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Overview Today’s Lecture

e Unsupervised Learning

e (Generative Models
» PixelRNN and PixelCNN
» Variational Autoencoder (VAE)
» Generative Adversarial Network (GAN)
» Conditional Generative Adversarial Network

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Supervised vs. Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Supervised Learning Examples

DOG. DOG. CAT GTRRAESES ’ SKY ’ A cat sitting on a suitcase on the floor
Object Detection Semantic Segmentation Image captioning

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz
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Supervised vs. Unsupervised Learning

Unsupervised Learning o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Unsupervised Learning Examples

Reconstructed data

et =N

L2 Loss function:

o TR /\ ll‘"rff”? -

Reconstructed ‘ 7 ‘
input data A

R L&ES
RIS E
-GQfIE

Encoder: 4-layer conv
Decoder Decoder: 4-layer upconv

T Features [ 2|  Inputat

B _ “ Encoder Eﬁhuﬂ

™) | : T ERANE
: =N 5 Input data T Hsvzw

1-d density estimation

sl « HBs

Autoencoders
2o e (Feature learning)

2-d density estimation

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Supervised vs. Unsupervised Learning

Supervised Learning Unsupervised Learning
Training data is cheap
Data: (x, y) Data: x \ Holy grail: Solve
X Is data, y is label Just data, no labels! unsupervised learning

=> understand structure
of visual world

Goal: Learn a functionto map x ->y  Goal: Learn some underlying

hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Generative Models

Given training data, generate new samples from same distribution

Training data ~ p__._(x) Generated samples ~p_ . (X)

Want to learn p_ ., (X) similarto p__._(x)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p_ . (X)

- Implicit density estimation: learn model that can sample from p__ . (x) w/o explicitly defining it

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Why Generative Models?

- Generative models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent

representations that can be useful as general features

t Alec Radford et al. 2016:; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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axonomy of Generative Models Dot
Today: discuss 3 most GAN
popular types of generative Generative models
models today / \
Explicit density Implicit density
Tractable density Approximate density Markov Chain
w : GSN

Fully Visible Belief Nets \

- NADE ) ‘/ )

- MADE Variational Markov Chain

~ [P NNGHN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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PixelRNN and PixelCNN

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Fully Visible Belief Network (FVBN)

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = | | P(Zs| 21y oy Ti—1)
1 i=1 T Will need to define
o ordering of “previous
Likelihood of Probability of i'th pixel value pixels”
Image X given all previous pixels

Complex distribution over pixel

.. o o values => Express using a neural
Then maximize likelihood of training data  aqwork!

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© O ©0 © @
© 0 0 O O
®@ ®© & & ¢
© 0 O O O
® ¢ @ & ©

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

.l
®@ ®© & & ¢
© 0 O O O
® ¢ @ & ©

Dependency on previous pixels modeled
using an RNN (LSTM)

© O O
© O O

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© O

© O O

®@ ®© & ©
© 0 O O O
® ¢ @ & ©

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner O
Dependency on previous pixels modeled *— © O
using an RNN (LSTM) ( @ @® O

@ © © 0 O
Drawback: sequential generation is slow! © 06 06 0 O

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Training: maximize likelihood of training

Images
n

p(x) = Hp(a:da:l, vy Li—1)

i=1

Softmax loss at each pixel

.
F ~
/1 A
r M
'y 5
/
/
/

Figure copyright van der Oord et al., 2016. Reproduced with permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region : /

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Generation Examples
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32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz
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PixelRNN and PixelCNN

Pros: Improving PixelCNN performance
- Can explicitly compute likelihood - Gated convolutional layers
p(X) - Short-cut connections
- Explicit likelihood of training - Discretized logistic loss
data gives good evaluation - Multi-scale
metric - Training tricks
- Good samples - Etc...
Con: See
- Sequential generation => slow - Van der Oord et al. NIPS 2016
- Salimans et al. 2017
(PixelCNN++)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational
Autoencoders (VAE)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

po() = HP9($1|$13 ey Ti—1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z|2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 22



Some Background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?

