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Towards a Visual Turing Test — Answering Questions on Images

Exam dates and registration

• the exam dates agreed on are: 18. + 19.07., 20. + 21. 08., 
01.+02.10.  

• In LSF, where the students need to register, only two dates can be 
entered. These will be 20.08. and 01.10.  

• Exam dates 18.07., 19.07., 20.08., 21.08. should register in LSF 
for 20.08.  

• All others for 01.10.
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Towards a Visual Turing Test — Answering Questions on Images

Overview

• Visual Turing Test / Visual Question Answering (VQA) 
‣ Motivation 
‣ Prior work / background 
‣ Overview / bigger picture 
‣ “Attention”-based methods 

‣ Relevant papers: 
- Malinowski, Fritz “A Multi-World Approach to Question Answering about Real-World 

Scenes based on Uncertain Input” NIPS’14 
- Malinowski, Rohrbach, Fritz “Ask your Neurons” ICCV’15 
- Sukhbaatar “End-to-End Memory Networks” NIPS’15 
- Yang “ Stacked Attention Networks for Image Question Answering” CVPR’16
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Towards a Visual Turing Test — Answering Questions on Images

Overview of Deep Learning Architectures
• Encoders 

• CNN for sequences, images, volumes 
• RNN for sequences 
• Pooling for sequences 
• Dense embedding layer 

(e.g. language w2v) 
• Decoders 

• Unpooling for sequences, images, volumes 
• RNN for sequences  
• Dense regression 

• Merge 
• Concatenate 
• Multiply 
• Sum/Average
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Towards a Visual Turing Test — Answering Questions on Images

Human-like Comprehension
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• How far are machines from human quality understanding?
• How can we monitor progress and evaluate architectures?
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Human-type Comprehension / Scene Understanding?
• Object Detection / Bounding Boxes? 
• Semantic Segmentation / Pixel Annotations? 
• Attributes? 
• Materials? 
• Spatial Relations? 
• Annotation gets more and more challenging 
• Understanding should be agnostic to some extend to 

the internal representation 
• Scene Description -> Evaluation is difficult
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input evolution of labelings in our Sequential Bayesian Update groundtruth [1]

Figure 5: Example results showing the input image, evolution of the labelings through the proposed Sequential Bayesian
Update method. The last two columns show the corresponding ground truth annotation and the output of the global adaptive
method of Alvarez et al. [1]. Green color denotes background, red - sky, and blue - road.
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Figure 5: Example results showing the input image, evolution of the labelings through the proposed Sequential Bayesian
Update method. The last two columns show the corresponding ground truth annotation and the output of the global adaptive
method of Alvarez et al. [1]. Green color denotes background, red - sky, and blue - road.
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Microsoft COCO Captions: Data Collection and
Evaluation Server

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam
Saurabh Gupta, Piotr Dollár, C. Lawrence Zitnick

Abstract—In this paper we describe the Microsoft COCO Caption dataset and evaluation server. When completed, the dataset will
contain over one and a half million captions describing over 330,000 images. For the training and validation images, five independent
human generated captions will be provided. To ensure consistency in evaluation of automatic caption generation algorithms, an
evaluation server is used. The evaluation server receives candidate captions and scores them using several popular metrics, including
BLEU, METEOR, ROUGE and CIDEr. Instructions for using the evaluation server are provided.

F

1 INTRODUCTION
The automatic generation of captions for images is a
long standing and challenging problem in artificial in-
telligence [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. Research in
this area spans numerous domains, such as computer
vision, natural language processing, and machine learn-
ing. Recently there has been a surprising resurgence of
interest in this area [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], due to the renewed interest in neural
network learning techniques [31], [32] and increasingly
large datasets [33], [34], [35], [7], [36], [37], [38].

In this paper, we describe our process of collecting
captions for the Microsoft COCO Caption dataset, and
the evaluation server we have set up to evaluate perfor-
mance of different algorithms. The MS COCO caption
dataset contains human generated captions for images
contained in the Microsoft Common Objects in COntext
(COCO) dataset [38]. Similar to previous datasets [7],
[36], we collect our captions using Amazon’s Mechanical
Turk (AMT). Upon completion of the dataset it will
contain over a million captions.

