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Other architectures to know...

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Network in Network (NiN)

[Lin et al. 2014]

- Milpconv layer with
“micronetwork” within each conv
layer to compute more abstract
features for local patches

- Micronetwork uses multilayer
perceptron (FC, i.e. 1x1 conv

(b) Mlpconv layer

ayers) / Lo
- Precursor to GooglLeNet and ool 4| 8
1 9 "I{“'";‘C}Vg—,‘ L - T
ResNet “bottleneck” layers S
.y e S T || A OO || A HHO i
- Philosophical inspiration for

GooglLeNet

Fiaiires convrinht | in et al 2014 Renrodiiced with nermissinn

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Improving ResNets...

ldentity Mappings in Deep Residual Networks

[He et al. 2016]

- Improved ResNet block design from
creators of ResNet

- Creates a more direct path for
propagating information throughout
network (moves activation to residual
mapping pathway)

- Gives better performance

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the
Important factor, not depth
- User wider residual blocks (F x k

filters instead of F filters in each layer) T T
- 50-layer wide ResNet outperforms
152-layer original ResNet
- Increasing width instead of depth
more Computationa”y efficient Basic residual block Wide residual block

(parallelizable)

i p J | paxplanckinsit High | evel Computer Vision - May 29, 2019

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Improving ResNets...
Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)

[Xie et al. 2016]

256-d out

Also from creators of

ReSNet 256-d out
Increases width of

residual block through T
multiple parallel

pathways T

(“cardinality”)

Parallel pathways
similar in spirit to
Inception module

256-d in

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and
training time through short networks during
training

- Randomly drop a subset of layers during each
training pass

- Bypass with identity function

- Use full deep network at test time

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Network ensembling

30 282 b
25.8 152 layers|||152 layers|||152 layers
25
20
16.4
15
11.7 |19 layers| |22 layers
10
7.3
5.1

S shallow 8 layers 8 layers 3 23 .
, | ==

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Improving ResNets...
“Good Practices for Deep Feature Fusion”

[Shao et al. 2016]
- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,

Wide Resnet models
- |ILSVRC’16 classification winner

Inception- | Inception- | Inception- | Resnet-

Err. (%) 4.20 2.92 (-0.6)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Adaptive feature map reweighting

30 282 b
25.8 152 layers| |152 layers|||152 layers
25
20
16.4
15
11.7 |19 layers| |22 layers
10
7.3
5.1

S shallow 8 layers 8 layers 23 .
5 —

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Improving ResNets...
Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

X X
y

I Inception | | Inception |

- Add a “feature recalibration” module that
learns to adaptively reweight feature maps ™" | —1—"
- Global information (global avg. pooling

layer) + 2 FC layers used to determine
feature map weights

- ILSVRC'17 classification winner (using

ResNeXt-152 as a base architecture)
Fe. (W)

F,, (-) ~ [ T 1 X
].‘-’].-:(‘ l.-tl.-:(‘
y 1
sScaie ..’-,

W' w

X U

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Beyond ResNets...

FractalNet: Ultra-Deep Neural Networks without Residuals

[Larsson et al. 2017]

Argues that key is transitioning

Fractal Expansion Rule

S

effectively from shallow to deep fl § EIZ T
. . C )

and residual representations are ; & : o

c Y oC
not necessary | B';
- Fractal architecture with both | =5 | & 2 | .
shallow and deep paths to output fale) foualz) | ' ==
1 1 1 Block 4

- Trained with dropping out —— X v
SuU b' path S " mmm Convolution | Block 5

- Full network at test time = .. ] =
E\ Prediction ;i E 1 T{

fa(2) Y

Fialires convrinht | arssnn et al 2017 Renrodiiced with nermission
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Beyond ResNets...

Densely Connected Convolutional Networks S—
[Huang et al. 2017] f FC

Pool

- Dense blocks where each layer is —L_ Donse Block 3
connected to every other layer in i
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,

encourages feature reuse

Pool

T

Concat

Dense Block 2

Pool

Dense Block 1

Input

Input

Dense Block

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Efficient networks...