A: Want features to

capture meaningful Features <

factors of variation in

data Encoder
Input data T

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Some Background first: Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself

Originally: Linear +
nonlinearity (sigmoid)

Reponstructed T / Later: Deep, fully-connected
input data Later: ReLU CNN (upconv)
Decoder
Features o~
T Encoder
I

Input data

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 24



Some background first: Autoencoders _Reconstructed data
ol e = T

How to learn this feature representation? ,E. n@

Train such that features can be used to reconstruct original data mn. sgn

“Autoencoding” - encoding itself -
-H; LT

Reconstructed
input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Decoder
Input data

m ‘ = -
- H = 4!

o' ) =
- — 40

Encoder 'E‘ ﬁ

G I
sl < S

T
Features o~
T

Input data

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Some background first: Autoencoders _Reconstructed data
E B h that f D labels! ’Bh!-
' that feat 't _ |
C;ilrgglac;ed :—:; eatures T oesn’t use labels 3.“3
reconstruct original data ||$ — j||2 < ’sgn
-H;' sy

Encoder: 4-layer conv
Decoder: 4-layer upconv

Reconstructed
input data

Decoder
Input data

e . N
i

Encoder ’3‘ ﬁ

ol MRS P
a7l < B

T
Features o~
T

Input data

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Some Background first: Autoencoders

Reconstructed
input data

T
Features o~ \ After training,
T

Input data

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 27



Some Background first: Autoencoders

Loss function
(Softmax, etc) bird  plane

/’ \ dog deer truck

Predicted Label

a Fine-tune Train for final task
Classifier encoder (sometimes with

Encoder can be small data)

Jj
used to initialize a Features P jointly with
4 i

supervised model classifier
Encoder

oo R

Input data

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Some Background first: Autoencoders

Reconstructed

input data

Features

Decoder

Encoder

Input data

SN —

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an
autoencoder?

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(i)},fil IS generated from underlying unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X IS an image, z is latent factors used to

Sample from : : .
generate x: attributes, orientation, etc.

true conditional
po+ (x \ Z(i))

SIS

Sample from

true prior >
po~(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

We want to estimate the true parameters §*
of this generative model.

Sample fr_o_m How should we represent this model?
true conditional i
i A : .
po+(z | 2 )) Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior >

po~ (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

We want to estimate the true parameters §*
of this generative model.

SAMPS fr_o_m How should we represent this model?
true conditional i
i '\ _ _
po-( | 2 )) Choose prior p(z) to be simple, e.g.
Decoder Gaussian.
network
Sample from Conditional p(x|z) is complex (generates
true prior > image) => represent with neural network
po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

We want to estimate the true parameters §*
of this generative model.

PEMpS fr_o_m How to train the model?
true conditional 4
i A
po-(z | 21) Remember strategy for training generative

Dejccc’dir models from FVBNs. Learn model parameters
networ il 5 : . -

Sample from to maximize likelihood of training data

Pty z po(®) = [ po(2)po(alz)dz

\

Now with latent z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Q: What is the problem with this?

Intractable!
slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 33



Variational Autoencoders: Intractability

Data likelihood: po(x) = [ pe(2)pe(z|2)dz

f

Simple Gaussian prior

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders: Intractability

vV Vv
Data likelihood: po(x) = [ pe(2)pe(z|2)dz

\

Decoder neural network

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders: Intractability

. @
Data likelihood: po(z) = | pe(2)pe(z|2)dz

f

Intractible to compute
p(x|z) for every Z!

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders: Intractability

® v Vv
Data likelihood: pe(x) = [ pe(2)pe(z|2)dz

vV vV
Posterior density also intractable: pe(2|$)=P9($|Z) ( )/Pe(ib')

f

Intractable data likelihood

Solution: In addition to decoder network modeling p,(x|z), define additional
encoder network q¢(z|x) that approximates p,(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
,‘LZ | X z | T .,"l'ml z :U | z
Encoder network Decoder network
9(2|z) pe(z|z)
(parameters @) (parameters 0)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from 2|z ~ N (12,2 2) Sample x|z from 2|z ~ N ()2, Xz)2)
,‘LZ|$ zlw ,"l'mlz :Ulz
Encoder network Decoder network
9(2|2) po(|2)
(parameters @) (parameters 0)

