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What is Vision?

“Vision is the act of knowing what is where by looking”
– Aristotle

Special emphasis:

I Relationship between 3D world and a 2D image

I Location and identity of objects.

Why is Computer Vision Hard?

I Knowing the geometry, material and lighting
conditions it is well-understood how to generate
the value at each pixel (computer graphics)

I However, this confluence of factors contributing to
each pixel can not be easily decomposed. The
process can not be inverted!

3 / 71



What is Vision? Projective Geometry Epipolar Geometry Block Matching Spatial Regularization

Experiment

I I am going to show you several images from the same scene/viewpoint

I I am going to change the light conditions

I Tell me what you see!
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Why is vision hard?

I Congratulations! You just did something mathematically impossible!

I How? You used assumptions based on prior
knowledge / experience about the way the world works.
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Why is vision hard?

Let’s make it a bit harder ...
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Why is vision hard?

What about this one?
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Why is vision hard?

Which square is brighter? A or B?
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Why is vision hard?

Do you know this guy?
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Why is vision hard?

Here is another one ...
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Why is vision hard?
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How to recover 3D from an image?

Which cues do we as humans have available
in order to recover depth from images of the 3D world?
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How to recover 3D from an image?

In general, this is an ill-posed problem, but there are several cues:

I Occlusion

I Parallax

I Perspective

I Accomodation

I Stereopsis

Our topic for today!
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Why Binocular Stereopsis?
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Why Binocular Stereopsis?
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Computational Stereo
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Computational Stereo
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Multi-View Reconstruction

[Building Rome in a Day – Agarwal et al. 2011]
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Projective Geometry

I Recovery of structure from one image is ambiguous
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Pinhole Camera Model

I Assumption: Undistorted images (no lens distortion)
I 2D projection: Intersection of viewing ray with the image plane

I X ,Y ,Z : 3D coordinates
I x , y : 2D image coordinates
I f : focal length
I 3D to 2D projection π:

π :

X
Y
Z

 7→ (
x
y

)
=

(
f X/Z
f Y /Z

) 23 / 71
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Pinhole Camera Model

I Is this projection a linear mapping?
I No (division by Z )! Can we somehow “make it” linear?
I Yes: Homogeneous coordinates (add one more coordinate)
I Conversion to homogeneous coordinates:X

Y
Z

⇒

X
Y
Z
1

 (
x
y

)
⇒

x
y
1


I Conversion from homogeneous coordinates:

X
Y
Z
W

⇒
X/W
Y /W
Z/W

 x
y
w

⇒ (
x/w
y/w

)

I Which homogeneous coordinates are equivalent?
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Pinhole Camera Model

π :

X
Y
Z

 7→ (
f X/Z
f Y /Z

)
⇒ πH : X =


X
Y
Z
1

 7→
f X
f Y
Z

 = x

I πH can be written as a linear function of the projection matrix P:f X
f Y
Z


︸ ︷︷ ︸

x∈R3

=

f 0 0 0
0 f 0 0
0 0 1 0


︸ ︷︷ ︸

P∈R3×4

·


X
Y
Z
1


︸ ︷︷ ︸
X∈R4
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Pinhole Camera Model

I Principal point p = (cx , cy )T : Point where the principal axis
intersects the image plane (origin of normalized coordinate system)X

Y
Z

 7→ (
x
y

)
=

(
f X/Z + cx
f Y /Z + cy

)
⇒

f X
f Y
Z


︸ ︷︷ ︸

x∈R3

=

f 0 cx 0
0 f cy 0
0 0 1 0


︸ ︷︷ ︸

P∈R3×4

·


X
Y
Z
1


︸ ︷︷ ︸
X∈R4
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Pinhole Camera Model

I Considering also the pose of the camera wrt. world coordinates:
X
Y
Z
1

 =

 R︸︷︷︸
∈R3×3

| t︸︷︷︸
∈R3×1

0 0 0 1

 ·

Xw

Yw

Zw

1


⇒

f X
f Y
Z

 =

f 0 cx 0
0 f cy 0
0 0 1 0

 ·
 R︸︷︷︸
∈R3×3

| t︸︷︷︸
∈R3×1

0 0 0 1


︸ ︷︷ ︸

P′

·


Xw

Yw

Zw

1


27 / 71



What is Vision? Projective Geometry Epipolar Geometry Block Matching Spatial Regularization

Camera Calibration

How to obtain these parameters for a given camera?

