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Overview Today’s Lecture

e Recurrent Neural Networks (RNNs)

» Motivation & flexibility of RNNs (some recap from last week)
» Language modeling

- including “unreasonable effectiveness of RNNs”
» RNNSs for image description / captioning

» Standard RNN and a particularly successful RNN:
Long Short Term Memory (LSTM)

- including “visualizations of RNN cells”
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
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Seqguences in Vision

Sequencesintheinput

(many-to-one) RUNNING
~| - z Jumping
gjlgﬂ Dancing
: — ighting

many to one Eating
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Seqguences in Vision

Seqguences in the output...
(one-to-many)
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Seqguences in Vision

Seqguences everywhere!
(many-to-many)
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many to many many to many A dog jumps over a hurdle.
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Problem #1

fixed-size, static input

| 224

204
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Problem #1

fixed-size, static input
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Problem #2
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Problem #2

output is a single choice from a fixed list of options

cat

z dog A

horse 1750
fish

snake
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Problem #2

output is a single choice from a fixed list of options

a happy brown dog

/ a big brown dog

a happy red dog -

a big red dog
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many




Recurrent Neural Network (RNN)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Network (RNN)

usually want to
predict a vector at
some time steps

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Recurrent Neural Network (RNN)

We can process a sequence of vectors x by

applying a recurrence formula at every time step: y
he|= | fw)(Prs—1h|T4)
new state / old state input vector at T
some time step
some function "

with parameters W

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 16



Recurrent Neural Network (RNN)

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fW(ht—la ~’L't)

y
-

Notice: the same function and the same set "

of parameters are used at every time step.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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(Simple) Recurrent Neural Network

" The state consists of a single “hidden” vector h:

y he = fw(hi-1, T¢)
|

h; = tanh(Wyphe 1 + Wopxy)

X Yt = Whyht

Sometimes called a “Vanilla RNN” or an
“Elman RNN?” after Prof. Jeffrey EIman

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph

hy = fW(ht—~17 fl?t)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph

hy = fW(ht-1, fl?t)

ho—»fw —>h1—>fW —»hz—rfw —»hs—p...—th
X‘I X2 X3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph

Re-use the same weight matrix at every time-step

ho—»fW —bh1—PfW —»hz—pfw —»hs—b...—th
VV X‘I X2 X3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph: Many to Many

Y, ¥ Y3 Ay

T ! ! !
ho—»fW—»h1—»fw—>h2—>fw—»h3—»...—th
W x‘l X2 X3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph: Many to Many

Vi [ L Y, 1 L Y3 [ Ls Yr " Ly
T ! ! !
ho—»fW—»h1—»fw—>h2—>fw—»h3—»...—th
W x‘l X2 X3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph: Many to Many -

L

Y3

q

T

_’.h

3

i 1 Ly Y2 [
0 W 1 W 2
VV x‘l X2

Yoy

#

E

T

T

ny

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph: Many to One

y
ho—»fW—»h1—»fw—>h2—>fw—»h3—»...—th
W x‘l X2 X3

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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RNN: Computational Graph: One to Many

Y, Y, Y, Vr
T ! ! !
ho—»fW—»h1—»fw—>h2—>fw—»h3—»...—th
/X
W

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Sequence to Sequence

Sequence to Sequence: Many-to-one +
one-to-many

Many to one: Encode input
sequence in a single vector

v

\O
X s
X s
%]
X (=<
w
_'

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Sequence to Sequence

Sequence to Sequence: Many-to-one +

one-to-many

Many to one: Encode input
sequence in a single vector

v

\:—'

X s

X s
o

X s
w

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

One to many: Produce output
sequence from single input vector

y y
i ?
-l"h—b- f—»h—rf —n»h—»f—»
W W W
T/ 1 2
W

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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slide credit: Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
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Language Models

INFUT (t)

CONTEXT (t-1)

CONMTEXT (t)

QUTFUT (L)
. . .
_— Word-level language model. Similar to:
—
o catsatona 9 “
= cat sat on a mat
.- cat sat on a barrel
cat sit on a glass table
cat sat on a glass table

Press Enter fo search.