SqueezeNet: AlexNet-level Accuracy With 50x Fewer

Parameters and <0.5Mb Model Size
[landola et al. 2017]

- Fire modules consisting of a
'squeeze’ layer with 1x1 filters
feeding an ‘expand’ layer with 1x1
and 3x3 filters

- AlexNet level accuracy on
ImageNet with 50x fewer
parameters

- Can compress to 510x smaller

1x1 co

nvolution filters™

WW

1x1 and 3x3 convolution filters

, , ’ , ) DO ) 16 A6 ) )OO )OO
)OD D 16 AS )OO )OO
YY) ) O Y ) A6 A5 )

RLU

than AlexNet (0.5Mb)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

Figure copyright landola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.
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Meta-learning: Learning to learn network architectures...
Neural Architecture Search with Reinforcement Learning (NAS)

[Zoph et al. 2016]

- “Controller” network that learns to design a good
network architecture (output a string
corresponding to network design)

[

Sample architecture A
with probability p

The controller (RNN)

)}

with architecture
A to get accuracy R

Trains a child network ]

- lterate: t J

1) Sample an architecture from search space CompE oty i

2) Train the architecture to get a “reward” R e
corresponding to accuracy N . B, | v |, e . o |, e, | e |

3) Compute gradient of sample probability, and EAEAEAEEERERER
scale by R to perform controller parameter L[ -5 > - R I
update (i.e. increase likelihood of good T N N A N A O
architecture being sampled, decrease BRI R R e S = S I
likelihood of bad architecture) e T — —ma,

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Meta-learning: Learning to learn network architectures...
Learning Transferable Architectures for Scalable Image

Recognition

[Zoph et al. 2017]

Applying neural architecture search (NAS) to a
large dataset like ImageNet is expensive

Design a search space of building blocks (“cells”)
that can be flexibly stacked

NASNet: Use NAS to find best cell structure on
smaller CIFAR-10 dataset, then transfer
architecture to ImageNet

Normal Cell

Select operation for
second hidden state

Select method to
combine hidden state

A

3
£ ] ~ Select one Select second Select operation for
"é [ hidden state [ hidden state [ first hidden state  [>
\ A \ A \ Y
. O \
5% \ \
[=hr= \ \
= g _\_> >
8 B \ \ \ 3
/

y |
y 7 s & \
|
|

repeat B times I

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Summary. CNN Architectures

Case Studies
- AlexNet
- VGG
-  GooglLeNet
- ResNet

Also....
- NiN (Network in Network) - DenseNet
-  Wide ResNet - FractalNet
- ResNeXT - SqueezeNet
- Stochastic Depth - NASNet
- Squeeze-and-Excitation Network

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

il p J | paxplanckinsit High | evel Computer Vision - May 29, 2019 17



Summary. CNN Architectures

- VGG, GooglLeNet, ResNet all in wide use, available in model zoos

- ResNet current best default, also consider SENet when available

- Trend towards extremely deep networks

- Significant research centers around design of layer / skip
connections and improving gradient flow

- Efforts to investigate necessity of depth vs. width and residual
connections

- Even more recent trend towards meta-learning

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Initialization too small:
Activations go to zero, gradients also zero
No learning

Initialization too big:
Activations saturate (for tanh),
Gradients zero, no learning

Initialization just right:
Nice distribution of activations at all layers
Learning proceeds nicely

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

gy

max planck institut
informatik
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Data Preprocessing

original data zero-centered data normalized data

~10

0 = -10 -10

1 -10 -5 0 5 1G -10 =S 0 5 10

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data Preprocessing

Before normalization: classification loss After normalization: less sensitive to small

very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize

®
o
OOAA
®

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Babysitting Learning

low learning rate

high learning rate

\

epoch

good learning rate

\

17.5

15.0

12.5

10.0

[ 8.

