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-
Today's topics

» Sampling
» Barber Sections 27.1, 27.2, 27.3, 27.4
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N
What to infer?

» Mean

» Mode (most likely state)

x* = argmax p(x)
reX

Conditional Distributions

v

p(xi, x| g, 1) or p(a; | T1,. .., Tic1, Tig1,- .-, Tn)

v

Max-Marginals

x; = argmax p(x;) = argmax E p(z1,. .., %)
T, €X; T €X; i
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Approximate Inference — Sampling

Inference in General Graphs — Approximate Inference
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Approximate Inference — Sampling

Approximate Inference?

» Approximate Inference comes into play whenever exact inference is
not tractable.
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Approximate Inference?

» Approximate Inference comes into play whenever exact inference is
not tractable.

» E.g. the model is not tree structured
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Approximate Inference — Sampling

Approximate Inference?

» Approximate Inference comes into play whenever exact inference is
not tractable.

» E.g. the model is not tree structured
» What would we like to approximate?

» E.g. posterior distribution p(z | )
» Expectations

» continuous: integrals may be intractable
> discrete: sum over exponentially many states = infeasible
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Approximate Inference — Sampling

Approximate Inference?

» Approximate Inference comes into play whenever exact inference is
not tractable.

» E.g. the model is not tree structured
» What would we like to approximate?

» E.g. posterior distribution p(z | )
» Expectations

» continuous: integrals may be intractable
> discrete: sum over exponentially many states = infeasible

» Conceptually there are two approaches

» Deterministic Approximation
» Numerical Sampling (e.g. Markov Chain Monte Carlo)
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Approximate Inference — Sampling

Two approaches

1. Deterministic Approximation

» Approximate the quantity of interest
» Solve the approximation analytically
» Results depends on the quality of the approximation
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Approximate Inference — Sampling

Two approaches

1. Deterministic Approximation
» Approximate the quantity of interest
» Solve the approximation analytically
» Results depends on the quality of the approximation
2. Numerical Sampling
» Take the quantity of interest
» Use random samples to approximate it
» Results depends on the quality and amount of random samples
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Approximate Inference — Sampling

Two approaches

1. Deterministic Approximation

» Approximate the quantity of interest

» Solve the approximation analytically

» Results depends on the quality of the approximation
2. Numerical Sampling

» Take the quantity of interest
» Use random samples to approximate it
» Results depends on the quality and amount of random samples

» The correct answer to the wrong question, or
the wrong answer to the correct question?
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Approximate Inference — Sampling

Two approaches

1. Deterministic Approximation

» Approximate the quantity of interest

» Solve the approximation analytically

» Results depends on the quality of the approximation
2. Numerical Sampling

» Take the quantity of interest
» Use random samples to approximate it
» Results depends on the quality and amount of random samples

» The correct answer to the wrong question, or
the wrong answer to the correct question?

» Only sampling allows to get the golden standard
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Different methods

» For trees: one algorithm only (efficient)
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Different methods

» For trees: one algorithm only (efficient)

» In general graphs: difficult, therefore many algorithms have been
proposed
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Approximate Inference — Sampling

Different methods

» For trees: one algorithm only (efficient)
» In general graphs: difficult, therefore many algorithms have been
proposed
» Sampling:
» Markov Chain Monte Carlo
» Gibbs Sampling

>
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Different methods

» For trees: one algorithm only (efficient)
» In general graphs: difficult, therefore many algorithms have been
proposed
» Sampling:
» Markov Chain Monte Carlo
» Gibbs Sampling
-
» Deterministic Approximate Inference

» Variational Bounds
Loopy Belief Propagation
Mean field

Junction Tree
Expectation Propagation

v

v vy
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Different methods

» For trees: one algorithm only (efficient)
» In general graphs: difficult, therefore many algorithms have been
proposed
» Sampling
» Markov Chain Monte Carlo
» Gibbs Sampling
-
» Deterministic Approximate Inference

» Variational Bounds
Loopy Belief Propagation
Mean field

Junction Tree
Expectation Propagation

v

v vy
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Approximate Inference — Sampling

Approximate Inference: Sampling
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Motivation: Sampling

» Draw random samples from some distribution p(z)

» discrete or continuous
» univariate or multi-variate
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Motivation: Sampling

» Draw random samples from some distribution p(z)

» discrete or continuous
» univariate or multi-variate

» For example Gaussian, Poisson, Uniform, Dirichlet, ...
» All of the above already available in Matlab
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Motivation: Sampling

» Draw random samples from some distribution p(z)

» discrete or continuous
» univariate or multi-variate

» For example Gaussian, Poisson, Uniform, Dirichlet, ...
» All of the above already available in Matlab

» More general: what about sampling from some joint distribution p(z)
e.g. defined by a graphical model?