Recurrent Neural Network Based Language Model

[Tomas Mikoloy,

2010]



slide credit: Andrej Karpathy

Suppose we had the training sentence “cat sat on mat”

We want to train a language model:
P(next word | previous words)

l.e. want these to be high:
P(cat | [<S>])

P(sat | [<S>, cat])

P(on | [<S>, cat, sat])

P(mat | [<S>, cat, sat, on])
P(<E>| [<S>, cat, sat, on, mat])
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Suppose we had the training sentence “cat sat on mat”

We want to train a language model:
P(next word | previous words)

First, suppose we had only a finite, 1-word history:
l.e. want these to be high:

P(cat | <S>)

P(sat | cat)

P(on | sat)

P(mat | on)

P(<E>| mat)
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“cat sat on mat”

300 (learnable) numbers
associated with each word
in vocabulary

x0 X1 X2 X3 x4 | «

<START> “Cat” “Sat” i‘on” “mat”
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“cat sat on mat”

<«— hidden layer (e.g. 500-D vectors)

_ _ _ _ _ h4 = tanh(0, Wxh * x4)

300 (learnable) numbers
associated with each word
in vocabulary

x0 X1 X2 X3 x4 | «

<START> “Cat” “Sat” “On” “mat”
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b

“cat sat on mat

yO y1 y2 y3 y4 10,001-D class scores:
X X X X # ¥—— Softmax over 10,000 words and
a special <END> token.
y4 = Why * h4
hO h1 h2 h3 h4 _
<«— hidden layer (e.g. 500-D vectors)
h4 = tanh(0, Wxh * x4)

300 (learnable) numbers

xO0 | [ X1 ] [ x2 1 | x3 | | x4 | < associated with each word
<START> cat sat on mat in vocabulary
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Recurrent Neural Network: “cat sat on mat”

yO y1 y2 y3 y4 10,001-D class scores:
A i A Y i ¥—— Softmax over 10,000 words and

a special <END> token.

y4 = Why * h4
hO —{ h1 —» h2 —>{ h3 —{ h4 _

<«— hidden layer (e.g. 500-D vectors)
h4 = tanh(0, Wxh * x4 + Whh * h3)

300 (learnable) numbers

xO0 | [ X1 ] [ x2 1 | x3 | | x4 | < associated with each word
<START> cat sat on mat in vocabulary




Generating Sentences...

Training this on a lot of
sentences would give us a
language model. A way to
predict

P(next word | previous words)

x0
<START>

slide credit: Andrej Karpathy



Generating Sentences...

Training this on a lot of

sentences would give us a
language model. A way to yO
predict 5

P(next word | previous words)

x0
<START>

slide credit: Andrej Karpathy
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Generating Sentences...

Training this on a lot of

sentences would give us a
language model. A way to yO
predict 5

P(next word | previous words)

sample!

X0 x1
<START> “Cat”
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Generating Sentences...

Training this on a lot of

sentences would give us a
language model. A way to y0 y1
predict X X

P(next word | previous words)

“Cat”
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Generating Sentences...

Training this on a lot of

sentences would give us a
language model. A way to yO y1
predict 5 5
P(next word | previous words)
hO —» h1 sample!
A A
) |
x0 x1 X2

“Cat” “Sat”
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Generating Sentences...

Training this on a lot of

sentences would give us a
language model. A way to yO y1 y2
predict X X X

P(next word | previous words)

A A A
x0 X1 X2
<START> “Cat” “Sat”




Generating Sentences...

Training this on a lot of
sentences would give us a
language model. A way to
predict

P(next word | previous words)

slide credit: Andrej Karpathy

sample!

y0 y1 y2
A A A
hO —> h1 —> h2
A A A
x1 X2 X3

x0
<START>

“Cat”

“Sat”

“On”




Generating Sentences...

Training this on a lot of
sentences would give us a
language model. A way to
predict

P(next word | previous words)

slide credit: Andrej Karpathy

y0 y1 y2 y3
A A A A
hO —> h1 —> h2 [—> h3
A A A A
x0 X1 X2 X3

<START>

“Cat”

“Sat”

“On”




Generating Sentences...

Training this on a lot of
sentences would give us a
language model. A way to
predict

P(next word | previous words)

slide credit: Andrej Karpathy

/0 V1 /2 /3 sample!
Y Y Y Y
hO —> h1 —* h2 —> h3
Y Y Y Y
A |
x0 x1 X2 x3 x4

<START>

“Cat”

“Sat”

“On”

(11 m at”
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Generating Sentences...

Training this on a lot of

sentences would give us a
language model. A way to yO y1 y2 y3 y4
predict X X X X X

P(next word | previous words)
hO —> h1 —> h2 —{ h3 — h4

<START> “Cat” “Sat” “O n” [11 mat”
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Generating Sentences...