5.0

25

0.0

Train Loss

0
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7500 10000 12500 15000 17500 20000

0.9 1

0.8 -

0.7 1

0.6 1

0.5 1

Accuracy
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+— val

o9 PO D &

0009000000 0000000000
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slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Hyperparameter Search

Coarse to fine search

L
|va1 acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)|
Grld LaVOUt Random Lavout val acc: 0.214000, Lr: 7.231888e-06, reg: 2.321281le-04, (2 / 100)
val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
A~ val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
— —— val acc: 0.223000, 1lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
. . . . . . val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, /
: val acc: 0. , r: 6.749231e-05, reqg: 4.226413e+01, (8
: : : ‘ : : val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
’ val acc: 0. 3 : 5.401602e-06, reg .599828e+04,
.......... ® O o | = i - NELACE: RuRinEn.LoL T O18306E00,, wea 9. 9202 at, ATL, L 298]
: : : = : : : [ ) S
<SS O : S O
T = [ ) : pall
o O ) O val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100) |
......... .“ o, E ‘ Q. E Val_accC: U.4972000, (r: 2.Z79483€-04, reg: 9.991345€-04, (I / 100)
. < : < val _acc: 0.512000, 1lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
: E L ' E Lo val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
. e 3 . ‘ . A = 3 val _acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
: < [l : : : a [al val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
......... ® @ @ - b D val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
. ‘: . . val_acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
: : : : val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
: val acc: 0.489000, lr: 1.979168e-04, reg: 1.01088%e-04, (9 / 100)
‘ . val _acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
: val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
I I val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
| val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |
mportant mportant val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.03378le-01, (16 / 100)
Parameter Parameter val_acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val _acc: 0.500000, 1r: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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- More normalization
- Fancier optimization
- Regularization

- Transfer Learning

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Batch Normalization

Input: ©: N x D

Learnable params:
Y, b D

oD
z: N XD

Intermediates:

Output: v : N X D

1
Hi = N me
=1
1 N
(732 - N Z(xm — MJ)Q
=1
A Li,5 — H
Li,j = ]2 )
Uj + €

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Estimate mean and

BatCh Normallzatlcn variance from minibatch;

Input: ©: N x D

Learnable params:
Y, b D

oD
z: N xD

Intermediates:

Output: v : N X D

Can’t do this at test-time

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

il p B | pexplanckinsitt gk | evel Computer Vision - May 29, 2019

26



Batch Normalization: Test Time

Input: ©: N x D

Learnable params:
Y, b D

w,o: D
z: N XD

Intermediates:

Output: v : N X D

(Running) average of values

luj — seen during training
0-2 __ (Running) average of values
J seen during training
A L zz,]
Lig =

\/ +e

Yij = ViTij + By

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
Xx: N x D X: NxXCxHxW
Normalize * Normalize * * *
M,o0: 1 x D M,0: 1xCxlxl
Y,f: 1 x D Y,B: 1xCx1lxl

y = Y(x-M)/o+p y = Y(x-M)/o+p

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Layer Normalization

Batch Normalization for
fully-connected networks

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

X: N x D X: N x D
Normalize * Normalize *
g,o: 1 x D g,o0: N x 1

Ylﬁ:]'xD Y,ﬁ:lxD
y = Y(x-M)/0o+B y = Y(x-M)/0o+B

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

Iil p B [ »explanckinstitu High Level Computer Vision - May 29, 2019 2
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Instance Normalization

Same behavior at train / test!

X: NxXCxHxW X: NxXCxHxW
Normalize * * * Normalize * *
M,0: 1xCxlxl M,0: NxCx1lxl

Y,p: 1xCx1xl Y,B: IxCxix1
y = Y(x-M)/0o+p v = Y(x-M)/0+B

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H, W

LTS

oy

H, W
H, W

LT ) W

[ B
LR

LTSS

L

Wu and He, “Group Normalization”, arXiv 2018

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H,W
LTS
oW

H,W
H, W

LT ) W

H, W
ANT S
Lo SR R

[

LR

LR TS

LIS
TR

Wu and He, “Group Normalization”, arXiv 2018 (Appeared 3/22/2018)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Decorrelated Batch Normalization

Batch Normalization Decorrelated Batch Normalization

original data decorrelated data whitened data

original data zero-centered data normalized data
10 10

-10 -10 .
1g 10 =3 B 15 10 = B 10 10 -10
-10 =5 0 5 1 =10 = 0 5 1

|
~ L5 — K5  BatchNorm normalizes the . — ) ( .o )
Li,j = 5 n data, but cannot correct for 'CC@ Z ZIZ‘Z 'u
o -
j T correlations among the DBN whitens the data using the full covariance
input features matrix of the minibatch; this corrects for correlations