I Closed form approximation of intrinsics (f , cx , cy )

I Non-linear optimization of intrinsics (f , cx , cy ) and extrinsics (R, t)

I Several algorithms available (Zhang, Bouget, OpenCV)

I Online toolbox: www.cvlibs.net/software/calibration
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Stereo Reconstruction

Task

I Construct a 3D model from 2 images of a calibrated camera

Pipeline:

1. Find a set of corresponding points

2. Estimate the epipolar geometry

3. Rectify both images

4. Dense feature matching

5. 3D reconstruction
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Epipolar Geometry

I X ∈ R4: Homogeneous point in the 3D world

I P,P′ ∈ R3×4: Projection matrices (x = PX, x′ = P′X)

I x, x′ ∈ R3: Homogeneous 2D pixel coordinates

I C ,C ′: Camera center / focal point
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Epipolar Geometry

I Lets assume the camera parameters and geometry is known!

I Given a projection of a 3D point in the left image

I Where is it located in 3D?

I On the epipolar line defined by this point and the camera centers

I Reduces the search problem to 1D!
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Epipolar Geometry

I CC′: Baseline (translation between cameras)

I e, e′: Epipole (intersection of image plane with baseline)

I l, l′: Epipolar line (intersection of image plane with epipolar plane)
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Epipolar Geometry

I Each 3D point defines an epipolar plane (in combination with both
camera centers). The set of planes is called “epipolar pencil”.

I All epipolar lines pass through the epipole
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Epipolar Geometry

What if both cameras face the same direction?

I Epipoles are at infinity, epipolar lines are parallel
I Correspondences along “scanlines” (simplifies computation)
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Image Disparity

I The displacement between pixels is called “disparity”: d = x − x ′
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Triangulation

How to recover a 3D point from two corresponding image points?

I Equal triangles (only when image planes are parallel)

I Using the definition d = x − x ′:

Z − f

B − (x − x ′)
=

Z

B

ZB − fB = ZB − Z (x − x ′)

Z =
fB

x − x ′
=

fB

d

d =
fB

Z
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Rectification

What if the images are not in the required setup?
I Rewarp them such that they are! (“Rectification”)
I Map both image planes to a common plane parallel to the baseline

using a “homography” (using homogeneous coordinates!)

37 / 71



What is Vision? Projective Geometry Epipolar Geometry Block Matching Spatial Regularization

Correspondences Unrectified vs. Rectified
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Correspondence Ambiguity

I Even when constrained to 1D many matching hypotheses exist
I Which one is correct?
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Correspondence Ambiguity

How to determine if two image points correspond?

I Assume that they look “similar”

I A single pixel does not reveal the local structure (ambiguities)

I Compare a small image region/patch!

I But even then the task is difficult:
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Normalized Correlation
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Normalized Correlation

I wL and wR are corresponding m ×m windows of pixels
I We can write them as vectors: wL,wR ∈ Rm2

I Normalized correlation (cosine of the enclosed angle):

NC(x , y , d) =
(wL(x , y)− w̄L(x , y))T (wR(x − d , y)− w̄R(x − d , y))

‖wL(x , y)− w̄L(x , y)‖2 ‖wR(x − d , y)− w̄R(x − d , y)‖2
Sum of squared differences (SSD):

SSD(x , y , d) = ‖wL(x , y)−wR(x − d , y)‖22
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Block Matching: Window Size

Block Matching:
I Choose some disparity range [0, dmax ]
I For all pixels x = (x , y) try all disparities and choose the one that

maximizes the normalized correlation or minimizes the SSD
I This strategy is called: Winner-takes-all (WTA)
I Do this for both images, apply left-right consistency check

Challenges:
I Which window size to choose? Tradeoff: Ambiguity ↔ Bleeding!
I Block matching = fronto-parallel assumption (often invalid!)
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Another Example: Middlebury Cones Dataset
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Middlebury Cones Dataset: Block Matching Result
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Middlebury Cones Dataset: Half-Occlusions
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Middlebury Cones Dataset: Half-Occlusions
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Middlebury Cones Dataset: Half-Occlusions

48 / 71



What is Vision? Projective Geometry Epipolar Geometry Block Matching Spatial Regularization

Middlebury Cones Dataset: Window Size
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The Underlying Assumption: Similarity Constraint

I Corresponding regions in both images should look similar ...