?
Training this on a lot of samples <END>* dPne.

sentences would give us a
language model. A way to yO y1 y2 y3 y4
predict X X X X X

P(next word | previous words)
hO —> h1 —> h2 —{ h3 — h4

x0 X1 X2 X3 x4
<START> “Cat” “Sat” “O n” 11 matu




Example...

Example:
Character-level
Language Model

Vocabulary:

[h,e,l,0]

Example training 1 : 2 -

sequence: input layer | o ; ; :

“hello” 0 < L =
input chars: “h” e F I

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Example...

Example:
Character-level
Language Model

hi = tanh(Whphi—1 + Wenat)

R wacen e | 93— 33 | —{ $5 123

[h,e,l,0] 0.9 0.1 -0.3 0.7

Example trainin T T T TW_Xh

xample training 1 . - -

sequence: input layer | 3 : : -

“hello” L L 0 g
input chars: “h” “e” I i

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Example...
target chars: ‘e’ i 6 i i o 7
Example: 1.0 0.5 0.1 0.2
Character-level output layer | 22 — - o
Language MOdel 4.1 1.2 -1.1 2.2
I S I
R wacen e | 93— 33 | —{ $5 123
[h,e,l,0] 0.9 0.1 -0.3 0.7
Example trainin T T T Tw‘m
xample training 1 - - :
sequence: input layer | 3 : : -
“hello” 0 0 0 0
input chars: “h” “e” I i

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 30



Example...
Example: Sample
Character-level b
Language Model o
Sampling fo
output layer 23%
Vocabulary: !
[h,e,I,O] ' o
hidden layer | -0.1
At test-time sample
characters one at a time, input layer é
feed back to model e

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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J0Y 1



Example...

Example: Sample ?/\

Character-level 13

Language Model o

Sampling fo
output layer ;';:é

Vocabulary: *
[h,e,I,O] 0.3

hidden layer | -0.1
0.9

At test-time sample T
characters one at a time, e é
feed back to model 2

0 loo-0

input chars:

\,..

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Example...
Example: Sample ?/\ \
Character-level il (B
Language Model Somax gl (=
Sampling |
output layer 23% _01?(’}
41 1.2
Vocabulary: ‘ ‘
[h,e,l,0] | 03| | [10
hidden layer | -0.1 » 0.3
At test-time sample Pl ]
characters one at a time, worier [ | [
feed back to model I .

\,.‘

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Example...

Example: Sample e/\ 1/\ /\ .

t t t t
Character-level all [zl [a]| [a
o . . . )
Language Model e il | e |
H 1 t } }
Sampllng 1.0 0.5 0.1 0.2
output layer | 22 0.3 0.5 -1.5
-3.0 -1.0 1.9 -0.1
4.1 1.2 -1.1 2.2

Vocabulary: * i ] H_ny
[h.e,l.0] e | 53| -J38] {52
0.9 0.1 -0.3 0.7

At test-time sample T R
. 1 0 0 0
characters one at a time, —o— 8 : :
feed back to model e | L2 : \;

\

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Learning via Backpropagation...

Forward through entire sequence to

BaCkprOpagat|on through tlme compute loss, then backward through

entire sequence to compute gradient

__—— A

-

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Learning via Backpropagation...

Truncated Backpropagation through time

Loss

// [ 1 \ \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Learning via Backpropagation...

Truncated Backpropagation through time

Loss

AN

A I Carry hidden states
forward in time forever,
but only backpropagate
I I I I N D e e e e | for some smaller

number of steps

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Learning via Backpropagation...

Truncated Backpropagation through time

Loss

IR

/ [ [ |

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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slide credit: Andrej Karpathy

“The Unreasonable Effectiveness of
Recurrent Neural Networks”

karpathy.github.io
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target chars: ‘e’ i i | “0”
Character-level argerenars. © °
1.0 0.5 0.1 0.2
language model output layer [ 0.3 0.5 1.5
example -3.0 1.0 1.9 -0.1
4.1 1.2 1.1 2.2
W _hy
Vocabulary: T T T I
h,e,l,o 0.3 1.0 0.1 0.3
[h.e.l,0] hidden layer | 0.1 - 0.3 - 05 =" 09
0.9 0.1 0.3 0.7
Example training
sequence: T T T Tw_xn
“hello” 1 0 0 0
- 0 1 0 0
input layer 0 0 1 1
hiyy = tanh(Wyphy + Wi x,) 0 0 0 0
input chars: “h” “E? 0k i



slide credit: Andrej Karpathy

Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.
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For @, _, . ,. where £,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U/ — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get
S=S8pec(R)=Uxx Uxx U

and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U = U is the fibre category of S in U in Section, ?? and the fact that
any U affine, see Morphisms, Lemma 77. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — § is smooth or an