Huang et al, “Decorrelated Batch Normalization”, arXiv 2018 (Appeared 4/23/2018)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Optimization
W 2]

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

=

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,

gradient descent
gets stuck

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “ldentifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

LOW) = 3 Lies, 36, W)

=1

N
1
VwL(W) = N Z VwLi(zi,yi, W)

=1

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD + Momentum

SGD SGD+Momentum

Vir1 = pvt + V f(x4)

Lt1+1 = &f — OV 1

Tir1 = X — aV f(xy)

while True: vx = 0
dx = compute_gradient(x) while True:
x —= learning_rate * dx dx = compute_gradient(x)
vX = rho *x vx + dx
X —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD + Momentum

SGD+Momentum SGD+Momentum

Vir1 = pvg — aV f(x¢) Vir1 = pvt + V f(x4)
Tt41 = Tt + Vpg1 Ti4+1 = Tt — QV¢41
VX = 0 VX = 0
while True: while True:
dx = compute_gradient(x) dx = compute_gradient(x)
vx = rho *x vx — learning_rate * dx vX = rho *x vx + dx
X += VX X == learnlng rate * vXx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD + Momentum Gradient Noise

Local Minima  Saddle points

AN

Poor Conditioning

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Nesterov Momentum

Momentum update: Nesterov Momentum

Gradient

Velocity

Velocity
actual step actual step
[
Gradient
Combine gradient at current point with “Look ahead” to the point where updating using
velocity to get step used to update weights velocity would take us; compute gradient there and
Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983 miX |t W|th Ve|OCity tO get aCtuaI Update direCtion

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Nesterov Momentum

pvy — aV f(xy + pvg)

Tt41 = Tt + Vi1

Ut+1

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
miX it with velocity to get actual update direction

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Nesterov Momentum

Annoying, usually we want

pvt — Qfo(CEt + p’Ut) update in terms of T¢, Vf(iljt)

Ut+1

Tt41 = Tt + Vi1

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
miX it with velocity to get actual update direction

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Nesterov Momentum

Annoying, usually we want

Vir1 = pvy — aV f(lxy + pvy) | updateinterms of z¢, V f(24)

Tt41 = Tt + Vi1

Gradient

Velocity

Change of variables Ty = Ty + pPU; and

rearrange: actual step

VUi41 = PUt — an(:ﬁt)

Lt — PUt T (1 T p)vt-l-l “Look ahead” to the point where updating using
s velocity would take us; compute gradient there and
Tt + Vg1 T P(Ut+1 — ’Ut) mix it with velocity to get actual update direction

Lt+4+1

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

Iil p B [ »explanckinstitu High Level Computer Vision - May 29, 2019 8
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Nesterov Momentum

Annoying, usually we want

p’Ut — QVf(CEt + ,O'Ut) update in terms of T¢, Vf(il?t)

Ut+1

Ti41 = Tt + Vg41

Change of variables Ty = Ty + pPU; and

rearrange:

Ut41 =— PUt — OéVf(iEt) dx = compute_gradient(x)

~ ~ old v = v

Ti41 = Tt — PVt + (1 3 ,O)Ut-|-1 v = rho * v — learning_rate * dx

Ty + Vi1 + p(Ver1 — V) x += -rho * old_v + (1 + rho) * v

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

Iil p B [ »explanckinstitu High Level Computer Vision - May 29, 2019 9
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Nesterov Momentum

—— SGD+Momentum

= Nesterov

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

e oo

Q: What happens with AdaGrad?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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AdaGrad

grad_squared =
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

e oo

Q: \What happens with AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

e oo

Q2: What happens to the step size over long time?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

e oo

Q2: What happens to the step size over long time?  Decays to zero

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RMSProp

grad_squared = 0
while True:

AdaGrad

dx = compute_gradient(x)

grad_squared += dx * dx

X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

v

grad_squared = 0
while True:

dx = compute_gradient(Xx)