When evaluating image caption generation algo-
rithms, it is essential that a consistent evaluation protocol
is used. Comparing results from different approaches can
be difficult since numerous evaluation metrics exist [39],
[40], [41], [42]. To further complicate matters the imple-
mentations of these metrics often differ. To help alleviate
these issues, we have built an evaluation server to enable
consistency in evaluation of different caption generation
approaches. Using the testing data, our evaluation server
evaluates captions output by different approaches using
numerous automatic metrics: BLEU [39], METEOR [41],

• Xinlei Chen is with Carnegie Mellon University.

• Hao Fang is with the University of Washington.

• T.Y. Lin is with Cornell NYC Tech.

• Ramakrishna Vedantam is with Virginia Tech.

• Saurabh Gupta is with the Univeristy of California, Berkeley.

• P. Dollár is with Facebook AI Research.

• C. L. Zitnick is with Microsoft Research, Redmond.

Fig. 1: Example images and captions from the Microsoft
COCO Caption dataset.

ROUGE [40] and CIDEr [42]. We hope to augment these
results with human evaluations on an annual basis.

This paper is organized as follows: First we describe
the data collection process. Next, we describe the caption
evaluation server and the various metrics used. Human
performance using these metrics are provided. Finally
the annotation format and instructions for using the eval-
uation server are described for those who wish to submit
results. We conclude by discussing future directions and
known issues.

2 DATA COLLECTION

In this section we describe how the data is gathered
for the MS COCO captions dataset. For images, we use
the dataset collected by Microsoft COCO [38]. These
images are split into training, validation and testing sets.
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Towards a Visual Turing Test — Answering Questions on Images

Motivation: Turing Test

• Can a machine mimic human 
behavior?
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Towards a Visual Turing Test — Answering Questions on Images

DAQUAR: Proposed Visual Turing Challenge (NIPS’14)

• Builds on top of NYU Depth Data set: 1449 RGBD images 

• 12,5k question answer pairs (with ~ 5 answers per question) 

• Answers: attributes, numbers, objects and sets of these 

• Human Baselines (with and without image) 

• https://www.d2.mpi-inf.mpg.de/visual-turing-challenge
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QA: (what is beneath the candle holder,  
decorative plate)!
Some annotators use variations on spatial 
relations that are similar, e.g. ‘beneath’ is 
closely related to ‘below’.!!
QA: (what is in front of the wall divider?, 
cabinet)  
Annotators use additional properties to 
clarify object references  (i.e. wall divider). 
Moreover, the perspective plays an 
important role in these spatial relations 
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in 
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference 
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection 
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations, 
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind 
the armchair?, guitar)!!
QA2: (what is in front of the curtain?, 
guitar)!!
Spatial relations matter more in complex 
environments where reference resolution 
becomes more relevant. In cluttered scenes, 
pragmatism starts playing a more important 
role

The annotators are using different names to 
call the same things. The names of the 
brown object near the bed include ‘night 
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of 
image, are severely occluded or truncated. 
Yet, the annotators refer to them in the 
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent 
on the reference frame. Here the annotator 
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense 
knowledge for amodal completion. Here the 
annotator infers the 8th drawer from the 
context

QA: (What is the object on the counter in 
the corner?, microwave)!
References like ‘corner’ are difficult to 
resolve given current computer vision 
models. Yet such scene features are 
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not 
well captured by current vision techniques. 
Annotators use such attributes frequently 
for disambiguation.!

QA: (What is the shape of the green 
chair?, horse shaped)!
In this example, an annotator refers to a 
“horse shaped chair” which requires a quite 
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of 
refrigerator)!
On some occasions, the annotators prefer to 
use more complex responses. With spatial 
relations, we can increase the answer’s 
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not 
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair. Last two
examples (bottom-right column) are from the extended dataset not used in our experiments.
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HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
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Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.
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Q: What is the object on the counter in the corner? 
A: micro wave

What is the color of the largest object in the scene?  
A: brownQA: (what is beneath the candle holder,  

decorative plate)!
Some annotators use variations on spatial 
relations that are similar, e.g. ‘beneath’ is 
closely related to ‘below’.!!
QA: (what is in front of the wall divider?, 
cabinet)  
Annotators use additional properties to 
clarify object references  (i.e. wall divider). 
Moreover, the perspective plays an 
important role in these spatial relations 
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in 
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference 
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection 
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations, 
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind 
the armchair?, guitar)!!
QA2: (what is in front of the curtain?, 
guitar)!!
Spatial relations matter more in complex 
environments where reference resolution 
becomes more relevant. In cluttered scenes, 
pragmatism starts playing a more important 
role