U= U'Ui xs, U
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where x,2', 5" € 5" such that Ox »» — O, . is
separated. By Algebra, Lemma 77 we can define a map of complexes GLg/(2'/S")

and we win. O

To prove study we see that F|i; is a covering of A”, and 7; is an object of Fx g for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on € as a F-module.
In particular F = U/F we have to show that

M® = I* ®gpee(r) Os,s — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 70 ¢, (Sch/S) fpps

and

V =T(5.0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example 77, It may
replace S by Xopaces.étate Which gives an open subspace of X and T equal to Sza,.
see Descent, Lemma 77. Namely, by Lemma ?7 we see that R is geometrically

regular over 5.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim | X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T'(X,0x.0,)-

When in this case of to show that Q — Czyx s stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of 5. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme I/ and a
surjective étale morphism U — X. Let UNU = [[,_, ., Ui be the scheme X over
S at the schemes X; — X and U = lim; X;. O

The following lemma surjective restrocomposes of this implies that F,, = F,, =
Fx...0

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fyx;g. Set I =
Jh C I!. Since I™ C I™ are nonzero over ip < p is a subset of J, o0 A works.

Lemma 0.3. In Situation 77. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (77). On the
other hand, by Lemma 77 we see that

D(Ox) = 0x(D)

where K is an F-algebra where 4,1 is a scheme over S. |




slide credit: Andrej Karpathy

Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = O0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xg . we
have

Ox (F) = {morphy xo (G, F)}
where G defines an isomorphism F — F of O-modules. O

Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7. O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X=2Y aYa3Ys3Y xxY o X

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering,.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and x € G the diagram

T
B N

Spec(Ky) Morsees  d(Oiy 0. 6)

is a limit. Then G is a finite type and assume S is a fat and F and G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
e Oy is a sheaf of rings.
a

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U, 0

Proaf. This is clear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxx:— Fr -1Oxp) — O%,0x,(0%,)
is an isomorphism of covering of Qy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition 7?7 and we can filtered set of
presentations of a scheme @ x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. =

If F is a finite direct sum Oy, is a closed immersion, see Lemma 77, This is a
sequence of F is a similar morphism.




Try it yourself:

(uses Torch7)

slide credit: Andrej Karpathy

char-rnn on Github

This repository Explore Gist Blog Help

karpathy f ehar-ran

@ Unwatch -

& karpathy +- O & B

B0 wStar 933 Y Fork

Multl-layer Recurrant Meural Networks (LSTM, GRU, RNN) for character-kevel langueige mooets in

Torch — Edit

29 commiis 1 branch 0 releases & confribubors
IEJ ¥ oranch: master - | char-mn / + =
Merge pull request #27 from germuth/fpatch-1 ==
& karpathy authored 3 days ago latest t egfsadedfc =
i dataftimyshakespeare  first commit 16 days ago
m model chianging the way dropout ks don m 3 days ago
B il B days
gitignare to .gitignore 16 days ago
Fieadma.md rminor readms fixes 3 days ago
Inspect_checkpaint.... etuning does 0 days ago
sampla.jua oda and fixing a bug that lad 1o sligh { days agc
train.lua I & b h size because 3 days ag

= Readme.md

char-rnn

134
L]
Code
]
lssues
]

Full requasts

Graphs

Settings

HTTPS clone URL

https:/fgit | B



Cooking

Recipes

Title: BASIC CHEESE WINGS:
Categories: Desserts
¥ield: & Servings

2 th

ST T S PR ST PR N

1/4
1/2

1

oz

ts
ts
md

th
ts

th
c

Eggs

Chopped fresh curry

-or cooking spray
Water; cooked

Lemons minced mushrooms
Sweet cooked rice
Onion; chopped

Butter, melted

S0y sauce

Cinnamon

sugar or food coloring;
-stems cored bowl

Salt and freshly grated
Ground ginger

Flour

Water; fresh parsley
Water (or or)

Clove garlic, minced

slide credit: Andrej Karpathy

Preheat owven to 35@F. Combine sugar, salt, baking soda, celery and sugar. Add
the chicken broth well. Add the cornstarch to the pan; cool. Add the olive
oil, oil, and basil or cooking spray. Pour the onions until melted.