RMSProp

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

Tieleman and Hinton, 2012

X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

max planck institut

gy

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RMSProp

—— SGD+Momentum

s RMSProp

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Adam (almost)

first_moment = 0
second_moment = 0
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1le-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Adam (almost)

first_moment = 0

second_moment = 0

while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx Momentum
second_moment = betaz * second_moment + (1 - beta2) * dx * dX
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1le-7)) AdaGrad / RMSPFOP

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
Tirst_unbias = first_moment / (1 - betal ** t) _ _
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1le-7))
AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Adam (full form)

first _moment = 0

second_moment = 0

for t in range(1,

num_iterations):

dx = compute_gradient(x)

first moment =

betal * first_moment + (1 - betal) * dx

second_moment =

beta2 * second_moment + (1 - beta2) * dx * dx

first _unbias =
second unbias =

first_moment / (1 - betal ** t)
second_moment / (1 - beta2 ** t)

Momentum

Bias correction

X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1le-7))

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
IS a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

l l I I max planck institut
informatik
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Adam

SGD

SGD+Momentum

RMSProp

Adam

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

| | Q: Which one of these
high learning rate

\\_ learning rates is best to use?

good learning rate

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

loss => Learning rate decay over time!

A step decay:
e.g. decay learning rate by half every few epochs.

low learning rate

, . exponential decay:
high learning rate

—| T
good learning rate 1/t decay:
’ ——
epoch Q= 010/(1 —+ kt)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

4 Loss _
loss Learning rate decay!

low learning rate

high learning rate

good learning rate

Epoch

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

4 Loss _
loss Learning rate decay!

low learning rate

high learning rate

More critical with SGD+Momentum,
less common with Adam

good learning rate

Epoch

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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First-Order Optimization

Loss

w1

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

N

Loss

w1

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) "V (80) + 5 (60— 6) H(6 - 6)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q: What is nice about this update?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) "V (80) + 5 (60— 6) H(6 - 6)

Solving for the critical point we obtain the Newton parameter update:

No hyperparameters!
No learning rate!
(Though you might use one in practice)

Q: What is nice about this update?

0* =0, — H 'VoJ(0,)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) "V (80) + 5 (60— 6) H(6 - 6)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q2: Why is this bad for deep learning?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) "V (80) + 5 (60— 6) H(6 - 6)

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N*2) elements

x 1
0 =0,—H VBJ(OO) Inverting takes O(N”3)

N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Second-Order Optimization

0" =0, — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n3)), approximate
Inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. iIf you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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In practice:

- Adam is a good default choice in many cases
- SGD+Momentum with learning rate decay often
outperforms Adam by a bit, but requires more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don't forget to disable all sources of noise)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Beyond Training Error

Train Loss Accuracy
17.5 - —e— train
15.0 +— val
125 0.8 1

10.0

0.7 4
7 6

5.0
0.6 1

25 2000 PSP E 000 &

0.0 05 {*®
6 ZSbO SObO 7Sb0 10600 12550 15600 175'OO 20600 0 25b0 SObO 7Sb0 10600 1I25100 15(;00 175IOO 20000
Better optimization algorithms But we really care about error on new
help reduce training loss data - how to reduce the gap?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Early Stopping

Train

Loss Accuracy

Stop training here

lteration lteration

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot that worked best on val

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

055 Single Model A
04 Standard LR Schedule /)

0.3 R =
04l =

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Cifar10 (L=100,k=24, B=300 epochs)

0.5+ Single Model x}x %57 Snapshot Ensemble A\ 10!
04| Standard LR Schedule ,,N“v" 04 Cyclic LR Schedule /] /) — Standard Ir scheduling

2 —— (Cosine annealing with restart Ir 0.1

0.3 O\ : 0.3+ \ 10° | | I I |
0.2 0.2 | | | | |
95}
0.1 0.1 @ _‘ § 10 ‘\
04 05 J q ! g
1< L \o7 -0.14 \:,,_‘ :.'}_\\‘ P § 10-2
02 . > ""‘vv . ~»_,"""'";1 02 - ‘ ”‘W;:—;—:‘:"ﬁ’ [_‘
0.3 -~ ,/ - CAL T -03 nid 7 Z - S 16™ |
047" e 044 — = : Model | Model | Model | Model | Model | Model
50 = = 50 50 === £222 50 1 2 3 4 5 6
40 = = 40 40 e 40 10 ! ! ! l !
30 = 30 30 30 0 50 100 150 200 250 300
20 20 20 Epochs
Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CyCIIC Iearnlng rate SChedUIGS can
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 make this work even better!