» e.g. a distribution over body parts, we want to find likely body poses
» e.g. a distribution over images, we want to look at likely images.
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Approximate Inference — Sampling

Example: Expectation

» We want to evaluate

E[f] = / f@p@)ds orElf] = Y f@)p(a)

reX
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Approximate Inference — Sampling

Example: Expectation

» We want to evaluate

Blf] = [ f@p(e)dz or Elf) = 3 f)pla)
reX
» Sampling idea:
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Approximate Inference — Sampling

Example: Expectation

» We want to evaluate
Blf] = [ f@p(e)dz or Elf) = 3 f)pla)
reX
» Sampling idea:

» draw L independent samples 2!, 22

soo oy wl from p(s): 2t ~ p(+)
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Approximate Inference — Sampling

Example: Expectation

» We want to evaluate
Blf] = [ f@p(e)dz or Elf) = 3 f)pla)
zeX
» Sampling idea:
» draw L independent samples !, 22 ... 2% from p(-): 2! ~ p(-)
» replace the integral /sum with the finite set of samples

.1 &
f:ZZf(xl)
=1

2
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Approximate Inference — Sampling

Example: Expectation

» We want to evaluate
Blf] = [ f@p(e)dz or Elf) = 3 f)pla)
zeX
» Sampling idea:
» draw L independent samples !, 22 ... 2% from p(-): 2! ~ p(-)
» replace the integral /sum with the finite set of samples

.1 &
f:ZZf(xl)
=1

2

» as long as x! ~ p(-) then

E[f] = E[f]
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Approximate Inference — Sampling

So how to sample? A Simple case
Just to get an idea of what's going on
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Pre-Requiste

» Assume we can draw a value uniformly at random from the unit
interval [0, 1]
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Pre-Requiste

» Assume we can draw a value uniformly at random from the unit
interval [0, 1]
» How? Pseudo-Random number generators
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Approximate Inference — Sampling

Univariate Sampling — discrete example

» Target distribution with K = 3 states

06 z=1
p(x) =14 0.1 z=2 (1)
03 =3
! o] s |
1
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Approximate Inference — Sampling

Univariate Sampling — discrete

Slightly more formal:
» Consider we want to sample from a univariate discrete distribution p

» one-dimensional
» K states
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Approximate Inference — Sampling

Univariate Sampling — discrete

Slightly more formal:
» Consider we want to sample from a univariate discrete distribution p

» one-dimensional
» K states

» So we have p(z = k) = pg
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Approximate Inference — Sampling

Univariate Sampling — discrete

Slightly more formal:
» Consider we want to sample from a univariate discrete distribution p

» one-dimensional
» K states

» So we have p(z = k) = pg

» Calculate the cumulant

=3, )

J<i
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Approximate Inference — Sampling

Univariate Sampling — discrete

Slightly more formal:
» Consider we want to sample from a univariate discrete distribution p

» one-dimensional
» K states

» So we have p(z = k) = pg

» Calculate the cumulant

=3, )

i<i
» Draw u ~ [0, 1]
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Univariate Sampling — discrete

Slightly more formal:

» Consider we want to sample from a univariate discrete distribution p
» one-dimensional

» K states
» So we have p(z = k) = pg
» Calculate the cumulant

=3, )

J<i
» Draw u ~ [0, 1]
Find that ¢ for which ¢;_1 < u < ¢;

v
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Approximate Inference — Sampling

Univariate Sampling — discrete

Slightly more formal:

» Consider we want to sample from a univariate discrete distribution p
» one-dimensional

» K states
» So we have p(z = k) = pg
» Calculate the cumulant

=3, )