Obama
Speeches

slide credit: Andrej Karpathy

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done. The promise of the men and women who were still going to
take out the fact that the American people have fought to make sure that they have
to be able to protect our part. It was a chance to stand together to completely look
for the commitment to borrow from the American people. And the fact is the men
and women in uniform and the millions of our country with the law system that
we should be a strong stretcks of the forces that we can afford to increase our spirit
of the American people and the leadership of our country who are on the Internet

of American lives.

Thank you very much. God bless you, and God bless the United States of America.



slide credit: Andrej Karpathy

|

TWEETS  FOLLOWING  FOLLOWERS
B0 1 51

Tweets Twesats & replies

RNN Bible
GRNN_Bible RNN Bible @RNN_Bice - 3h
Random bible verses generated using 32:22 And they shall be the children of

Recurrent Meural Metworks (char-rmn).
Israel, and they that shall come upon us,

that they may be their God.

2 3 Foliowers you know

i ' RMNN Bible ©FRNM_Bibe - Th
ﬂ E ﬁ 2:11 Therefore shall they see thy

chastisement for them, they shall live: | will
sing praise to thee in the night thy servant.

RNM Bible “RNM_Bibée - 11h

8:26 And they set the book of the law which
Michal the Baptist came near to Man.
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Q This repository  Search Explore Gist Bleg Help mm +- E..l. o

! | torvalds / linux @Watch. 3,711 4 Star 23054 Y Fork 9,141

e

Linux kermal source tree

i 520,037 commits ¥ 1 branch o 420 releases 7 5,039 contributors :::dl

j# branch: master - | linux / + = 2‘ requesls -
Merge branch 'drm-fixes’ of gitpeople freedaskiop.org'~aifledflinus <
MR torvalds authored 9 hours ago latest commit 4b1786927d = ;:“EE
i Documeniation Mearge git/igit kemalorgipub’semiinuecemaligitinabtarget-panding 6 days ago
N arch Marge branch ‘x86-urgent-for-linus’ of gitigit.kemal.ong/pubfecmd. .. a day ago :Gﬂ;m
I biock biock: discard bdi_unregister() in favour of bdl_destroy() 9 days ago
= crypio Marge git/git kemal org/pub’scmiinuchemeligitherberticryplo-2.6 10 days ago HTTES clone URL
= drivers Marge branch ‘dom-fixes’ of git:fpecple freadeskiop.ong~aifedinux B heours ago https://github.c &
I firmware firmwarafihexZiv.c: restore missing defaull in switch statemant 2 montihes ago You can clone with HTTPS,
s wis: read fila_handie anly once in handla_to_path 4 days ago SSH, or Subversion. @
I include Merge branch ‘perd-urgant-dorinus’ of gittight kemal.orgipubisamd... a day ago i Clone in Desktop
I init init: fix regrassion by supporting devices with major:minoroffset fo.. a month ago ¢> Download ZIP

LR blmrme e Ueme limoed d i dimi baemal soremdmoboie o oo memald n rrendia e



slide credit: Andrej Karpathy

static void do_command(struct seq file *m, wvoid *v)

e o e ) Learning from
if (state)

cmd = (int)(int state ~ (in 8(&ch->ch flags) & Cmd) ? 2 : 1); L|nux Sou rce
else
seen i Code

for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
{(count & 0x00000000£££££££f8) & O0x000000f) << B;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}
subsystem_info = &of changes[PAGE SIZE];
rek controls({offset, idx, &soffset);
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq puts(s, "policy ");



static void do_command(struct seq file *m, void *v)

{

int column = 32 << (cmd[2] & 0xBO0);
if (state)

cmd = (int)(int_ state ® (in_B(&ch->ch flags) & Cmd) ? 2 : 1);
else

seq = 1;

for (i = 0; 1 < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
{(count & 0x00000000£££££££f8) & O0x000000f) << B;
if (count == 0)
sub(pid, ppc md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}
/* Free our user pages pointer to place camera if all dash */
subsystem_info = &of changes[PAGE SIZE];
rek controls(offset, idx, &soffset);
/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seg puts(s, "policy ");

slide credit: Andrej Karpathy

Linus Torvalds

Shared publicly - May 24, 2015
I'm not a fan of traditional Al (rule building and
LISP/prolog etc), but am just waiting for neural nets to
take over.

This is a great example, and training on the Linux
kernel sources just explains so much.

Sigh.

David Alan Gilbert originally shared:

This is wonderful, neural network setup producing
wonderful results; one example is training it on

- i\'.‘ i
3

i
e
4 e a0 8. a ] "
-




Copyright (c) 2006-2010, Intel Mobile Communications.

slide credit: Andrej Karpathy

All rights reserved.