Encoder and decoder networks also called
‘recognition”/“inference” and “generation” networks Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

10g 79 (29) = B, gy a1a0) [10820(@ )] (po(a") Does not depend on 2)

i

Taking expectation wrt. z
(using encoder network) will
come in handy later

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

10g 79 (29) = B, gy a1a0) [108P0(@ )] (po(a7) Does not depend on 2)

()
=E, |log pe (™ | Z)(pg(z)
_ po(z | =)

pe (2D | 2)pg(2) qp(z | )

} (Bayes” Rule)

= E, |log ‘ — ] Multiply by constant
BTG [0 oz [2)] )
i | (4) o] (0)

=E, |logpg(z® | z)] —E. [Ing 4s(2 | @ )] + E, [1og 92 | 2 : )] (Logarithms)
: po(2) po(z | V)

= E. [logpa(z? | )| — Dir(as(z | £?)|1ps(2)) + Dir(as(z | 2®) || po(z | 7))

T &

The expectation wrt. z (using
encoder network) let us write
nice KL terms

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

10g 79 (29) = B, gy a1a0) [108P0(@ )] (po(a7) Does not depend on 2)

(4)
_E, logpe(w |2’)1?6(Z)
i po(z | (@)
po (') | 2)pa(2) g (2 | )
po(z | z®D)  gg(z | )

} (Bayes” Rule)

E. |log

] (Multiply by constant)

= E

z

i , .(4) . ()
log pg(z' | z)] -E, [IOE; 2z | @ )] +E, llog 4p(2| @ : )] (Logarithms)
: po(2) po(z | )

= E. [logps(2? | 2)] — Dir(go(x | 29) || po(2)) + Dicr(g0(z | 27) || pa(z | )

$ f +

Decoder network gives p,(x|z), can This KL term (between Pg(z[X) intractable (saw
compute estimate of this term through ~ Gaussians for encoder and z ~ €arlier), can't compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :( But we know KL
through reparam. trick, see paper.) solution! divergence always >= 0.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

10g 79 (29) = B, gy a1a0) [108P0(@ )] (po(a7) Does not depend on 2)

()
_ po(z | &)

pe (2D | 2)pg(2) qp(z | )

} (Bayes” Rule)

= E, |log ‘ — ] Multiply by constant
T ) a o] |
i | () o 1 old)

=E, |logpg(z® | z)] —E. {Iog 4s(2 | @ )} + E, [1og 92 | 2 : )] (Logarithms)
- po(2) po(z | =)

—E. [logps(@ | 2)] — Dicsao(z | 2V | o)+ Dicr(aolz | 2) |1 po(z | )

L(z.0,8) 20
Tractable lower bound which we can take

gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pg (z(V)) = L S—— [logpg(:r:(";))} (po (') Does not depend on 2)

pe(z™ | z)pe(2)
po(z | &)

= E. |log } (Bayes” Rule)

Make approximate
posterior distribution
y by constant) close to prior

Reconstruct

- (i) (i)
the input data= E,__|log Po(@” | 2)po(z) gp(z | 7 )] (M
[ po(z |2W)  qu(z | ™)

i , 7) . ()
= E. |log pglz? | z)] —E, [Iog 4 (| )] +E, [10;55 9p(2 | @ _ )] (Logarithms)
- poff) o(z]20)
= E. [logpo(2 | 2)| — Dici(gs(z | 27| po( )+ Dic(ao(z | 2) I po(z | 2))
L(2,0,8) >0
- - 0%, ¢" = L(z™,0,
log pe(2¥) > L(z®, 6,9) o =eig m@XZ 2
Variational lower bound (“ELBQ”) Training: Maxnmlze Iower bound

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Putting it all together: maximizing the
likelihood lower bound

E. [logpa(z® | 2)| - Dicr(gs(z | «?) | pa(2)

[,(:I:(J, 6. 0)

Let’s look at computing the bound
(forward pass) for a given minibatch of
input data

