High Level Computer Vision

Convolutional Neural Networks, Network Visualization, Feature Generalization

@ May 8, 2019

Bernt Schiele - schiele@mpi-inf.mpg.de
Mario Fritz - mfritz@mpi-inf.mpg.de

https://www.mpi-inf.mpg.de/hlcv
Overview Today

• Deep dive into convolutional networks

• Visualizing convolutional networks

• Feature Generalization
 ‣ “pre-training” on large dataset, “fine-tuning” on target dataset
Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

\[Wx \]

10 x 3072 weights

1 number: the result of taking a dot product between a row of \(W \) and the input (a 3072-dimensional dot product)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Layer

32x32x3 image -> preserve spatial structure

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Layer

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Layer

32x32x3 image
5x5x3 filter w

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$$w^T x + b$$

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Layer

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation maps

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Convolutional Network

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions.

```
3  32  
CONV, ReLU  e.g. 6
5x5x3 filters
```
```
6  28  
CONV, ReLU  e.g. 10
5x5x6 filters
```
```
10  24  
CONV, ReLU
```
```
...  
```
```
Hierarchical Features

[Zeiler and Fergus 2013]

Visualization of VGG-16 by Lane McIntosh. VGG-16 architecture from [Simonyan and Zisserman 2014].

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Activation Maps

We call the layer convolutional because it is related to convolution of two signals:

\[ f[x,y] \ast g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1,n_2] \cdot g[x-n_1,y-n_2] \]

elementwise multiplication and sum of a filter and the signal (image)
Convolutional Network for classification

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Closer look at spatial dimensions

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Closer look at spatial dimensions

7x7 input (spatially) assume 3x3 filter

5x5 Output
Closer look at spatial dimensions

7x7 input (spatially) assume 3x3 filter

5x5 Output
Closer look at spatial dimensions

7x7 input (spatially) assume 3x3 filter
Closer look at spatial dimensions

7x7 input (spatially) assume 3x3 filter

5x5 Output
Closer look at spatial dimensions

7x7 input (spatially) assume 3x3 filter

5x5 Output
Closer look at spatial dimensions

7x7 input (spatially)  
assume 3x3 filter

With Stride 2

3x3 Output
Closer look at spatial dimensions

7x7 input (spatially) assume 3x3 filter

With Stride 2

3x3 Output
Closer look at spatial dimensions

7x7 input (spatially) assume 3x3 filter

With Stride 2

3x3 Output
Closer look at spatial dimensions

With Stride 3?

7

doesn’t fit!
cannot apply 3x3 filter on 7x7 input with stride 3.

7x7 input (spatially) assume 3x3 filter
Output dimensions

Output size:
\[(N - F) / \text{stride} + 1\]

e.g. \(N = 7, F = 3:\)
- \(\text{stride 1} \Rightarrow (7 - 3)/1 + 1 = 5\)
- \(\text{stride 2} \Rightarrow (7 - 3)/2 + 1 = 3\)
- \(\text{stride 3} \Rightarrow (7 - 3)/3 + 1 = 2.33\)
In Practice: Zero pad to preserve size

e.g. input 7x7
3x3 filter, applied with *stride 1*
*pad with 1 pixel* border => what is the output?

(recall:)
(N - F) / stride + 1

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
In Practice: Zero pad to preserve size

![Diagram of zero padding](image)

- e.g. input 7x7
- 3x3 filter, applied with stride 1
- pad with 1 pixel border => what is the output?

7x7 output!

Slide credit: Fei-Fei, Justin Johnson, Serena Yeung
In Practice: Zero pad to preserve size

- e.g. input 7x7
- 3x3 filter, applied with **stride 1**
- pad with 1 pixel border => what is the output?

**7x7 output!**

- in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)
- e.g. $F = 3 \Rightarrow$ zero pad with 1
  - $F = 5 \Rightarrow$ zero pad with 2
  - $F = 7 \Rightarrow$ zero pad with 3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Zero pad to preserve size

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
(btw, 1x1 convolution layers make perfect sense)

1x1 CONV with 32 filters
(each filter has size 1x1x64, and performs a 64-dimensional dot product)
3x3 vs 1x1 convolutions