This program is free goftware; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as published by
the Free Software Foundation.

MERCHANTABTLITY or FITNESS FOR A FARTICULAR PURPOSE.

GNU Ganeral Public License for more details.

This program is distributed in the hope that it will be useful,

See the

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,

Inc.,

§include
§include
§include
§include
finclude
finclude

§include
§include
finclude
f#include
finclude
finclude

*
i'
#
#
L
&
L
* but WITHOUT ANY WARRANTY; without even the Implied warranty of
#
L
L
L
#
L4
L4

675 Mags Ave, Cambridge, MA 02139, USA.

<linux/kaxec.h>
<linux/errno.h>
<linux/io.h>
<linux/platform device.h>
<linux/multi.h>
<linux/ckevent.h>

<asm/io.h>
<asm/prom.h>
<asm/e820.h>
<asm/system_info.h>
<agm/setew.h>
<asm/pgproto.h>



slide credit: Andrej Karpathy

#includea <asm/ioc.h>

$include <asm/prom.h>
#includa <asm/eB20.h>
#include <asm/system_ info.h>
#include <asm/setew.h>

#include <asm/pgproto.h>

fdafine REG_PG vasa slot addr pack
fdafine PFM_ROCOMF AFSR(0, load)
#dafine STACK DDR(type) {func)

fdefine SWAP ALLOCATE(nr) (a)

fdefine emulate sigs() arch get unaligned child()

fdefine access_rw(TST) asm volatile("movd Y%esp, %0, &3°" B Sl
if (__type & DO_READ)

statie void stat PC_SEC _ read mostly offsetof(struct seq argsqueue, )
pC>[1]):

static wvoid
os_prefix(unsigned long sys)
{
fifdef CONFIG PREEMPT
PUT_PARAM RAID(Z, sel) = get state_state();
set_pid sum((unsigned long)state, current_ state_str(),
{unsigned loag)-l->1r full; low;

%



slide credit: Andrej Karpathy

Yoav Goldberg n-gram experiments

Order 10 ngram model on Shakespeare:

APEMANTUS:
Ho, ho! I laugh to see your beard!

BOYET:
Madam, in great extremes of passion as she
discovers it.

PAROLLES:

By my white head and her wit

Values itself: to the sepulchre!’

With this, my lord,

That I have some business: let's away.

First Keeper:

Forbear to murder: and wilt thou not say he lies,

And lies, and let the devil would have said, sir, their speed
Hath been balm to heal their woes,



slide credit: Andrej Karpathy

u_f*

* linux/kernel/time.c
BUt On * Please report this on hardware.
Linux: i

void irq mark irg(unsigned long old entries, eval);

f*
* Divide only 1000 for ns"2 -> us”2 conversion values
don't overflow:
seq_puts(m, "\ttramp: %ps",
(void *)class->contending point
1++;
if (likely(t->flags & WQ UNBOUND)) {
[ *
* Update inode information. If the
* gslowpath and sleep time (abs or rel)
* @rmtp: remaining (either due
* to consume the state of ring buffer size. */
header size - size, in bytes, of the chain.
*f/
BUG_ON( !error);
} while (cgrp) {
if (old) {
if (kdb _continue catastrophic;
#endif
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“straw hat”

training example



slide credit: Andrej Karpathy

~ conv-256

' conv-256
" maxpool
. conv-512

i__cpnv-SlZ |

' maxpool |

. FC-1000
. softmax

“straw hat”

training example
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~ conv-256

' conv-256
" maxpool
. conv-512

i__cpnv-SlZ

' maxpool |

“straw hat”

FC-1000

sofx ax

training example
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~ conv-256

. conv-256 "
" maxpool
. conv-512

~ conv-512 |

!ﬂmg?_aul _

FC-1000

sofx ax

“straw hat”

y0 y1 y2
1

» hO —»| h1 —» h2
RS?A shraw’ et
<START> straw hat

training example



slide credit: Andrej Karpathy

| image | <

. conv-64

~ conv-64

. maxpool

 conv-128
' conv-128 _

- maxpool

' conv-256

' conv-256
- maxpool

' conv-512

| conv-512

e

~_maxpool

. conv-512

| conv-512
~ maxpool

FC-1000

sofx ax

“straw hat”

y0 y1 y2

1

» hO —»| h1 —»| h2
x0

S shraw’ et

<START> straw hat

training example

before:
h0 = tanh(0, Wxh * x0)