Input Data 4

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

~

I

Maximize

Putting it all t -maximizing the  jielinood of ~ Sample xjzfrom x|z ~ N (lg|z; a2
likelihoodTower bound original input
| | being / \
E. |logpe(z™ | 2)| — Dxr(gs(z | 29) || pe(z)) reconstructed Hz|z lez
ﬁ(m(ﬁ: 0, ¢) Decoder network \/
po(x|z)

Z
Sample z from z|:r: ~ N(uz|:c, Ezlm)

T e

Make approximate
posterior distribution

close to prior ﬂ'z|a: 2z|:1:
Encoder network
For every minibatch of input g0 (z|2) \/
data: compute this forward ¢
pass, and then backprop! Input Data i

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data

ing

Generati

Variational Autoencoders

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

QDA ANANANANANLN RN NNNNNS
QA EEELLLLLW Y NN~
QUAVDQYIG Iy by Gy lyly iy bwwe e~~~
QUVUDINInin oot ©YVVW W -~
QAOAVODIDINn o Go o ®YVYY W - ——
QOOVHINININ;MOE WMDYV W = —— A
QOQOOMINNMMNOY MO DI DD @ = ——
OODMI MM M0N0 WD DD i e e e —
AN AP o
R G LG LT N N R e
SN rrrrrrrroo~~Y
Jadddadoococorcrorrrrrnon~
SdaqadadadocorrrrrrTTTNN
ddddagorrrrrrdFrTTIRNN
SAdddTTrrrrrrrrrFrrPTR2RNN
SFTToToorrorro oA NNN

- >

Vary z,

z3:1r:|z

i

2
Sample z from z ~ AN(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

M|z

Sample x|z from :E|z ~ N(u$|z, Ex|z)

Decoder network
peo(z|2)

Vary z,

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders: Generating Data

Diagonal prior on z

=> independent Degree of smile

latent variables i |
Different \
dimensions of z Vary z,
encode

interpretable factors

of variation \/

\

Also good feature representation that
can be computed using q¢(z|x)!

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders: Generating Data

Labeled Faces in the Wild

32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Variational Autoencoders (VAEs)

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal

Gaussian
- Incorporating structure in latent variables

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Generative Adversarial
Networks (GAN)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

po() = Hp9($i|$1a ey Ti—1)
=1

VAEs define intractable density function with latent z:

po(a) = [ po(e)po(ale)d:
Cannot optimize directly, derive and optimize lower bound on likelihood instead
What if we give up on explicitly modeling density, and just want ability to sample?
GANSs: don’t work with any explicit density function!

Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 52



Goal of Generative Adversarial Networks

* Have training examples X ~ Pdata(X )

* Want a model that can draw samples: X ~
pmodel(x )

* Where Pmodel ~ Pdata

slide credit: lan Goodfellow
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Goal of Generative Adversarial Networks

e Density estimation

e Sample generation

Training examples Model samples

(Goodfellow 2016)

slide credit: lan Goodfellow

s
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Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from
represent this complex training distribution
transformation?
A: A neural network! Generator
Network
4
Input: Random noise Z

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Training GANs: Two-Player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images ~ | Real Images
(from generator) | | - - (from training set)
3

Generator Network

*

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Training GANs: Two-Player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

HéiIl HéaaX [Emwpdata log Dy, (33) i ]Ezmp(z) log(l — Do, (G9g (Z)))]
g d I I

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to O (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Data distribution
Model distribution
N N N

o

Poorly fit model

///i?’.’\ /

After updating D After updatmg G

N
&

f
f
’ ‘

VN

Mixed strategy
equilibrium
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Training GANs: Two-Player Game

Minimax objective function:
min max [Emm log Dy, (z) + Esp(z log(1 — Do, (G, (2) ))]

0, 04

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

Hbax [E:I:diata log Dy, (z) + Ezwp(z) log(1 — Dy, (Gﬂg (z)))] dominated by region
a where sample is

2. Gradient descent on generator 4 already good
I%in Eznp(z) 10g(1 — Do, (Go, (2))) When sample is likely:
fake, wantto learn
In practice, optimizing this generator objective from it to improve ¥
does not work well! generator. But
gradient in this region-

is relatively flat!

