

High Level Computer Vision

Convolutional Neural Networks, Network Visualization, Feature Generalization @ May 8, 2019

Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de

https://www.mpi-inf.mpg.de/hlcv

Overview Today

Deep dive into convolutional networks

Visualizing convolutional networks

- Feature Generalization
 - "pre-training" on large dataset,
 "fine-tuning" on target dataset

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

32x32x3 image -> preserve spatial structure

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

5x5x<mark>3</mark> filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolutional Network

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Hierarchical Features

Activation Maps

max planck institutHigh Level Computer Vision - May 8, 2019

Convolutional Network for classification

7x7 input (spatially) assume 3x3 filter

7

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7 5 7 5 5x5 Output

With Stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Output dimensions

Ν F F Ν

Output size: (N - F) / stride + 1

In Practice: Zero pad to preserve size

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

In Practice: Zero pad to preserve size

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In Practice: Zero pad to preserve size

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3

Zero pad to preserve size

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

max planck institut High Level Computer Vision - May 8, 2019

(btw, 1x1 convolution layers make perfect sense)

3x3 vs 1x1 convolutions

[1] Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

max planck institut High Level Computer Vision - May 8, 2019

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: **32x32x3 10 5x5** filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

FC layer of the same size = 32*32*3*10 = 30720 params

Pooling Layer

Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

max planck institut informatik High Level Computer Vision - May 8, 2019

Max Pooling

Single depth slice

Zero parameters: output is a fixed function of input

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

8

4

Large Convnets for Image classification

- Convnets stack layers of convolution, non-linearity, pooling layers
- Trend towards smaller filters and deeper architectures
 - Smaller filters tend to be easier to learn than large ones

Figure Credit: Felsberg, Michael. "Five years after the Deep Learning revolution of computer vision : State of the art methods for online image and video analysis." (2017).

High Level Computer Vision - May 8, 2019

ConvNet Architecture

Importance of Depth

- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR'09]
- 18.2% top-5 error
- Our reimplementation: 18.1% top-5 error

Sample Classification [Krizhevsky et al. NIPS'12] Results

madagascar cat	cherry	musmoom	grine			
squirrel monkey	dalmatian	agaric	convertible			
spider monkey	grape	mushroom	grille			
titi	elderberry	jelly fungus	pickup			
indri	ffordshire bullterrier	gill fungus	beach wagon			
howler monkey	currant	dead-man's-fingers	fire engine			

- Remove top fully connected layer
 Layer 7
- Drop 16 million parameters
- Only 1.1% drop in performance!

- Remove both fully connected layers
 - Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance

- Now try removing upper feature extractor layers:
 - Layers 3 & 4
- Drop ~1 million parameters
- 3.0% drop in performance

- Now try removing upper feature extractor layers & fully connected: – Layers 3, 4, 6,7
- Now only 4 layers
- 33.5% drop in performance
- Depth of network is key

Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max

	Cal-101	Cal-256
	(30/class)	(60/class)
SVM (1)	44.8 ± 0.7	24.6 ± 0.4
SVM (2)	66.2 ± 0.5	39.6 ± 0.3
SVM (3)	72.3 ± 0.4	46.0 ± 0.3
SVM (4)	76.6 ± 0.4	51.3 ± 0.1
SVM (5)	$\bf 86.2\pm0.8$	65.6 ± 0.3
SVM (7)	85.5 ± 0.4	71.7 ± 0.2
Softmax (5)	82.9 ± 0.4	65.7 ± 0.5
Softmax (7)	85.4 ± 0.4	72.6 ± 0.1

slide credit: Rob Fergus

ConvNet Architecture

Invariance Properties

Translation (Vertical)

Scale Invariance

Rotation Invariance

Overview Today

Deep dive into convolutional networks

Visualizing convolutional networks

- Feature Generalization
 - "pre-training" on large dataset,
 "fine-tuning" on target dataset

Visualizing ConvNets

slide credit: Rob Fergus

Visualizing Convnets

- Raw coefficients of learned filters in higher layers difficult to interpret
- Several approaches look to optimize input to maximize activity in a high-level feature
 - Erhan et al. [Tech Report 2009]
 - Le et al. [NIPS 2010]
 - Depend on initialization
 - Model invariance with Hessian about (locally) optimal stimulus

Visualization using Deconvolutional Networks

- [Zeiler et al. CVPR'10, ICCV'11, arXiv'13]
- Provide way to map activations at high layers back to the input
- Same operations as Convnet, but in reverse:
 - Unpool feature maps
 - Convolve unpooled maps
 - Filters copied from Convnet
- Used here purely as a probe
 - Originally proposed as unsupervised learning method
 - No inference, no learning

Deconvnet Projection from Higher Layers

[Zeiler and Fergus. arXiv'13]

Details of Operation

Deconvnet layer

Convnet layer

Unpooling Operation

Layer 1 Filters

Visualizations of Higher Layers [Zeiler and Fergus. arXiv'13]