[1] Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning
Examples time

Input volume: **32x32x3**
10 5x5 filters with stride 1, pad 2

Output volume size: ?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Examples time

Input volume: \(32 \times 32 \times 3\)
10 5x5 filters with stride 1, pad 2

Output volume size:
\((32+2 \times 2-5)/1+1 = 32\) spatially, so
\(32 \times 32 \times 10\)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Examples time

Input volume: **32x32x3**
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
Examples time

Input volume: \(32 \times 32 \times 3\)
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> 76*10 = 760

FC layer of the same size = 32*32*3*10
= 30720 params

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Pooling Layer

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
\[ \text{pool} \]
112x112x64

224 \[ \text{downsampling} \] 112

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Max Pooling

Zero parameters: output is a fixed function of input

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
Large Convnets for Image classification

- Convnets stack layers of convolution, non-linearity, pooling layers
- Trend towards smaller filters and deeper architectures
  - Smaller filters tend to be easier to learn than large ones

Figure Credit: Felsberg, Michael. “Five years after the Deep Learning revolution of computer vision : State of the art methods for online image and video analysis.” (2017).
ConvNet Architecture

Importance of Depth
8 layers total

Trained on Imagenet dataset [Deng et al. CVPR’09]

18.2% top-5 error

Our reimplementation:
18.1% top-5 error
# Sample Classification Results

[Krizhevsky et al. NIPS’12]}

<table>
<thead>
<tr>
<th>mite</th>
<th>container ship</th>
<th>motor scooter</th>
<th>leopard</th>
</tr>
</thead>
<tbody>
<tr>
<td>mite</td>
<td>container ship</td>
<td>motor scooter</td>
<td>leopard</td>
</tr>
<tr>
<td>black widow</td>
<td>lifeboat</td>
<td>go-kart</td>
<td>jaguar</td>
</tr>
<tr>
<td>cockroach</td>
<td>amphibian</td>
<td>moped</td>
<td>cheetah</td>
</tr>
<tr>
<td>tick</td>
<td>fireboat</td>
<td>bumper car</td>
<td>snow leopard</td>
</tr>
<tr>
<td>starfish</td>
<td>drilling platform</td>
<td>golf cart</td>
<td>Egyptian cat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>grille</th>
<th>mushroom</th>
<th>cherry</th>
<th>Madagascar cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>convertible</td>
<td>agaric</td>
<td>dalmatian</td>
<td>squirrel monkey</td>
</tr>
<tr>
<td>grille</td>
<td>mushroom</td>
<td>grape</td>
<td>spider monkey</td>
</tr>
<tr>
<td>pickup</td>
<td>jelly fungus</td>
<td>elderberry</td>
<td>titi</td>
</tr>
<tr>
<td>beach wagon</td>
<td>gill fungus</td>
<td>ffordshire bulterrier</td>
<td>indri</td>
</tr>
<tr>
<td>fire engine</td>
<td>dead-man's-fingers</td>
<td>currant</td>
<td>howler monkey</td>
</tr>
</tbody>
</table>
• Remove top fully connected layer
  – Layer 7

• Drop 16 million parameters

• Only 1.1% drop in performance!

slide credit: Rob Fergus
- Remove both fully connected layers
  - Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance
• Now try removing upper feature extractor layers:
  – Layers 3 & 4

• Drop ~1 million parameters

• 3.0% drop in performance
• Now try removing upper feature extractor layers & fully connected:  
  – Layers 3, 4, 6, 7  

• Now only 4 layers  

• 33.5% drop in performance  

→ Depth of network is key
## Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max

<table>
<thead>
<tr>
<th></th>
<th>Cal-101 (30/class)</th>
<th>Cal-256 (60/class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (1)</td>
<td>44.8 ± 0.7</td>
<td>24.6 ± 0.4</td>
</tr>
<tr>
<td>SVM (2)</td>
<td>66.2 ± 0.5</td>
<td>39.6 ± 0.3</td>
</tr>
<tr>
<td>SVM (3)</td>
<td>72.3 ± 0.4</td>
<td>46.0 ± 0.3</td>
</tr>
<tr>
<td>SVM (4)</td>
<td>76.6 ± 0.4</td>
<td>51.3 ± 0.1</td>
</tr>
<tr>
<td>SVM (5)</td>
<td>86.2 ± 0.8</td>
<td>65.6 ± 0.3</td>
</tr>
<tr>
<td>SVM (7)</td>
<td>85.5 ± 0.4</td>
<td>71.7 ± 0.2</td>
</tr>
<tr>
<td>Softmax (5)</td>
<td>82.9 ± 0.4</td>
<td>65.7 ± 0.5</td>
</tr>
<tr>
<td>Softmax (7)</td>
<td>85.4 ± 0.4</td>
<td>72.6 ± 0.1</td>
</tr>
</tbody>
</table>

slide credit: Rob Fergus
ConvNet Architecture

Invariance Properties
Translation (Vertical)
