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Overview Today

• Deep dive into convolutional networks

• Visualizing convolutional networks

• Feature Generalization

‣ “pre-training” on large dataset, 
“fine-tuning” on target dataset
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Fully Connected Layer

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung



High Level Computer Vision - May 8, 2019

Convolutional Layer

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung



High Level Computer Vision - May 8, 2019

Convolutional Layer

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung



High Level Computer Vision - May 8, 2019

Convolutional Layer
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Yeung

Filters always extend the full 
depth of the input volume
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Convolutional Network

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung
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Hierarchical Features

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung
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Activation Maps
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Convolutional Network for classification

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung
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Closer look at spatial dimensions

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung
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Closer look at spatial dimensions
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Output dimensions
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In Practice: Zero pad to preserve size

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung
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3x3 vs 1x1 convolutions

[1] Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285
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Examples time

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung

FC layer of the same size = 32*32*3*10 
= 30720 params
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Pooling Layer

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung
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Pooling Layer

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung
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Max Pooling

slide credit: Fei-Fei, Justin Johnson, Serena 
Yeung

Zero parameters: output is a fixed function of input
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Large Convnets for Image classification

● Convnets stack layers of convolution, non-linearity, 
pooling layers

● Trend towards smaller filters and deeper architectures
○ Smaller filters tend to be easier to learn than large ones

Figure Credit: Felsberg, Michael. “Five years after the Deep Learning revolution of computer vision : State of the art 
methods for online image and video analysis.” (2017).



ConvNet 
Architecture

Importance of Depth



Architecture of Krizhevsky et al. 

• 8 layers total

• Trained on Imagenet
dataset [Deng et al. CVPR’09]

• 18.2% top-5 error 

• Our reimplementation:
18.1% top-5 error

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

slide credit: Rob Fergus



Sample Classification 
Results [Krizhevsky et al. NIPS’12]



• Remove top fully 
connected layer 

– Layer 7

• Drop 16 million parameters

• Only 1.1% drop in 
performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al. 

slide credit: Rob Fergus



• Remove both fully connected 
layers 

– Layer 6 & 7

• Drop ~50 million parameters

• 5.7% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al. 

slide credit: Rob Fergus



Architecture of Krizhevsky et al. 

• Now try removing upper feature 
extractor layers:

– Layers 3 & 4

• Drop ~1 million parameters

• 3.0% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Layer 7: Full

slide credit: Rob Fergus



Architecture of Krizhevsky et al. 

• Now try removing upper feature 
extractor layers & fully connected:
– Layers 3, 4, 6 ,7

• Now only 4 layers

• 33.5% drop in performance

➔ Depth of network is key

Input Image

Layer 1: Conv + Pool

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

slide credit: Rob Fergus



Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max

slide credit: Rob Fergus



ConvNet 
Architecture

Invariance Properties
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Overview Today

• Deep dive into convolutional networks

• Visualizing convolutional networks

• Feature Generalization

‣ “pre-training” on large dataset, 
“fine-tuning” on target dataset
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Visualizing 
ConvNets

slide credit: Rob Fergus



Visualizing Convnets

• Raw coefficients of learned filters in higher 
layers difficult to interpret

• Several approaches look to optimize input
to maximize activity in a high-level feature
– Erhan et al.  [Tech Report 2009]
– Le et al. [NIPS 2010]
– Depend on initialization
– Model invariance with Hessian about

(locally) optimal stimulus



Visualization using Deconvolutional 
Networks

• Provide way to map activations at 
high layers back to the input

• Same operations as Convnet, but in 
reverse:

– Unpool feature maps
– Convolve unpooled maps

• Filters copied from Convnet

• Used here purely as a probe
– Originally proposed as unsupervised 

learning method
– No inference, no learning Input Image

Convolution (learned)

Unpooling

Feature maps

Non-linearity

[Zeiler et al. CVPR’10, ICCV’11, arXiv’13]



Deconvnet Projection from Higher Layers

Input ImageVisualization

Layer 1: Feature maps

Layer 2: Feature maps

Feature
Map ....

Filters

Layer 1 Reconstruction

Layer 2 Reconstruction

0 0....

Filters

C
onvnet

D
ec

on
vn

et
[Zeiler and Fergus. arXiv’13]



Deconvnet layer

Details of Operation

Convnet layer



Unpooling Operation



Layer 1 Filters



Visualizations of Higher Layers

• Use ImageNet 2012 validation set
• Push each image through network

Input 
Image

Feature
Map

Lower Layers

....

Filters

Validation Images

• Take max activation from 
feature map associated with 
each filter

• Use Deconvnet to project 
back to pixel space

• Use pooling “switches” 
peculiar to that activation

[Zeiler and Fergus. arXiv’13]



Layer 1: Top-9 Patches



Layer 2: Top-1



Layer 2: Top-9



Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Layer 3: Top-1



Layer 3: Top-9



Layer 3: Top-9 Patches



Layer 4: Top-1



Layer 4: Top-9



Layer 4: Top-9 Patches



Layer 5: Top-1



Layer 5: Top-9



Layer 5: Top-9 Patches
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• Deep dive into convolutional networks

• Visualizing convolutional networks

• Feature Generalization

‣ “pre-training” on large dataset, 
“fine-tuning” on target dataset
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Feature Generalization and Pretraining: Overview

• Typically we are lacking data

• But there are large datasets for some tasks

• Idea: 
‣ Can we use learnt features from other trasks?

‣ How can we transfer learnt features from other tasks?

‣ Can we still do end-to-end learning?

75
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Feature Generalization and Pretraining: Overview
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Proxy-Task
(lots of data)

random
initialization

local
optimum

proxy task

local
optimum

target task

pre-training fine-tuning

Target Task
(little data)



Training Features on Other 
Datasets

• Train model on ImageNet 2012 training set

• Re-train classifier on new dataset
– Just the softmax layer

• Classify test set of new dataset

slide credit: Rob Fergus, NIPS’13 tutorial



Caltech-101

Donahue et al., DeCAF: A Deep Convolutional Activation Feature for Generic 

Visual Recognition, arXiv 1310.1531, 2013



Caltech 256
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013



6 training examples

Caltech 256
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013



Caltech 256

[3] L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical matching 
pursuit. In CVPR, 2013.
[16] K. Sohn, D. Jung, H. Lee, and A. Hero III. Efficient learning of sparse, 
distributed, convolutional feature representations for object recognition. In ICCV, 
2011.

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

slide credit: Rob Fergus, NIPS’13 tutorial



Standard Practice in many tasks

• Object detection and Segmentation
– Feature extraction layers are pre-trained on Imagenet

• Image Captioning and question answering
– Image embeddings are obtained with pretrained network