J<i
» Draw u ~ [0, 1]
Find that ¢ for which ¢;_1 < u < ¢;

v

v

Return state ¢ as sample from p
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Approximate Inference — Sampling

Univariate Sampling — continuous

Extension to continuous variable is clear

» Compute the cumulant

cw - [ " p(@)dz 3)

— 00
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Approximate Inference — Sampling

Univariate Sampling — continuous

Extension to continuous variable is clear

» Compute the cumulant

cw - [ " p(@)dz 3)

— 00

» Then sample u ~ [0, 1]
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Approximate Inference — Sampling

Univariate Sampling — continuous

Extension to continuous variable is clear

» Compute the cumulant

» Then sample u ~ [0, 1]
» Compute z = C~!(u)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 15 / 53



Approximate Inference — Sampling

Univariate Sampling — continuous

Extension to continuous variable is clear

» Compute the cumulant
y
Cw) = [ pla)ds 3)

» Then sample u ~ [0, 1]

» Compute z = C~!(u)

» So sampling is possible if we can compute the integral
» e.g. Gaussian distribution
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Approximate Inference — Sampling

Univariate Sampling Example: Gaussian

» 1-dimensional Gaussian pdf (probability density function) p(x|u, o?)
and the corresponding cumulative distribution:

F,2(z) = / Pz, o) dz

—00
» to draw a sample from a Gaussian, we invert the cumulative
distribution function

u~ uniform(0,1) =z = F;;Q(u) ~ p(x|p, 0?)
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Approximate Inference — Sampling

Univariate Sampling

» assume pdf (probability density function) p(z) and the corresponding
cumulative distribution:

Fo)= [ pleis

» to draw a sample from this pdf, we invert the cumulative distribution
function

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 17 / 53



Overview: Sampling Methods

» Rejection Sampling

» Ancestral Sampling

» Importance Sampling

» Gibbs Sampling

» Markov Chain Monte Carlo methods
» Metropolis-Hastings

» Hybrid Monte Carlo
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Overview: Sampling Methods

» Rejection Sampling

» Ancestral Sampling

» Importance Sampling

» Gibbs Sampling

» Markov Chain Monte Carlo methods
» Metropolis-Hastings

» Hybrid Monte Carlo

» Do | need to know them all?
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Overview: Sampling Methods

» Rejection Sampling

» Ancestral Sampling

» Importance Sampling

» Gibbs Sampling

» Markov Chain Monte Carlo methods
» Metropolis-Hastings

» Hybrid Monte Carlo

» Do | need to know them all?

» Yes! Sampling is an “art”, most efficient technique depends on model
structure
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Approximate Inference — Sampling

Rejection Sampling
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Approximate Inference — Sampling

Rejection Sampling

» Suppose we want to sample from p(x) (but that is difficult)

» Furthermore assume we can evaluate p(z) up to a constant
(think of Markov Networks)

p(x) = i) = [[6e() (4)
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Approximate Inference — Sampling

Rejection Sampling

» Suppose we want to sample from p(x) (but that is difficult)

» Furthermore assume we can evaluate p(z) up to a constant
(think of Markov Networks)

p(x) = i) = [[6e() (4)

» Instead sample from a proposal distribution ¢(z)
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Approximate Inference — Sampling

Rejection Sampling

v

Suppose we want to sample from p(z) (but that is difficult)

v

Furthermore assume we can evaluate p(x) up to a constant
(think of Markov Networks)

p(x) = i) = [[6e() (4)

v

Instead sample from a proposal distribution g(x)

v

Choose ¢ such that we can easily sample and a k exists such that

kq(x) = p(x) Va (5)
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Approximate Inference — Sampling

Rejection Sampling

» Sample two random variables:

1. zp ~ q(z)
2. ug ~ [0, kq(zp)] uniform
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Approximate Inference — Sampling

Rejection Sampling

» Sample two random variables:

1. zp ~ q(z)
2. ug ~ [0, kq(zp)] uniform

» reject sample zg if ug > p(20)
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Approximate Inference — Sampling

Probability of acceptance

» Sample z drawn from ¢ and accepted with probability p(z)/kq(z)