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Training GANs: Two-Player Game

Minimax objective function:
min max [Emm log Dy, (z) + Esp(z log(1 — Do, (G, (2) ))]

0, 64
Aside: Jointly training two

) networks is challenging,
Alternate between: can be unstable. Choosing

1. Gradient ascent on discriminator et vyl bt o
max [E:L‘diata log ng (.’L‘) + Ezwp(z) log(l — ng (Gﬂg (z)))] landscapes helps training,

04 is an active area of
research.

2. Instead: Gradient ascent on generator, different

objective

I%a'X]Esz(z) log(D9d (Ggg (Z))) 1

’ /

Instead of minimizing likelihood of discriminator being correct, now High gradiént signal
maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient | |

signal for bad samples => works much better! Standard in practice. v [“w,df-adigﬁt signal

— log(l - D(G(z)))
— log D(G(z))

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Training GANs: Two-Player Game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images ~ | Real Images
(from generator) | G— ~ - (from training set)
3

Generator Network
} After training, use generator network to

generate new images

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Generative Adversarial Networks (GANSs)

Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Generative Adversarial Networks (GANSs)

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
slide credit: Fei-Fei, Justin Johnson, Serena Yeung

ST i High Level Computer Vision | Bernt Schiele & Mario Fritz 63



GANs: Convolutional Architectures

100 z

Stride 2 16

CONV 2

Generator G(2)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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GANs: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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GANs: Convolutional Architectures

Tl ST

Interpolating =
between -

random
points in laten ,f
space |

Radford et al,
ICLR 2016

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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GANSs: Interpretable Vector Math

e Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Samples Smiling Man

from the
model

Average Z
vectors, do
arithmetic

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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GANSs: Interpretable Vector Math

Glasses man  No glasses man No glasses woman Bl i

Woman with glasses

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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2017 & 2018: Explosion of GANs...

“The GAN Z00”

+ GAN - Generative Adversarial Networks

.

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

3 3 + C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
¢ 3D-GAN - Learning s Probabistic Latert Space of Qbject Shepes vie 3D Gensrative-Adversarial Modeling * CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs * CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

* AdaGAN - AdaGAN: Boosting Generative Models * DTN - Unsupervised Cross-Domain Image Generation

* acGAN - Face Aging With Conditional Generative Adversarial Networks

+ AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets » DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

= : » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution v
* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts « DuaiGAN - DuslGAN: Unsupervised Dual Learning for image-to-image Transiation

= ALl - Adversarially Learned Inference * EBGAN - Energy-based Generative Adversarial Network

« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization » f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learning What and Where to Draw

+ GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* Geometric GAN - Geometric GAN

* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

* Bayesian GAN - Deep and Hierarchical Implicit Models * GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

* BEGAN - BEGAN: Boundary Eqmllbrlum Generative Adversarial Networks * GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

* BiGAN - Adversarial Feature Learning IAN - Neural Photo Editing with Introspective Adversarial Networks

+ BS-GAN - Boundary-Seeking Generative Adversarial Networks * iGAN - Generative Visual Manipulation on the Natural Image Manifold
IcGAN - Invertible Conditional GANs for image editing

* CGAN - Conditional Generative Adversarial Nets

. . : " ' " " ' + ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters . . .

with Generative Adversarial Networks

Improved GAN - Improved Techniques for Training GANs
+ InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks * LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
« CoGAN - Coupled Generative Adversarial Networks +* LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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2017 & 2018: Explosion of GANs...

Better training and generation

LSGAN, Zhu 2017.

Arjovsky 2017.
Improved Wasserstein
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
&
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Conditional GANs:

Text -> Image Synthesis
. this small bird has a pink this magnificent fgllow is
Source->Target domain transfer ook o - s o

Input Output Input Output
]

Reed et al. 2017.
Many GAN applications

Pix2pix. Isola 2017. Many examples at
https://phillipi.github.io/pix2pix/

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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Learning What and Where to Draw

Scott Reed!'.3, Zeynep Akataz, Santosh Mohant,
Samuel Tenka', Bernt Schielez, Honglak Lee!