The annotators are using different names to 
call the same things. The names of the 
brown object near the bed include ‘night 
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of 
image, are severely occluded or truncated. 
Yet, the annotators refer to them in the 
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent 
on the reference frame. Here the annotator 
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense 
knowledge for amodal completion. Here the 
annotator infers the 8th drawer from the 
context

QA: (What is the object on the counter in 
the corner?, microwave)!
References like ‘corner’ are difficult to 
resolve given current computer vision 
models. Yet such scene features are 
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not 
well captured by current vision techniques. 
Annotators use such attributes frequently 
for disambiguation.!

QA: (What is the shape of the green 
chair?, horse shaped)!
In this example, an annotator refers to a 
“horse shaped chair” which requires a quite 
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of 
refrigerator)!
On some occasions, the annotators prefer to 
use more complex responses. With spatial 
relations, we can increase the answer’s 
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not 
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair. Last two
examples (bottom-right column) are from the extended dataset not used in our experiments.
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Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.
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Q:How many lights are on? 
A: 6

https://www.d2.mpi-inf.mpg.de/visual-turing-challenge


Towards a Visual Turing Test — Answering Questions on Images

Proposed Visual Turing Challenge

• Inspired by Turing Test: 
‣ Can machines answer on questions about natural images? 
‣ Cannot be easily be cheated like original Turing Test 

• A holistic, open-ended, end-to-end task 
‣ Whole chain of perception, representation and deduction 

• No internal representation is evaluated 
‣ Challenge is open to diverse approaches 

• Scalable annotation effort  
‣ Only question-answer-pair annotations 
‣ Yet deep understanding of language and scenes required 

• Strategies for automatic evaluation
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What is the color of the largest object in the scene? 
A: brown



Towards a Visual Turing Test — Answering Questions on Images

End-to-End Tasks

!10

• Evaluate task that requires capability/skill (scene understanding) 
• Rather than “scene understanding” 
• E.g. design tasks that afford scene understanding 
• Kind of facilitated by deep learning

Sensor Scene
Properties visualQA

End-to-End 
Task

Scene  
Understanding

implies
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Our Approaches

• “Classic AI”, symbolic reasoning approach 
- A Multi-world Approach to Question Answering about Real-World Images (NIPS’14) 

Mateusz Malinowski, Mario Fritz 
NIPS’14 

• Neural Network / Deep Learning / Vector Embedding (ICCV’15)
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A Multi-World to Question Answering About 
Real-World Images

Mateusz Malinowski, Mario Fritz 
NIPS’14 



M. Malinowski. Towards Holistic Machines.

Methods
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“What is the 
largest object?” “sofa”Representation 

of question
Representation 

of image



M. Malinowski. Towards Holistic Machines.

Method: Symbolic Approach [NIPS’14]
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“What is the 
largest object?” “sofa”Representation 

of question
Representation 

of image

W
world

Q
question

A
answer

Semantic  
parsing T

logical 
forms

Evaluation

Table (1, brown, image 1, X, Y, Z, 0.4)
Chair (1, brown, image 1, X, Y, Z, 0.2)

Category Probabilities
Instance

Color Image
Coordinates

P. Liang, M. I. Jordan, D. Klein. Learning dependency-
based compositional semantics. ACL 2011.



M. Malinowski. Towards Holistic Machines.

Method: Symbolic Approach [NIPS’14]
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A
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W

question

semantic tree

answer

universesemantic 
segmentation

S

Fig. 4. Our Bayesian model to question answering from noisy observations. At test
time we observe the question as well as the output of the semantic scene segmentation.
Di↵erent hypothesis of the universe and the semantic tree are marginalized out in order
to infer the most likely answer.

model. We run inference over answers A based on observed semantic scene seg-
mentations S and questions Q while the universe W and semantic trees T are
latent. Figure 2 show a few possible universes. The posterior over the answer A

is calculated by marginalizing over the latent universes W and semantic trees T :

P (A | Q, S) :=
X

W

X

T
P (A | W, T )P (W | S) P (T | Q) (3)

Marginalizing over all possible universes given a certain semantic segmentation
is computation intractable, wherefore we use a sampling strategy that draws a
finite sample from P (W|S):

P (A | Q, S) ⇡
X

W⇠P(W|S)

X

T
P (A | W, T )P (T |Q) (4)

where the possible universes W are sampled the segmentation of the image ac-
cording to their confidence scores [11] as follows: The segmentation is a set of
segments with probabilities S = {(s1, p1), . . . , (sN , pN )}. Each universe is a draw
from the segmentation such that P (si 2 W) = pi.