» So (overall) acceptance probability

placcent) = [ L0z = 1 [ (epas (6)

kq(z)
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Approximate Inference — Sampling

Probability of acceptance

» Sample z drawn from ¢ and accepted with probability p(z)/kq(z)

» So (overall) acceptance probability

placcent) = | 5;;g)q<z>dz:,1 JECE (6)

» So the lower k the better (more acceptance)
» subject to constraint kq(z) > p(2)

kalz0) Fa(z)
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Approximate Inference — Sampling

Efficiency of Rejection Sampling: Example

» Depends on k&
» If g(x) = p(z) and k = 1 then p(accept) =1
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Approximate Inference — Sampling

Efficiency of Rejection Sampling: Example

» Depends on k&
» If g(x) = p(z) and k = 1 then p(accept) =1
» But £ > 1 is typical
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Approximate Inference — Sampling

Efficiency of Rejection Sampling: Example

» Depends on k&
» If g(x) = p(z) and k = 1 then p(accept) =1
» But £ > 1 is typical

» For the easiest case of factorizing distribution p(x) = H?:l p(x;)

we have
D

placcept | ) = [ placcept | #:) = O(”) (7)
i=1

where 0 < v <1 typical value for p(accept | x;)
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Approximate Inference — Sampling

Efficiency of Rejection Sampling: Example

» Depends on k&
» If g(x) = p(z) and k = 1 then p(accept) =1
» But £ > 1 is typical

» For the easiest case of factorizing distribution p(x) = H?:l p(x;)

we have
D

placcept | ) = [ placcept | #:) = O(”) (7)
i=1

where 0 < v <1 typical value for p(accept | x;)

» Thus rejection sampling is usually impractical in high dimensions
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Efficiency of Rejection Sampling

» Example:
» assume p(x) is Gaussian with 0s
covariance matrix: af,I "o
» assume ¢(z) is Gaussian with 035

covariance matrix: 031
> clearly: 03 > 012, ol

D
» in D dimensions: k = (ﬂ>

Ip
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Efficiency of Rejection Sampling

» Example:

» assume p(x) is Gaussian with
covariance matrix: af,I

» assume ¢(z) is Gaussian with
covariance matrix: 031

.2 2

»
clearly: oy >0,

» in D dimensions: k = (—“)

> assume:
» o, is 1% larger than o, D = 1000
» then k& = 1.01%%% > 20000

» and p(accept) < m
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Efficiency of Rejection Sampling

» Example:
» assume p(x) is Gaussian with 0s
covariance matrix: JI%I "o
» assume ¢(z) is Gaussian with 035

covariance matrix: 031
> clearly: 03 > 0127 ol

D
» in D dimensions: k = (ﬂ>

Ip

> assume:

» o, is 1% larger than o, D = 1000

» then k£ = 1.011%9 > 20000

» and p(accept) < 55055

» therefore: often impractical to find good proposal distribution g(x) for
high dimensions
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Multivariate Sampling

» Multivariate: more than one dimension

» |dea: translate multivariate case into a univariate case:
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Multivariate Sampling

Multivariate: more than one dimension

v

Idea: translate multivariate case into a univariate case:

v

» Enumerate all joint states (x1,z9,...,2,) (assume discrete), i.e. give
them each a unique i from 1 to the total (exponential) number of
states

Now we have to sample from univariate distributions again

v
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Multivariate Sampling

» Multivariate: more than one dimension

» |dea: translate multivariate case into a univariate case:

» Enumerate all joint states (x1,z9,...,2,) (assume discrete), i.e. give
them each a unique i from 1 to the total (exponential) number of
states

» Now we have to sample from univariate distributions again

» Problem: Exponential growth of states (with n)
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Multivariate Sampling

» Another idea, use Bayes rule

p(z1,22) = p(z2 | 71)p(71) (8)
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Multivariate Sampling

» Another idea, use Bayes rule

p(z1,22) = p(z2 | 71)p(71) (8)

» Now first sample z1, then x5 both of which are univariate

» Now we have a one dimensional distribution again
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Multivariate Sampling

v

Another idea, use Bayes rule

p(z1,22) = p(z2 | 71)p(71) (8)

v

Now first sample x1, then x9 both of which are univariate

v

Now we have a one dimensional distribution again

v

Problem: Need to know the conditional distributions
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Approximate Inference — Sampling