NOW:
hO = tanh(0, Wxh * x0 + Wih * v)



slide credit: Andrej Karpathy

test image




slide credit: Andrej Karpathy

test image

~ conv-256
' conv-256
" maxpool

. conv-512
~_conv-512 |

' maxpool |

D ——— x0
. FC-4096 plie

<START>
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test image

~ conv-256

' conv-256

" maxpool

. conv-512
~_conv-512 |

' maxpool | hO

D ——— x0
. FC-4096 plie

<START>



~ conv-256
. conv-256 ]
" maxpool

. conv-512

~ conv-512 |

!ﬂmg?_aul _

x0
<STA
RT>

straw

<START>

sample!

slide credit: Andrej Karpathy

test image



slide credit: Andrej Karpathy

test image

~ conv-256 yO

' conv-256

" maxpool

. conv-512
~_conv-512 |
_maxpool | hO —»{ h1

e x0
 FC-4096 = straw

<START>



slide credit: Andrej Karpathy

test image

" conv-256 yO
' conv-256

" maxpool T T\
i .

- conv-512

conv:512 sample!
~_maxpool

e x0
| Fc '4096 <RS_I:|-;A straw hat

<START>



slide credit: Andrej Karpathy

test image

~ conv-256 yO y1 y2
' conv-256

" maxpool

. conv-512
~_conv-512 |
_maxpool | hO —»{ h1 —» h2

e x0
| Fc '4096 <RS_I:|-;A straw hat

<START>



| image | <

. conv-64
 conv-64

. maxpool

 conv-128
' conv-128 _
- maxpool

' ~ conv-256 -

' conv-256
~ maxpool
. conv-512

~ conv-512

| P—

f._ conv-512

. conv-512

~ maxpool

slide credit: Andrej Karpathy

test image

\ sample!

<END> token

=> finish.

yO0 y1 y2
L1 1
hO —» h1 —» h2
x0

<STA straw hat

RT>

<START>



slide credit: Jeff Donahue

Wow | can’t believe that worked

a group of people standing = — ‘- : e R i
around a room with a young boy is holdinga acow s standing in the middle of a street
remotes baseball bat logprob: -8.84

logprob: -9.17 logprob: -7.61



slide credit: Jeff Donahue

Wow | can’t believe that worked

G

— , a display case filled with lots of different types of i,
a cat is sitting on a toilet seat donuts a group of people sitting at a table with wine glasses

logprob: -71.79 logprob: -7.78 logprob: -6.71



slide credit: Jeff Donahue

Well, | can kind of see it

a cat is sitting on a couch with a remote control
logprob: -12.45

:‘I 1k

a man standing next to a clock on a wall a young boy is holding a
logprob: -10.08 baseball bat
logprob: -7.65




slide credit: Jeff Donahue

Well, | can kind of see it

= .

a baby laying on a bed with a stuffed bear a table with a plate- of food and a cup of coffee a young boy is playing frisbee in the park
logprcb: -8.66 logprob: -9.93 logprob: -9.52



slide credit: Jeff Donahue

Not sure what happened there...

atoilet with a seatup ina
bathroom a woman holding a teddy bear in front of a mirror
logprob: -13.44 logprob: -9.65 ngper: -10.34

a horse is standing in the middle of a road



Vanilla RNN...

e = Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

he = tanh(Whphi—1 + Winay)

- hi—1
ht-1 > stack L—» ht = Gl ((Whh th) ( Tt ))
. 1; g — tanh (W (h;_l))
X t

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Vanilla RNN...

Bengio et al, “Learning long-term dependencies with gradient descent

Va n I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,_, multiplies by W
(actually W, T)

p 2
he = tanh(Whphi—1 + Winay)

T H:: X — tanh ((Whh Wia) (h;;l))

h > stack
t-1 T t n
. | 4 = tanh (W ( t_l))
X i
t

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
95
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Vanilla RNN...

Vanilla RNN Gradient Flow

L= N

W—'*C): tanh

L

hl

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

JLI

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz
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Vanilla RNN...

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1.
Vanishing gradients

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Vanilla RNN...

Vanilla RNN Gradient Flow

ILI

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

OZ tanh W—"()‘—_* tanh

—> itlck H——» h — itaTck “——» h — itaTck &—— h

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

~ . By

! y 1 :

X4

Largest singular value > 1:
Exploding gradients

_, Gradient clipping: Scale
gradient if its norm is too big

Largest singular value < 1.
Vanishing gradients

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
grad *= (threshold / grad_norm)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Vanilla RNN...

Vanilla RNN Gradient Flow

hl

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

L= N

W—'*C): tanh

L

JLI

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1.