The probability of the latent semantic tree given the question P (T |Q) is a log-
linear distribution over the set of all possible valid semantic trees Z(Q) for the
given question Q. Formally, P (T |Q) / exp(✓T�(Q, T )) where ✓ are parameters
of the probabilistic model that are learnt from the questions-answer pairs, and
�(Q, T ) is a feature vector that measures the compatibility between the question

Box   (1, brown, image 1, X, Y, Z, 0.6)

Table (1, brown, image 1, X, Y, Z, 0.4)
Sofa  (1, brown, image 1, X, Y, Z, 0.8)

Chair (1, brown, image 1, X, Y, Z, 0.2)

Category Probabilities
Instance

Color Image
Coordinates
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QA by Percy Liang (2011)
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Words to Predicates (Lexical Semantics)

city city

state state

river river

argmax population population CA

What is the most populous city in CA ?

Lexical Triggers:

1. String match CA ) CA

2. Function words (20 words) most ) argmax

3. Nouns/adjectives city ) city state river population
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Plan

x
capital of
California?

parameters

✓ z

1

2

1

1

CA

capital

⇤⇤

database

w y Sacramento

• What’s possible? z 2 ?

• What’s probable? p(z | x, ✓)

• Learning ✓ to data

18

Learning

Objective:

max✓
P

z p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓

(0, 0, . . . , 0)

enumerate/score DCS trees

19

Objective Learning

Objective:

max✓
P

z p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.2,�1.3, . . . , 0.7)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree1

tree2

tree3

tree4

tree5

19

Learning
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Evaluation Criterion

• All measures can be evaluated automatically 
• Less error prone than BLEU score 

• Different metrics: 
‣ accuracy 
‣ WU Palmer Similarity 

‣ WUPS: Wu Palmer extended to sets 

‣ Additional consensus metrics over 5 annotators
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WUP(w1, w2) = 2 ⇤ depth most specific ancestor node

depth(w1) ⇤ depth(w2)

animal

dog

dalmatine

horse

WUP(horse, dalmatine) = 2*2/(4+3) = 4/7 = 0.57 

entity

The database exhibit some biases showing humans tend to focus on a few prominent objects. For
instance we have more than 400 occurrences of table and chair in the answers. In average the
object’s category occurs (14.25, 4) times in training set and (22.48, 5.75) times in total. Figure 4
shows example question-answer pairs together with the corresponding image that illustrate some of
the challenges captured in this dataset.
Performance Measure While the quality of an answer that the system produces can be measured
in terms of accuracy w.r.t. the ground truth (correct/wrong), we propose, inspired from the work
on Fuzzy Sets [22], a soft measure based on the WUP score [23], which we call WUPS (WUP
Set) score. As the number of classes grows, the semantic boundaries between them are becoming
more fuzzy. For example, both concepts ’carton’ and ’box’ have similar meaning, or ’cup’ and
’cup of coffee’ are almost indifferent. Therefore we seek a metric that measures the quality of an
answer and penalizes naive solutions where the architecture outputs too many or too few answers.
Standard Accuracy is defined as: 1

N

PN
i=1 1{A

i = T
i} · 100 where A

i, T
i are i-th answer and

ground-truth respectively. Since both the answers may include more than one object, it is beneficial
to represent them as sets of the objects T = {t1, t2, ...}. From this point of view we have for every
i 2 {1, 2, ..., N}:

1{A
i = T

i} = 1{A
i ✓ T

i \ T
i ✓ A

i} = min{1{A
i ✓ T

i}, 1{T
i ✓ A

i}} (3)

= min{
Y

a2Ai

1{a 2 T
i},

Y

t2T i

1{t 2 A
i}} ⇡ min{

Y

a2Ai

µ(a 2 T
i),

Y

t2T i

µ(t 2 A
i)} (4)