Ancestral Sampling

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 27 / 53



Approximate Inference — Sampling

Ancestral Sampling

» For Belief Networks (remember) p(z) =[], p(z; | pa(z;))
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Approximate Inference — Sampling

Ancestral Sampling

» For Belief Networks (remember) p(z) =[], p(z; | pa(z;))
» So the sampling algorithm should be clear

pla,t,e,x,1,5,b,d) = p(a)p(s)p(tla)p(l|s)p(bls)p(elt, p(x|e)p(d|e, b)

» Forward sampling: from parents to children
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Ancestral Sampling

v

For Belief Networks (remember) p(x) = [, p(x; | pa(x;))
So the sampling algorithm should be clear

pla,t,e,x,1,5,b,d) = p(a)p(s)p(tla)p(l|s)p(bls)p(elt, p(x|e)p(d|e, b)

v

v

Forward sampling: from parents to children

v

sampling from each distribution (p(a),p(t | a),...)
may be (in itself / as a subproblem) difficult
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Perfect Sampling

» Each instance drawn using forward sampling is independent!

» This is called perfect sampling
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Perfect Sampling

» Each instance drawn using forward sampling is independent!
» This is called perfect sampling

» In contrast to MCMC methods, where samples are dependent
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Perfect Sampling

v

Each instance drawn using forward sampling is independent!

v

This is called perfect sampling
» In contrast to MCMC methods, where samples are dependent

Remark: there is also a perfect sampling technique for MCMC, but
that is applicable only to some special cases [Propp&Wilson, 1996]

v
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Approximate Inference — Sampling

Problem of Ancestral Sampling

» Problem: Evidence!
» when a subset of the variables is observed
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Approximate Inference — Sampling

Problem of Ancestral Sampling

» Problem: Evidence!
» when a subset of the variables is observed

» Example, we have the following distribution
p(x1, w2, 23) = p(x1)p(2)p(2s | 1, 22)
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Approximate Inference — Sampling

Problem of Ancestral Sampling

Problem: Evidence!
» when a subset of the variables is observed

v

v

Example, we have the following distribution
p(z1, 2, 23) = p(x1)p(z2)p(@s | 1, 22)
and have observed z3.

v

v

We want to sample from

p(x1)p(z2)p(es | 21, 22)
T1,T2 p($1)p($2)p(1‘3 | x1, x?) (9)

P(ﬂfl,m,\ 953) = Z
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Approximate Inference — Sampling

Problem of Ancestral Sampling

» Problem: Evidence!
» when a subset of the variables is observed
» Example, we have the following distribution
p(z1, 2, 23) = p(x1)p(z2)p(@s | 1, 22)
» and have observed x3.
» We want to sample from

p(z1)p(x2)p(s3 | w1, 72) (9)

pP\r1,x2,| X3) =
(| @s) = s (e)p(as | o1, 72)

v

Observing x3 makes x1, x5 dependent
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Approximate Inference — Sampling

Problem of Ancestral Sampling

Problem: Evidence!
» when a subset of the variables is observed

v

v

Example, we have the following distribution
p(z1, 2, 23) = p(x1)p(z2)p(@s | 1, 22)
and have observed z3.

v

v

We want to sample from

p(z1)p(x2)p(s3 | w1, 72) (9)

pP\r1,x2,| X3) =
(| @s) = s (e)p(as | o1, 72)

v

Observing x3 makes x1, x5 dependent

v

Sample and discard inconsistent ones (in-efficient)
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Approximate Inference — Sampling

Importance Sampling
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Approximate Inference — Sampling

Importance Sampling

Approach:

» approximate expectation directly
(but does not enable to draw samples from p(z) directly)

» setting: p(z) can be evaluated (up to a normalization constant)
» goal:
Blf) = [ o)l
Naive method: grid-sampling
» discretize z-space into a uniform grid

» evaluate the integrand as a sum of the form:
L
E[f] =) f(z")p(z)
I=1
» but: number of terms grows exponentially with number of dimensions
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Approximate Inference — Sampling