Scale Invariance
Rotation Invariance
Overview Today

- Deep dive into convolutional networks

- Visualizing convolutional networks

- Feature Generalization
  - “pre-training” on large dataset,
    “fine-tuning” on target dataset
Visualizing ConvNets

slide credit: Rob Fergus
Visualizing Convnets

• Raw coefficients of learned filters in higher layers difficult to interpret

• Several approaches look to optimize input to maximize activity in a high-level feature
  – Erhan et al. [Tech Report 2009]
  – Le et al. [NIPS 2010]
  – Depend on initialization
  – Model invariance with Hessian about (locally) optimal stimulus
Visualization using Deconvolutional Networks

- Provide way to map activations at high layers back to the input

- Same operations as Convnet, but in reverse:
  - Unpool feature maps
  - Convolve unpooled maps
    - Filters copied from Convnet

- Used here purely as a probe
  - Originally proposed as unsupervised learning method
  - No inference, no learning

[Zeiler et al. CVPR'10, ICCV'11, arXiv'13]
Deconvnet Projection from Higher Layers

[Zeiler and Fergus. arXiv’13]
Details of Operation

Deconvnet layer

1. Layer Above Reconstruction
2. Max Unpooling
3. Unpooled Maps
4. Rectified Linear Function
5. Rectified Unpooled Maps
6. Convolutional Filtering \{F^1\}
7. Reconstruction

Convnet layer

1. Pooled Maps
2. Max Pooling
3. Rectified Feature Maps
4. Rectified Linear Function
5. Feature Maps
6. Convolutional Filtering \{F\}
7. Layer Below Pooled Maps
8. Switches
Unpooling Operation

Layer Above Reconstruction

Unpooling

Max Locations “Switches”

Unpooled Maps

Rectified Feature Maps

Pooled Maps

Pooling
Layer 1 Filters
Visualizations of Higher Layers

- Use ImageNet 2012 validation set
- Push each image through network

- Take max activation from feature map associated with each filter
- Use Deconvnet to project back to pixel space
- Use pooling “switches” peculiar to that activation

[Zeiler and Fergus. arXiv’13]
Layer 1: Top-9 Patches
Layer 2: Top-1
Layer 2: Top-9

- NOT SAMPLES FROM MODEL
- Just parts of input image that give strong activation of this feature map
- Non-parametric view on invariances learned by model
Layer 2: Top-9 Patches

- Patches from validation images that give maximal activation of a given feature map
Layer 3: Top-1
Layer 3: Top-9 Patches
Layer 5: Top-9
Layer 5: Top-9 Patches
Overview Today

- Deep dive into convolutional networks
- Visualizing convolutional networks
- Feature Generalization
  - “pre-training” on large dataset, “fine-tuning” on target dataset
Feature Generalization and Pretraining: Overview

• Typically we are lacking data

• But there are large datasets for some tasks

• Idea:
  ‣ Can we use learnt features from other tasks?
  ‣ How can we transfer learnt features from other tasks?
  ‣ Can we still do end-to-end learning?
Feature Generalization and Pretraining: Overview

Proxy-Task (lots of data)

Target Task (little data)

random initialization

local optimum
proxy task

local optimum

pre-training

fine-tuning
Training Features on Other Datasets

• Train model on ImageNet 2012 training set

• Re-train classifier on new dataset
  – Just the softmax layer

• Classify test set of new dataset

slide credit: Rob Fergus, NIPS’13 tutorial
Caltech-101


![Accuracy vs. Training Images per-class](image-url)
Caltech 256

### Caltech 256


<table>
<thead>
<tr>
<th># Train</th>
<th>Acc % 15/class</th>
<th>Acc % 30/class</th>
<th>Acc % 45/class</th>
<th>Acc % 60/class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sohn <em>et al.</em> [16]</td>
<td>35.1</td>
<td>42.1</td>
<td>45.7</td>
<td>47.9</td>
</tr>
<tr>
<td>Bo <em>et al.</em> [3]</td>
<td>40.5 ± 0.4</td>
<td>48.0 ± 0.2</td>
<td>51.9 ± 0.2</td>
<td>55.2 ± 0.3</td>
</tr>
<tr>
<td>Non-pretr.</td>
<td>9.0 ± 1.4</td>
<td>22.5 ± 0.7</td>
<td>31.2 ± 0.5</td>
<td>38.8 ± 1.4</td>
</tr>
<tr>
<td>ImageNet-pretr.</td>
<td>65.7 ± 0.2</td>
<td>70.6 ± 0.2</td>
<td>72.7 ± 0.4</td>
<td>74.2 ± 0.3</td>
</tr>
</tbody>
</table>


slide credit: Rob Fergus, NIPS’13 tutorial
Standard Practice in many tasks

• Object detection and Segmentation
  – Feature extraction layers are pre-trained on Imagenet

• Image Captioning and question answering
  – Image embeddings are obtained with pre-trained network