I ... and non-corresponding regions should look different.

I When will the similarity constraint fail?
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Similarity Constraint: Failure Cases
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To overcome these difficulties we need to incorporate
our prior knowledge about the world!
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Disparity Space Image (DSI)
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Disparity Space Image (DSI)
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Disparity Space Image (DSI)
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Disparity Space Image (DSI)
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Winner-Takes-All Solution (Block Matching)

I Assigns each pixel in left scanline the “best” match in right scanline
I Is this the optimal solution?
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Alternative Solutions

I Which solution should we choose?
I Do we have prior knowledge about this problem?
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Thought Example

I Let’s consider the block matching term as a likelihood

I What do we assume about neighboring disparities?
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Thought Example

I How does the real world look like?

I The Brown range image database [Mumford et al.]
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Question

Can MRFs help us to incorporate these statistics?
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Chain MRF for Scanline Stereo
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Chain MRF for Scanline Stereo

For each image row independently do:

I Setup a pairwise MRF energy (di=disparity at column i):

p(d) ∝ exp

{
−

N∑
i=1

ψdata(di )− λ
N−1∑
i=1

ψsmooth(di , di+1)

}

I Disparities in scanline: d = {d1, . . . , dN}
I Unary terms: Matching cost ψdata(d)
I Pairwise terms: Smoothness between adjacent pixels, e.g.:

I Potts: ψsmooth(d , d ′) = [d 6= d ′]
I Truncated l1: ψsmooth(d , d ′) = min(|d − d ′|, τ)
I Truncated l2: ψsmooth(d , d ′) = min((d − d ′)2, τ)

I Solve MRF using max-product BP, graph cuts, etc.

I This can be done in an optimal way since it is a chain!
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More constraints you can use: Ordering
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More constraints you can use: Occlusion
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Chain MRF – MAP Solution
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Chain MRF – MAP Solution

I Optimal solution – sounds great, right?

I Question: What is the catch?

I Independent processing of scanlines leads to streaking artifacts:

67 / 71



What is Vision? Projective Geometry Epipolar Geometry Block Matching Spatial Regularization

Stereo MRF

I What can we do to preserve inter-scanline consistency?
I Specify a loopy MRF on a grid instead of a chain MRF on individual

scanlines and solve for the whole disparity map at once!

p(D) ∝ exp

−∑
i

ψdata(di )− λ
∑
i∼j

ψsmooth(di , dj)


I Disparity image: D
I i ∼ j indicates neighboring pixels on a 4-connected grid
I Unary terms: Matching cost ψdata(d)
I Pairwise terms: Smoothness between adjacent pixels, e.g.:

I Potts: ψsmooth(d , d ′) = [d 6= d ′]
I Truncated l1: ψsmooth(d , d ′) = min(|d − d ′|, τ)
I Truncated l2: ψsmooth(d , d ′) = min((d − d ′)2, τ)

I Solve MRF approximately using max-product BP, graph cuts, etc.
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Stereo MRF – Results

Inference Results Ground Truth
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Semiglobal Matching (SGM)

p(D) ∝ exp

−∑
i

ψdata(di )− λ
∑
i∼j

ψsmooth(di , dj)


I Unary terms: Matching cost ψdata(d)
I Pairwise terms (0 < λ1 < λ2):

ψsmooth(d , d ′) =


0 if d = d ′

λ1 if |d − d ′| = 1

λ2 otherwise

I Aggregates cost in each image direction (4/8) individually
I Afterwards: Winner-takes-all
I SGM can be interpreted as one iteration of message passing (TRW)
I It is extremely fast and produces good results!
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Programming Exercise

Using Python, NumPy, OpenCV and MeshLab ...

... you will create your own 3D model from rectified images!

⇒ ⇒
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