Importance Sampling

Idea:
» use a proposal distribution ¢(z) from which it is easy to draw samples

> express expectation in the form of a finite sum over samples {z!}
drawn from ¢(z):

Blfl = [ fem dz—/f E

1ZL:p l

=1

12

»Q

l
» with importance weights: r! = 22

p(z)
q(z!)
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Approximate Inference — Sampling

Importance Sampling

Typical setting:
» p(z) can be only evaluated up to a normalization constant (unkown):
p(z) = p(2)/Zp
» ¢(z) can be also treated in a similar way:
q(2) = q(2)/Z,
> then:

2

NN

==
Ny
g

bl PiEY
> with: 7 = el
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Approximate Inference — Sampling

Importance Sampling

Ratio of normalization constants can be evaluated

7 =7 =[5

Zy 2
» and therefore:
Z, L L
- TSI = )
=1 =1
» with:

~1 ﬁ(zl)
W= G

Fm pzm)

Zom 2om G

January 11, 2019
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Approximate Inference — Sampling

Importance Sampling

Observations:

» success of importance sampling depends crucially on how well the
sampling distribution ¢(z) matches the desired distribution p(z)

» often, p(z)f(z) is strongly varying and has significant proportion of
its mass concentrated over small regions of z-space

> as a result weights 7 may be dominated by a few weights having
large values
» practical issues: if none of the samples falls in the regions where
p(2)f(z) are large ...
» the results may be arbitrarily wrong
» and no diagnostic indication !
(because there is no large variance in 7 then)
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Approximate Inference — Sampling

Gibbs Sampling
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Approximate Inference — Sampling

Gibbs Sampling

» Sample from this distribution p(x)
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Approximate Inference — Sampling

Gibbs Sampling

. |

» Sample from this distribution p(x)
» Idea: Sample sequence 2, !, 22, ... by updating one variable at a

time
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Approximate Inference — Sampling

Gibbs Sampling

. |

» Sample from this distribution p(x)

» Idea: Sample sequence 2, !, 22, ... by updating one variable at a
time

» Eg. update x4 by conditioning on the set of shaded variables

p(xs | 21,22, 23,5, 76) = p(x4 | 23,75, x6)
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Approximate Inference — Sampling

Gibbs Sampling

. |

» Sample from this distribution p(x)

» Idea: Sample sequence 2, !, 22, ... by updating one variable at a
time

» Eg. update x4 by conditioning on the Markov blanket

p(xs | 21,22, 23,5, 76) = p(x4 | 23,75, x6)
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Gibbs Sampling: General Recipe

» Update zx;

1
p(zi| @) = 7P p(zi | pa(w;)) H p(zj | pa(z;)) (10)
jech(i)
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Gibbs Sampling: General Recipe

» Update zx;
1
plei | 2) = Zpl(@i | palzi) 1T »G;1palz;) (10)
jech(i)
» and the normalisation constant is

7 = Zp x; | pa(z;)) H p(xj | pa(z;)) (11)

Ti jech@)
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Gibbs Sampling: Remarks

» Think of Gibbs sampling as

I+1

2t~ g(- | 2t (12)
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Gibbs Sampling: Remarks

» Think of Gibbs sampling as

I+1

2t~ g(- | 2t (12)

» Problem: States are highly dependent (x!,22,...)
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Gibbs Sampling: Remarks

» Think of Gibbs sampling as

I+1

2t~ g(- | 2t (12)

» Problem: States are highly dependent (x!,22,...)

» Need a long time to run Gibbs sampling to forget the initial state, this
is called burn in phase
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Gibbs Sampling: Remarks

v

Think of Gibbs sampling as

I+1

2t~ g(- | 2t (12)

v

Problem: States are highly dependent (z!,22,...)

v

Need a long time to run Gibbs sampling to forget the initial state, this
is called burn in phase

v

Dealing with evidence is easy: simply clamp the variables to the
values.

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 40 / 53


www.mrc-bsu.cam.ac.uk/bugs

Gibbs Sampling: Remarks

v

Think of Gibbs sampling as

2t~ (] ) (12)

» Problem: States are highly dependent (x!,22,...)