=
l l l I I max planck institut
ilormatik

UNIVERSITY OF :
MICHIGAN Google DeepMind



Text-conditional GAN

min max V(D,G) = Ey (p,.,.(x.0)10g D(z,t)]+

G D
":‘:Zsz(Z)athda.ta(t) [log(]‘ o D(G(Z7 t)))]

* The discriminator D tries to distinguish
real (text, image) pairs from synthetic.
* The generator G tries to fool D.



Text-conditional GAN

This flower has small, round violet
petals with a dark purple center

S E—
]
~ 300 I

Generator Network



Text-conditional GAN

This flower has small, round violet
petals with a dark purple center

........

......

Generator Network



Text-conditional GAN

This flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center
‘:-‘;.:: l\ ------- - '
N | >y Sl
| E - | G O

Generator Network Discriminator Network



Idea: condition on location as well as sentence/text

1.Bounding box

This bird is completely blackﬂ.'

2.Keypoints, e.g. 15 parts of a bird

Beak

®
% Belly

Right leg
This bird is bright blue.




Conditioning on bounding box

Spatial replicate,
croptobbox /7

g
J=I

o= J depth
crop concat
Ared bird ' to bbo |
with a black face 4
ﬂ ﬁ Local f6 A B

[ ] — e
e =
2~ N(O) 1)%. Global e m

Generator Network




Conditioning on bounding box

Spatial replicate,

crop to bbox /— replicate
4 spatial
— ) 1 — . 16
; 16 ; 1 ﬁ
" = depth ) depth
= A red hird crop to
d§ d ' toci(f)% S . with a black face GomEaL bbox
Ared hir . o
with a black face . i \) S 4 b
[ ﬂ ﬁ Local {6 ) A , .,ﬁ,. | tocal 1D
B s " '
r

4 ). - | /% 128
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Generator Network Discriminator Network




Moving the bird around with bounding box (noise z fixed)

Caption e

This bird has
a black head,
along orange ¢
beak and .

yellow body



Moving the bird around with bounding box (noise z fixed)

Caption GT Shrinking

This bird has
a black head, s

beak and
yellow body




Moving the bird around with bounding box (noise z fixed)

Caption GT Translation

This bird has
a black head, .
along orange g
beak and

yellow body




Moving the bird around with bounding box (noise z fixed)

Caption GT

This bird has
a black head, .
along orange g
beak and

yellow body




Moving the bird around with bounding box (noise z fixed)

Caption i Translation

This bird has
a black head,
a long orange
beak and
yellow body

This large
black bird has
a pointy beak
and black eyes |

This small blue
bird has a
short pointy
beak and
brown patches §52

on its wings




Moving the bird around with key points (noise z fixed)

Caption .

This bird has

ablack head, M N4 |
alongorange g .
beak and / 1

yellow body



Moving the bird around with key points (noise z fixed)

Caption ' GT

This bird has
ablack head, ™=
alongorange g
beak and

yellow body #




Moving the bird around with key points (noise z fixed)

Caption ' GT

\/
Thisbirdhas (g 0‘,
ablack head, ™ ﬁ. N P
along orange gt 'y,
beak and /
yellow body

Stretching




Moving the bird around with key points (noise z fixed)

Caption

This bird has
a black head,
a long orange
beak and
yellow body

This large i
black bird has

a pointy beak
and black eyes

This small blue
bird has a

short pointy
beak and e
brown patches F
on its wings



Generative Adversarial Netowkrs (GANSs)

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train

- Can'’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANs for all kinds of applications

slide credit: Fei-Fei, Justin Johnson, Serena Yeung

High Level Computer Vision | Bernt Schiele & Mario Fritz 89



Recap

Generative Models

- PixelRNN and Pixel CNN Explicit density model, optimizes exact likelihood, good
samples. But inefficient sequential generation.

- Variational Autoencoders (VAE) Optimize variational lower bound on likelihood. Useful

latent representation, inference queries. But current
sample quality not the best.

- Generative Adversarial Networks (GANS) Game-theoretic approach, best samples!

But can be tricky and unstable to train,
Also recent work in combinations of no inference queries.

these types of models! E.g. Adversarial
Autoencoders (Makhanzi 2015) and
PixelVAE (Gulrajani 2016)

slide credit: Fei-Fei, Justin Johnson, Serena Yeung
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