stay in the lower left quadrant

I Some technical requirements to Gibbs sampling
I The Markov Chain q(xl+1 | xl) needs to be able to traverse the entire

state-space (no matter where we start)
I This property is called irreducible
I Then p(x) is the stationary distribution of q(x′ | x)
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Approximate Inference – Sampling

Gibbs Sampling: Remarks

I Gibbs sampling is more efficient if states are not correlated
I Left: Almost isotropic Gaussian
I Right: correlated Gaussian

I The Markov chain has a higher mixing coefficient
I i.e. it converges faster to the stationary distribution
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Approximate Inference – Sampling

Markov Chain Monte Carlo (MCMC)
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Approximate Inference – Sampling

Markov Chain Monte Carlo (MCMC)

I Sample from a multi-variate distribution

p(x) =
1

Z
p∗(x) (13)

with Z intractable to calculate

I Idea: Sample from some q(xl+1 | xl) with a stationary distribution

q∞(x′) =

∫
x
q(x′ | x)q∞(x) (14)

I Given p(x) find q(x′ | x) such that q∞(x) = p(x)

I Gibbs sampling is one instance (that is why it is working)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 44 / 53



Approximate Inference – Sampling

Markov Chain Monte Carlo (MCMC)

I Sample from a multi-variate distribution

p(x) =
1

Z
p∗(x) (13)

with Z intractable to calculate

I Idea: Sample from some q(xl+1 | xl) with a stationary distribution

q∞(x′) =

∫
x
q(x′ | x)q∞(x) (14)

I Given p(x) find q(x′ | x) such that q∞(x) = p(x)

I Gibbs sampling is one instance (that is why it is working)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 44 / 53



Approximate Inference – Sampling

Markov Chain Monte Carlo (MCMC)

I Sample from a multi-variate distribution

p(x) =
1

Z
p∗(x) (13)

with Z intractable to calculate

I Idea: Sample from some q(xl+1 | xl) with a stationary distribution

q∞(x′) =

∫
x
q(x′ | x)q∞(x) (14)

I Given p(x) find q(x′ | x) such that q∞(x) = p(x)

I Gibbs sampling is one instance (that is why it is working)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 44 / 53



Approximate Inference – Sampling

Markov Chain Monte Carlo (MCMC)

I Sample from a multi-variate distribution

p(x) =
1

Z
p∗(x) (13)

with Z intractable to calculate

I Idea: Sample from some q(xl+1 | xl) with a stationary distribution

q∞(x′) =

∫
x
q(x′ | x)q∞(x) (14)

I Given p(x) find q(x′ | x) such that q∞(x) = p(x)

I Gibbs sampling is one instance (that is why it is working)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 44 / 53



Approximate Inference – Sampling

Metropolis sampling

I Special case of MCMC method (proposal distribution) with the
following proposal distribution

I symmetric: q(x′ | x) = q(x | x′)
I Sample x′ and accept with probability

A(x′, x) = min

(
1,
p∗(x′)

p∗(x)

)
∈ [0, 1] (15)

I If new state x′ is more probable always accept
I If new state is less probable accept with p∗(x′)

p∗(x)
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Approximate Inference – Sampling

Example: 2D Gaussian

I 150 proposal steps, 43 are rejected (red)
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Approximate Inference – Sampling

Metropolis-Hastings sampling (1953)

I Slightly more general MCMC method when the proposal distribution
is not symmetric

I Sample x′ and accept with probability

A(x′, x) = min

(
1,
q̃(x | x′)p∗(x′)
q̃(x′ | x)p∗(x)

)
(16)

I Note: when the proposal distribution is symmetric,
Metropolis-Hastings reduces to standard Metropolis sampling
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Approximate Inference – Sampling

Is this sampling from the correct distribution?

I In the following we show that Metropolis-Hastings samples from the
desired distribution p(x)

I Consider the following transition

q(x′ | x) = q̃(x′ | x)f(x′, x) + δ(x, x′)

(
1−

∫
x′′
q̃(x′′ | x)f(x′′, x)

)
with proposal distribution q̃

I This is a distribution∫
x′
q(x′ | x) =

∫
x′
q̃(x′ | x)f(x′, x)+

(
1−

∫
x′′
q̃(x′′ | x)f(x′′, x)

)
= 1

I Now find f(x′, x) such that stationary distribution is p(x).
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Approximate Inference – Sampling

Continuing...

I We want f(x′, x) such that

p(x′) =

∫
x
q(x′ | x)p(x)

I using:

q(x′ | x) = q̃(x′ | x)f(x′, x) + δ(x, x′)

(
1−

∫
x′′
q̃(x′′ | x)f(x′′, x)

)
I we get:

p(x′) =

∫
x
q̃(x′ | x)f(x′, x)p(x)

+ p(x′)

(
1−

∫
x′′
q̃(x′′ | x′)f(x′′, x′)

)
I In order for this to hold we need to require∫

x
q̃(x′ | x)f(x′, x)p(x) =

∫
x′′
q̃(x′′ | x′)f(x′′, x′)p(x′)
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Approximate Inference – Sampling

Continuing...

I This holds for the Metropolis-Hastings acceptance rule

A(x′, x) = f(x′, x) = min

(
1,
q̃(x | x′)p∗(x′)
q̃(x′ | x)p∗(x)

)
= min

(
1,
q̃(x | x′)p(x′)
q̃(x′ | x)p(x)

)
I we need to require (from previous slide):∫

x
q̃(x′ | x)f(x′, x)p(x) =

∫
x′′
q̃(x′′ | x′)f(x′′, x′)p(x′)

I which is satisfied because of the (detailed balance) property:

f(x′, x)q̃(x′ | x)p(x) = min(q̃(x′ | x)p(x), q̃(x | x′)p(x′))
= min(q̃(x | x′)p(x′), q̃(x′ | x)p(x))
= f(x, x′)q̃(x | x′)p(x′)
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Approximate Inference – Sampling

Continuing...

I A common proposal distribution is given by

q̃(x′ | x) = N (x′ | x, σ2I)

I which is symmetric q̃(x′ | x) = q̃(x | x′)
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Approximate Inference – Sampling

Example: multi-modal distribution

I q̃ needs to bridge the gap (be irreducible)
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Approximate Inference – Sampling

Sampling

I Much much more to learn about sampling

I Widely used: Gibbs Sampling, Metropolis Hastings

I Usually requires experience and careful adpation to your specific
problem
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