Vanishing gradients — Change RNN architecture

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz
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Long Short Term Memory (LSTM)

Vanilla RNN LSTM
‘i _ o 7% (hftl)
hy = tanh (W (ht*)) 7 ’ .
P g tanh

c=f[0c_1+10g
ht =0 tanh(ct)

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] . )
I: Input gate, whether to write to cell

f: Forget gate, Whether to erase cell
o: Qutput gate, How much to reveal cell

vector from g: Gate gate (?), How much to write to cell

pbelow (Xx)

X sigmoid | — | |

n sigmoid | — | f ) o

W fl_ a W -1
vector from sigmoid | — | o sl = o T4
before (h) q tanh
tanh | — | g _ :

ag=fOc_1+10g

4h x 2h 4h 4*h hy = o ® tanh(c;)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Ct-‘[ e ?—» -: —_— Ct >
>
o I ? o
W— =-O) tanh f - o hi—1
—P*g_l_> l O g W Lt
tanh
h » stack L . O —» 1 g
t1 L t < ht/ G =Jf @6 1+i0y9
| ht =00 ta,nh(ct)
Xt

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 102



Long Short Term Memory (LSTM): Gradient Flow

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Ct-‘l-q ’?:::Ct-q
>
W i '
— >
<%}_q-g__r’(3 tjm
> stack
N % o 0—h
X’[

Backpropagation from c, to
c,, only elementwise
multiplication by f, no matrix
multiply by W

ag
- # ] W (ht—l)
o Lt
tanh

cc=f0Oc_1+10g
ht =00 ta,nh(ct)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Long Short Term Memory (LSTM): Gradient Flow

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

-
( > O— + — C \_ > O— + —» C ®— +— C \II—_—-
C0 P CT S CZ P = C3
: J : } : l
[ [ |
W—( ) _L>O t W— ) _L'G) t W—"(\_/ _L'O t
—_— t;Tk 0 O'_“"ht'_‘_"‘ — tTk o Qﬁhtj—" - STK 0 ®— h —+—

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
High Level Computer Vision | Bernt Schiele & Mario Fritz
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Long Short Term Memory (LSTM): Gradient Flow

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

<
| Gt == € — b= e C Gt == C g
f I f f |
[ [ |
W— _L’ ® tanh W—"(_\ _L’ ® tanh W—"< _L’ ®© tanh
I\ > t‘% k 0 é — ht ;—b \ {io—r é) — ht —/-;—h —\\ io_, é — ht 7—’-
-

Similar to ResNet!

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Long Short Term Memory (LSTM): Gradient Flow

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

<&
| > O— + — C > (O—> + : C \—-_b-
Co = ==t —0C,4
f f
i i
W— _L, W_"C _L’ ®© tanh
™ 1S [pal
— stchk g > stchk g l
'\\5 T (0] [ 0O =0 —= ht;_“‘
In between:
Highway Networks
Similar to ResNet! g=T(z,Wr)

y=9gO0H(z,Wh)+(l-g)Oz

Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
High Level Computer Vision | Bernt Schiele & Mario Fritz
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Alternatives

Other RNN Variants

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation,
Cho et al. 2014]

re = 0(Warzy + Whphi—1 + b))

2zt = 0(Wyoxe + Whohi_1 + ;)

hy = tanh(Wynxe + Whin(re © he—1) + bp)
hi =2 Qhi1+ (1 —2¢) © h,

[LSTM: A Search Space Odyssey,
Greff et al., 2015]

[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

MUTI:
z = sigm(Wgr, + b;)
r = sigm(Wex, + Wy hy +5)
hiy1 = tanh(Wy(r © hy) +tanh(z) +by,) © 2
h! 2 (1 — :}
MUT2:
= sigm(Wex, + Wih +b;)
r = sigm(x; + Wy hy +5b)
hi+1 = tanh(Wan(r @ he) + Wenze + b)) © 2
hy ®(1—2)
MUT3:
z = sigm(Wer, + Wy tanh(hy) + b;)
r = sigm(Wexe + Wiehy + b)
hip; = tanh(Win(r @ b)) + Wopx: + b)) © 2

+ ho(1-—2)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’t work very well

- Common to use LSTM or GRU: their additive interactions
improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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slide credit: Andrej Karpathy

Visualizing and Understanding Recurrent Networks
Andrej Karpathy*, Justin Johnson*, Li Fei-Fei
(on arXiv.org)
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Hunting interpretable cells
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Hunting interpretable cells
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