- Use ImageNet 2012 validation set
- Push each image through network

- Take max activation from feature map associated with each filter
- Use Deconvnet to project
 back to pixel space
- Use pooling "switches" peculiar to that activation

Layer 1: Top-9 Patches

Layer 2: Top-1

-	34	1	i.	- ¥.		Þ	3			STA S	inter a	-	10		10	÷.	9	1		
	110			1		1	8		er	3:	-	op)-1	1	4.	and the		-	1	3
1	黄	10	1 th	149.5	N.	A.C.	1	-Mar	17	1	1	1000	5	1	44	Q	2	10	32)	-
	ð	2.6	12	8	1970	10			ÓÉ	a .	25	-		4.7	22. ⁸ 4		9			
1	12			5.n	X	-		12	5	12	and the	-35-	Ĩ	1	2		rek.	all'	10	
28	1	ai,	1910	1	ji.	n	10	11	10	1			at	4	and the	1		1		
198-40	1			10	1.14	Sel.	Ť			10	2.V	6	3	2	201011	- de	-	10	N.P.	
J.	s,	1	of all	-	充	100	100	12	4×.	1955	1	ġ?		1	14.2	6	-	*	See.	
	13		-		3		5	-	i l	7.35	-	4	19	da .	1. 662	20	1	-	-	
26.	ų.	-		13		W.	-	-t-	and the second	1		34	-	10.5	12	M	(C)	*	14	
		Ŋ	2	15	34	-	- The	1897 1897		2	4	2	2	1	3d	di.	Sel.	1	6	
		Cá-	150	-	3	69			35	Υ.	1	-	1	- 29	-		1	1	-	
~		20			0.	N.	14	E.	m	1	桶	S.		аў. 1	100	$ \tilde{q}\rangle$	書	1 set	\$	
	ille.	溪	ζà.			86	3×	0.64			3	-	N.			de	**	÷.	S	
-	0	-	- 10 -	No. 1	1	The second	100	C		100-	1	-	N.S.	2.5	14	-	1914			
1	15	THE.	300	-	15.4	New York	1.0	1	-		12	13	15		14	al.	335	Si.	3	

ayer 3: Top-9 2.3 3 NA. 6 As. 6 7 K T)1 30 16 54 0 Pa A In .0 10 TI R é 3 T 2 n (EE) 20 T 11 -18. A T Sente 10 (400 enne FR IL ICINIS Æ to -STATE N. P M R EJ M 11 stal . 4 0 20 02.

Layer 3: Top-9 Patches

6

5

FREE

Motorci

Ch.

IOUG (CC)

00:00

T

08

CHOICE

T

ayer 4 Top-9 Patches

issagg

Z

-

OK .

@ O

0

A.

3

QQF

0

0

OF

- CV-

 \bigcirc

(P)

0

1000

6

EH-

.....

.....

-

F3

60

1 190 (3) 10 1 9 Layer 5: Top 6 8 1 * The state 12 ۲ ALL I Ø (A.) R. - CAR -3.0) St. The second 1 00 10 -6.0) 1 0 8 -640 * 3 8 (**) 1 11.2 0.2 ٢ Q 20 ٢ 0 Ċ ٢ 0.0 3 100 \$ \ 0 P 9 P . 19 6 T . 0 1 1PP

Overview Today

Deep dive into convolutional networks

• Visualizing convolutional networks

• Feature Generalization

"pre-training" on large dataset,
 "fine-tuning" on target dataset

Feature Generalization and Pretraining: Overview

- Typically we are lacking data
- But there are large datasets for some tasks
- Idea:
 - Can we use learnt features from other trasks?
 - How can we transfer learnt features from other tasks?
 - Can we still do end-to-end learning?

Feature Generalization and Pretraining: Overview

Training Features on Other Datasets

- Train model on ImageNet 2012 training set
- Re-train classifier on new dataset
 Just the softmax layer

Classify test set of new dataset

slide credit: Rob Fergus, NIPS'13 tutorial

Caltech-101

Donahue et al., DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, arXiv 1310.1531, 2013

Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

	Acc %	Acc %	Acc %	Acc %
# Train	15/class	30/class	45/class	60/class
Sohn et al. [16]	35.1	42.1	45.7	47.9
Bo et al. [3]	40.5 ± 0.4	48.0 ± 0.2	51.9 ± 0.2	55.2 ± 0.3
Non-pretr.	9.0 ± 1.4	22.5 ± 0.7	31.2 ± 0.5	38.8 ± 1.4
ImageNet-pretr.	65.7 ± 0.2	$\textbf{70.6} \pm \textbf{0.2}$	$\textbf{72.7} \pm \textbf{0.4}$	74.2 ± 0.3

[3] L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical matching pursuit. In CVPR, 2013.

 [16] K. Sohn, D. Jung, H. Lee, and A. Hero III. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In ICCV, 2011.
 slide credit: Rob Fergus, NIPS'13 tutorial

Standard Practice in many tasks

- Object detection and Segmentation
 - Feature extraction layers are **pre-trained** on Imagenet

- Image Captioning and question answering
 - Image embeddings are obtained with pretrained network