

High Level Computer Vision

Project Introduction | SS 2018

27/05/2018 - Rakshith Shetty

Logistics

- Start date: 27.05
- Project Proposal Phase deadline Monday 03.06, 23:59:
 - **5+1 slides due 03.06** task goals method dataset evaluation references
- Interim presentation on 01. 07*:
 - Slides due on 30.06 progress report / problems encountered / feedback
- Final presentation (15+5min) on 22-23. 07 *
 - Slides due on 22.07 Progress and presentation evaluation
- Written report submitted on 31. 07 (23:59)
 - Report evaluation

$Project \rightarrow Research$

- Choose a dataset and task:
 - **Datasets**: Caltech4, Caltech101, Buffy Stickmen, HOI, UKBench, MPII Human Pose, ImageNet, COCO, CelebA etc.
 - **Tasks**: object detection/localization, person identification, gender recognition, scene classification, image captioning, visual question answering, image generation etc.
- What is the hypothesis you want to answer ?
- Conduct the experiments to test your hypothesis, present the analysis of your results
 - Necessary simplifications are OK (e.g. additional annotations)
 - Can you think of a new twist to the method?

$Project \rightarrow Application$

- Application:
 - Apply computer vision techniques to a real-world problem.
 - New/ interesting application of techniques learned in the course.
- Model
 - Build a new model/algorithm or a new variant of existing models for an existing computer vision task.
- Apply your methods to the task, **present** the **analysis** of your results.

Proposal Slides Structure

- Slide 1 Task and motivation
 - Task statement and definitions
 - Motivation
 - Related work
- Slide 2 Goals
 - Precisely, what do you want to achieve by end of the project
 - Eg. Implement method x on task k, compare it to method z and so on
 - What you want to have completed by the mid-term
 - Setup code for tasks x,y,z
 - Collect data
 - Setup baselines

Proposal Slides Structure

- Slide 3 Methods
 - What is the primary models you will use
 - GANs, segmentation model with architecture X,
 - Provide exact references you will use
 - What tools/ code is already available, that you will use.
 - Related work
- Slide 4 Data
 - What datasets you are going to use/ collect and why
 - What simplifications if any you will perform

Proposal Slides Structure

- Slide 5 Evaluation
 - How is your method going to be evaluated. What metrics are suitable?
 - Automatic metrics like accuracy, Inception score, FID, Meteor
 - User study
 - Public Leaderboards
 - Or your own method of evaluation
- Slide 6-X References
 - List you references for related work/ datasets/ code/ tools
 - Put the directly related work only

Send in your slides **as a pdf**, by the 03.06, 23:59 to rshetty@mpi-inf.mpg.de

Report structure.

- Title
- Abstract
- Introduction
- Related work
- Proposed method explained
- Experimental results
- Conclusions and Future work
- References
- Reports to indicate assignments of each group member
- Honor Code: clearly cite your sources in your code and your report.

Conferences

- CVPR
- ICCV
- ECCV
- NeurIPS
- ICLR
- BMVC
- ACCV
- GCPR

- Database of datasets
 - <u>https://riemenschneider.hayko.at/vision/dataset/</u>
 - O <u>http://www.cvpapers.com/datasets.html</u>
- Data is key for any deep learning based model
- Think carefully about what data you use/ collect while choosing your task.
 - Fully supervised
 - Semi/Weakly supervised.
 - Synthetic data

- Pascal VOC:
 - Object detection
 - Segmentation

MS - COCO

- Common objects in Common Context
- Tons of annotation
 - Bounding Boxes
 - Instance Segmentations
 - Keypoints for humans
 - Panoptic segmentation
 - Image captions

bicycle **×**

3401 results

a street filled with traffic and men on bikes. several cars and people at bikes sitting at a red light. two men ride bikes next to the cars in the street. men on bikes riding alongside a car on the street two people are riding bikes through the street traffic.

CelebA dataset

- 200k images
- 5 landmark locations and 40 binary attributes
- Cropped and centered version
- Commonly used in image generation and manipulation research.

Sample Images

- RGB-D Indoor Scenes Dataset (<u>http://cs.nyu.edu/~silberman/datasets/</u>)
 - Scene classification
 - Object detection, recognition, segmentation

- Leeds Sports Pose Dataset
 - sport scene recognition

- ImageNet
- SUN Database
- Places Database
- MPII Human Pose
- Open Images https://storage.googleapis.com/openimages/web/index.html
- Labeled Faces in the Wild

• • • •

- Or capture your own
 - Digital camera, mobile phone, Google glasses..
 - Microsoft Kinect
 - Web / Google image search

For a good project

- 5 W's
 - What? (a problem)
 - Why? (motivation)
 - How? (proposed strategy)
 - Where? (dataset and benchmark)
 - Who? (team assignments)
- It is recommended
 - Baseline
- It is desired.. your considerations on
 - Influence of parameter and dataset choice
 - Results: what is expected and what is surprising.. not just numbers!
 - Observations must be substantiated by results or references

Example Projects

- Gender/ Age Recognition
- Object recognition or detection with the Kinect (RGB + Depth)
- Image retrieval for 3D objects
- Object retrieval in videos / on a mobile phone
- Person identification
- Image and video segmentation
- Detection and segmentation
- Tracking
- Vision and Language tasks (captioning, question answering, explanations)
- Image generation tasks (GANs, conditional generation, style transfer)

Previous year projects

Tumor segmentation

- Limited training data available
- Transfer learning from larger brain tumor segmentation dataset to smaller lungs dataset
- Shows better performance than training from scratch

Figure 1. The U-Net architecture has a 240x240x4 input and the output is a semantic label for each pixel

Manga colorization

- They collected the dataset by scraping the web and pre-processing to extract paired data
- GAN based generator
 - Comparison to simple L1 L2 baselines
 - Different color-spaces
 - Comparison across monochrome and binary settings

Figure 1. Manga Colorization: from monochrome or grayscale to colored images

Painting Style Transfer

- Conditional GAN based architecture
- Single generator to switch to different styles based on input condition
- Quantitative evaluation using classifier and user study

Figure: Painter style transfer using modified CGAN with modified Wasserstein loss. Left to right: Landscape image, Picasso style, Da Vinci style, Van Gogh style, Cezanne style

Face beauty filter :-)

- Based on people rating of beauty on a bunch of photos
- Try to create a version of the image which maximizes this score.
- Very subjective!

TV series classification

- Classify tv series from short smartphone videos
- CNN frame level classification (designed based on related work)
- Collected own dataset !!
- Synthetic data augmentation

Visual question answering

- Answer simple questions about an image
- Novel extension to prior work to predict location of the object
- Combined the segmentation annotations with answers to obtain gt.

(a) Q: What is on the left side of sink?

1. cup [17.19%]
 2. person [16.27%]
 3. toilet [15.82%]
 GT: cup

(d) Q: What is on the left side of laptop?
1. couch [70.49%]
2. person [14.31%]
3. bed [4.80%]
GT: couch

More project ideas

- Look at student projects done here
 - O <u>http://cs231n.stanford.edu/2017/reports.html</u>
 - O http://cs231n.stanford.edu/2016/reports.html
 - O http://cs231n.stanford.edu/2015/reports.html