» Need a long time to run Gibbs sampling to forget the initial state, this
is called burn in phase

» Dealing with evidence is easy: simply clamp the variables to the
values.

» Widely adopted technique for approximate inference (BUGS package
www.mrc-bsu. cam.ac.uk/bugs)
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Approximate Inference — Sampling

Gibbs Sampling: Remarks

» In this example the samples stay in the lower left quadrant
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Gibbs Sampling: Remarks

» In this example the samples stay in the lower left quadrant

» Some technical requirements to Gibbs sampling
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Approximate Inference — Sampling

Gibbs Sampling: Remarks

» In this example the samples stay in the lower left quadrant

» Some technical requirements to Gibbs sampling
» The Markov Chain ¢(z!*! | 2!) needs to be able to traverse the entire
state-space (no matter where we start)
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Approximate Inference — Sampling

Gibbs Sampling: Remarks

» In this example the samples stay in the lower left quadrant

» Some technical requirements to Gibbs sampling
» The Markov Chain ¢(z!*! | 2!) needs to be able to traverse the entire
state-space (no matter where we start)

» This property is called irreducible
» Then p(x) is the stationary distribution of g(z’ | )
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Gibbs Sampling: Remarks

3 2
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» Gibbs sampling is more efficient if states are not correlated

» Left: Almost isotropic Gaussian
» Right: correlated Gaussian
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Gibbs Sampling: Remarks
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» Gibbs sampling is more efficient if states are not correlated

» Left: Almost isotropic Gaussian
» Right: correlated Gaussian

» The Markov chain has a higher mixing coefficient
> i.e. it converges faster to the stationary distribution
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Approximate Inference — Sampling

Markov Chain Monte Carlo (MCMC)
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Markov Chain Monte Carlo (MCMC)

» Sample from a multi-variate distribution

p(z) = —p*(z) (13)

1
Z

with Z intractable to calculate

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 44 / 53



Markov Chain Monte Carlo (MCMC)

» Sample from a multi-variate distribution

p(z) = —p*(z) (13)

with Z intractable to calculate

> Idea: Sample from some q(z!*! | 2!) with a stationary distribution

goola’) = / 4@’ | 2)oe() (14)

T
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Markov Chain Monte Carlo (MCMC)

» Sample from a multi-variate distribution

p(z) = —p*(z) (13)

1
VA
with Z intractable to calculate

> Idea: Sample from some q(z!*! | 2!) with a stationary distribution

goola’) = / 4@’ | 2)oe() (14)

T

» Given p(x) find ¢(2’ | ) such that g (z) = p(x)
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Markov Chain Monte Carlo (MCMC)

v

Sample from a multi-variate distribution

p(z) = —p*(z) (13)

1
Z

with Z intractable to calculate

v

Idea: Sample from some q(x!*! | 2!) with a stationary distribution

goola’) = / 4@’ | 2)oe() (14)

T

v

Given p(z) find g(2' | z) such that goo(x) = p(x)

v

Gibbs sampling is one instance (that is why it is working)
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Approximate Inference — Sampling

Metropolis sampling

» Special case of MCMC method (proposal distribution) with the
following proposal distribution

» symmetric: g(z’ | ) = q(x | 2’)

» Sample 2’ and accept with probability

A(z', ) = min (1, pi(f”/)> € [0,1] (15)
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Approximate Inference — Sampling

Metropolis sampling

» Special case of MCMC method (proposal distribution) with the
following proposal distribution

» symmetric: g(z’ | ) = q(x | 2’)

» Sample 2’ and accept with probability

/ — min p*(ZL'/)
Az x) = (1, o (@) > € [0,1] (15)

» If new state 2’ is more probable always accept
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Approximate Inference — Sampling

Metropolis sampling

» Special case of MCMC method (proposal distribution) with the
following proposal distribution
» symmetric: g(z’ | ) = q(x | 2’)
» Sample 2’ and accept with probability

/ — min p*(ZL'/)
Az x) = (1, o (@) > € [0,1] (15)

» If new state 2’ is more probable always accept
p*(z))
p* (s

2)

» If new state is less probable accept with
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Example: 2D Gaussian

» 150 proposal steps, 43 are rejected (red)

Pons-Moll (MPII) Probabilistic Graphical Models January 11, 2019 46 / 53



Metropolis-Hastings sampling (1953)

» Slightly more general MCMC method when the proposal distribution
is not symmetric

» Sample 2’ and accept with probability

(e @)
A, =min (1, 95 (o)

» Note: when the proposal distribution is symmetric,
Metropolis-Hastings reduces to standard Metropolis sampling
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Approximate Inference — Sampling

Is this sampling from the correct distribution?