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

2 True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*X

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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17.5

15.0

12.5

10.0
-5
5.0
25

0.0

Train Loss

Accuracy

How to improve single-model performance?

000“004000””’““’"
&S eF

—e— train
»— val

2500 5000 7500 10000 12500 15000 17500 20000

Regularization

2500 5000 7500 10000 12500 15000 17500 20000

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

HIaL
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Regularization: Add term to loss

de = % sz\; 2y max(0, f(zi; W); — f(zi; W)y, + 1) +AR(W)

In common use:
L2 regularization  B(W) =22, Wy, (Weight decay)
R

L1 regularization (W) = 22k 20 Wiy
Elastic net (L1 + L2) R(W) =32,>, W + Wiy

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: Dropout Example forward

pass with a
D = 0.5 # probability of keeping a unit ive. higher = less dropou 3-layer network

_ using dropout
def train_step(X):

"vv X contains the data

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p '

H1 *= Ul # dro;

H2 = np.maximum(©, np.dot(W2, Hl) + b2)
U2 = np.random.rand(*H2.shape) < p

H2 *= U2 4 P

out = np.dot(W3, H2) + b3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: Dropout
How can this possibly be a good idea”

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear X
has a tail k

O0000

is furry X——  cat

. | ~___—— score
as claws

mischievous X /

look

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: Dropout
How can this possibly be a good idea”

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model
An FC layer with 4096 units has

2409 ~ 10233 possible masks!
Only ~ 10%2 atoms in the universe...

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Dropout: Test time

Output Input
(label) (image)
Rand
Dropout makes our output random! . fw| ?asim

Want to "average out” the randomness at test-time
y= @) = B.[f(@, 9] = [ p2)1 (@, )z

But this integral seems hard ...

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Dropout: Test time

Want to approximate

the integral y = f2) = E:[f(2,2)] = /P(Z)f(SU,Z)dZ

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Dropout: Test time

Want to approximate

the integral y = f2) = E:[f(2,2)] = /P(Z)f(SU,Z)dZ

Consider a single neuron.

At test time we have: & M = W1T + WY

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Dropout: Test time

:/r\]/ea?:]tfg?;pmxmate y = f(z) = E, [f(sz)] — /p(z)f(x,z)dz

Consider a single neuron.

At test time we have: & M = W1T + WY

During training we have: E[a] :i(wlx + way) + %(wlx + 0y)

1

4

1
:§(w133‘ + way)

1
-+ (OCU + Oy) + Z(O% + wgy)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & M = W1T + WY

During training we have: E[a] :i(wlx + way) + %(wlx + 0y)

ER 1(0;,; + 0y) + 1(0:13 + way)
At test time, multiply < !

1
by dropout probability =§(w1:v + way)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Dropout: Test time
def predict(X):
Hlnp.maximum(é, np.dot(Wl, X) + bl) * p

H2 = np.maximum(©®, np.dot(W2, Hl) + b2) * p #
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p=0.5# pr

def train_step(X):
"ni X contains the data """

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # 7irst o

Hl *= Ul # drop! ]
HZ = np.maximum(O, np.dot(wZ, HI) + b2) drop N forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask

H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

def predict(X):

{1 = np.naximum(8, np.dot(WL, X) + bL)[* p 4 scale at test time

H2 = np.maximum(©, np.dot(W2, Hl1) + b2) * p # NOTE:
out = np.dot(W3, H2) + b3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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More common: “Inverted dropout”

p= 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # T7irsi

H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask
H2 *= U2 # drop

out = np.dot(W3, H2) + b3

femhe

H1 = np.maximum(0, np.dot(WI, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

i p J | paxplanckinsit High | evel Computer Vision - May 29, 2019 96



Regularization: A common pattern

Training: Add some kind
of randomness

Y = fW(xvz)

Testing: Average out randomness
(sometimes approximate)

y = f(z) = E.[f(z, 2)] = / p(2)f (@, 2)dz

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness Normalization
y = fwlz, 2) Training:

Normalize using
stats from random

Testing: Average out randomness At
minibatches

(sometimes approximate)

y=f(z)=E.[f(z,2)] = /p(z)f(f’?v 2)dz  Testing: Use fixed
stats to normalize

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: Data Augmentation

“Cat” —
Load image
and label —
— T
—
> CNN
~— _ /

This image by Nikita is
licensed under CC-BY 2.0

Compute
loss

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: Data Augmentation

“Cat” —
Load image
and label —
— Compute
_ - loss
—> CNN
\ /

Transform image

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data Augmentation
Horizontal Flips

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data Augmentation

More Complex:

Color Jitter

Simple: Randomize
contrast and brightness

Apply PCA to all [R, G, B]
pixels in training set

Sample a “color offset”
along principal component
directions

Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

max planck institut

HIaL
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Data Augmentation
Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Transfer Learning

“You need a lot of a data if you want to
train/luse CNNs”

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Transfer Learning

“You need a lot of &If you want to
tramf% Ns”

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

[ ] n . “ .
Transfer Learning with CNNs o e o oo S Wtz

1. Train on Imagenet

FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Transfer Learning with CNNs

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

2. Small Dataset (C classes)

' FC-1000 | | FC-C |
FC-4096 FC-4096 T
| | \ Reinitialize
| FC-4096 | | FC-4096 | . :
this and train
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool Freeze these
Conv-256 Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64 )
| Image | | Image |
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Transfer Learning with CNNs

1. Train on Imagenet

FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

2. Small Dataset (C classes)

| FC-C I

FC-4096

FC-4096

)

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Reinitialize
this and train

> Freeze these

J

Image

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops

2014

3. Bigger dataset

FC-C

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

\

| '—— Train these

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
Is good starting

J

Image

point

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

gy
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FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | ? ?
quite a lot of ? ?

data

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

gy
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informatik
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FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

Image

very similar very different
dataset dataset
very little data | Use Linear ?
Classifier on
top layer
quite a lot of Finetune a ?
data few layers

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

gy
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FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

gy

max planck institut

informatik
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Recurrent Neural Networks

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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*Vanilla” Neural Network

one to one

\ Vanilla Neural Networks

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Networks: Process Sequences

one to one

one to many many to one many to many many to many

\ e.g. Image Captioning
image -> sequence of words

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! Pt 1 ! Pt P11
! ! bt Pt Pt

\ e.g. Sentiment Classification
sequence of words -> sentiment

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Machine Translation
seq of words -> seq of words

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

e.g. Video classification on frame level

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Sequential Processing of Non-Sequence Data

Classify images by taking a
series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, lvo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra,

2015. Reproduced with permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Sequential Processing of Non-Sequence Data

Generate images one piece at a time!

el |
| A
m 3 !
B Ay |
~ pd g = ’
. |
"

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2U15
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Network

-

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Network

usually want to
predict a vector at
some time steps

-

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

f
h|=|fw (ht—la xt)

new state / old state input vector at

| some time step
some function "

with parameters W

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

!
hy = fw(he—1, 2¢) -
1

Notice: the same function and the same set
of parameters are used at every time step.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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(Simple) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—h C'375)

T |
m> h; = tanh(Wpphi 1 + Wopzy)

X Yt = Whyht

Sometimes called a “Vanilla RNN" or an
“Elman RNN" after Prof. Jeffrey Elman

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph

0 W 1 W 2
X1 X2

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph

hO—>fW —>h1—>fW —>h2—>fW —>h3—>...—>h_|_
X1 X2 X3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph

Re-use the same weight matrix at every time-step

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph: Many to Many

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph: Many to Many

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

il p B | pexplanckinsitt gk | evel Computer Vision - May 29, 2019 137



—

RNN: Computational Graph: Many to Many __~

Yi [ L Yo 1 L Ya [ Ls Yr L
T ! ! !
—>h_|_

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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