» In the following we show that Metropolis-Hastings samples from the
desired distribution p(x)
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Approximate Inference — Sampling

Is this sampling from the correct distribution?

» In the following we show that Metropolis-Hastings samples from the
desired distribution p(x)

» Consider the following transition
@' |0) = 1 [ 0) + 8 (1- [t 101"

with proposal distribution ¢
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Approximate Inference — Sampling

Is this sampling from the correct distribution?

» In the following we show that Metropolis-Hastings samples from the
desired distribution p(x)

» Consider the following transition

@' |0) = 1 [ 0) + 8 (1- [t 101"

with proposal distribution ¢

» This is a distribution

[ 10= [ i 1050+ (1= [ e |as6a) =1
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Approximate Inference — Sampling

Is this sampling from the correct distribution?

\4

In the following we show that Metropolis-Hastings samples from the
desired distribution p(x)

v

Consider the following transition

@' |0) = 1 [ 0) + 8 (1- [t 101"

with proposal distribution ¢
This is a distribution

[ 10= [ i 1050+ (1= [ e |as6a) =1

Now find f(z',z) such that stationary distribution is p(z).

v

\4
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Approximate Inference — Sampling

Continuing...

» We want f(2/, x) such that
pa) = [ ale! | 2)pta)
> using:
o |0) =’ [+ a’) (1= [ a5

> we get:

p(z’) =
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Approximate Inference — Sampling

Continuing...

» We want f(2/, x) such that
pa) = [ ale! | 2)pta)
> using:
o |0) =’ [+ a’) (1= [ a5

> we get:

pw>=/aw@mwmm

T

o) (1= [t 1250
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Approximate Inference — Sampling

Continuing...

» We want f(2/, x) such that
pa) = [ ale! | 2)pta)
> using:
o |0) =’ [+ a’) (1= [ a5

> we get:

p(e) = /ﬁmwwﬂfwmm>

o) (1= [t 1250
» In order for this to hold we need to require
[ i@ 125 o) = | ate" | 25"l
x :I:N
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Approximate Inference — Sampling

Continuing...

» This holds for the Metropolis-Hastings acceptance rule

/ = f(2'.2) = min M
A2 z) = f(2', x) <1’ g | x)p*(fﬂ))
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Approximate Inference — Sampling

Continuing...

» This holds for the Metropolis-Hastings acceptance rule

A2’ x) = f(2/,2) = min <1, (jN(

Pons-Moll (MPII) Probabilistic Graphical Models
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Approximate Inference — Sampling

Continuing...

» This holds for the Metropolis-Hastings acceptance rule

A =1 = i (1, TEL0)

» we need to require (from previous slide):

/ §(a’ | 2)f(e,x)p(x) = / i@ | ) f(a", ()

x a;.//
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Approximate Inference — Sampling

Continuing...

» This holds for the Metropolis-Hastings acceptance rule

A =1 = i (1, TEL0)

» we need to require (from previous slide):

e | D f (o) = [ a7l
» which is satisfied because of the (detailed balance) property:

f@' 2)qa" | z)p(r) = min(G(z’ | 2)p(z), 4= | 2')p(a))
= min(¢(z | 2")p(z’), q(z" | z)p(z))
= f(z,2")q(z | «")p(z)
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Approximate Inference — Sampling

Continuing...

» A common proposal distribution is given by
i@’ | 7) = N(«' | 2,0°])

» which is symmetric (2’ | ) = ¢(z | 2')
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Approximate Inference — Sampling

Example: multi-modal distribution

» § needs to bridge the gap (be irreducible)
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Sampling

» Much much more to learn about sampling
» Widely used: Gibbs Sampling, Metropolis Hastings

» Usually requires experience and careful adpation to your specific
problem
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