We use a soft equivalent of the intersection operator in Eq. 3, and a set membership measure µ,
with properties µ(x 2 X) = 1 if x 2 X , µ(x 2 X) = maxy2X µ(x = y) and µ(x = y) 2 [0, 1],
in Eq. 4 with equality whenever µ = 1. For µ we use a variant of Wu-Palmer similarity [23, 24].
WUP(a, b) calculates similarity based on the depth of two words a and b in the taxonomy[25, 26],
and define the WUPS score:

WUPS(A, T ) =
1

N

NX

i=1

min{
Y

a2Ai

max
t2T i

WUP(a, t),
Y

t2T i

max
a2Ai

WUP(a, t)} · 100 (5)

Empirically, we have found that in our task a WUP score of around 0.9 is required for precise
answers. Therefore we have implemented down-weighting WUP(a, b) by one order of magnitude
(0.1 · WUP) whenever WUP(a, b) < t for a threshold t. We plot a curve over thresholds t ranging
from 0 to 1 (Figure 5). Since ”WUPS at 0” refers to the most ’forgivable’ measure without any down-
weighting and ”WUPS at 1.0” corresponds to plain accuracy. Figure 5 benchmarks architectures by
requiring answers with precision ranging from low to high. Here we show some examples of the pure
WUP score to give intuitions about the range: WUP(curtain, blinds) = 0.94, WUP(carton, box) =
0.94, WUP(stove, fire extinguisher) = 0.82.

4.2 Quantitative results

We perform a series of experiments to highlight particular challenges like uncertain segmenta-
tions, unknown true logical forms, some linguistic phenomena as well as show the advantages of
our proposed multi-world approach. In particular, we distinguish between experiments on syn-
thetic question-answer pairs (SynthQA) based on templates and those collected by annotators (Hu-

manQA), automatic scene segmentation (AutoSeg) with a computer vision algorithm [15] and hu-
man segmentations (HumanSeg) based on the ground-truth annotations in the NYU dataset as well
as single world (single) and multi-world (multi) approaches.
4.2.1 Synthetic question-answer pairs (SynthQA)

Based on human segmentations (HumanSeg, 37 classes) (1st and 2nd rows in Table 3) uses au-
tomatically generated questions (we use templates shown in Table 2) and human segmentations.
We have generated 20 training and 40 test question-answer pairs per template category, in total 140
training and 280 test pairs (as an exception negations type 1 and 2 have 10 training and 20 test exam-
ples each). This experiment shows how the architecture generalizes across similar type of questions
provided that we have human annotation of the image segments. We have further removed negations
of type 3 in the experiments as they have turned out to be particularly computationally demanding.
Performance increases hereby from 56% to 59.9% with about 80% training Accuracy. Since some
incorrect derivations give correct answers, the semantic parser learns wrong associations. Other dif-
ficulties stem from the limited training data and unseen object categories during training.
Based on automatic segmentations (AutoSeg, 37 classes, single) (3rd row in Table 3) tests the ar-
chitecture based on uncertain facts obtained from automatic semantic segmentation [15] where the
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[1] Wu, Z., Palmer, M.: Verbs semantics and lexical selection. ACL. 1994.

Accuracy

Wu-Palmer 
Similarity [1]

WUPS @0.9  
(NIPS’14)

0 0

0.8 0.9

0 0.9

Armchair Wardrobe Chair
Ground Truth Predictions

=

<

<<

1

N

NX

i=1

min{
Y

a2Ai

max
t2T i

µ(a, t),
Y

t2T i

max
a2Ai

µ(a, t)} · 100 (1)

1

N

NX

i=1

1{T i
= Ai} · 100 (2)

1

K

KX

k=1

WUPS(A, T k
)

x1, x2, ..., xt�1, xt, xt+1, ..., xT

ht = �(Whhht�1 +W xhxt)

ŷt = softmax(Whyht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT

f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT
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QA: (what is beneath the candle holder,  
decorative plate)!
Some annotators use variations on spatial 
relations that are similar, e.g. ‘beneath’ is 
closely related to ‘below’.!!
QA: (what is in front of the wall divider?, 
cabinet)  
Annotators use additional properties to 
clarify object references  (i.e. wall divider). 
Moreover, the perspective plays an 
important role in these spatial relations 
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in 
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference 
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection 
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations, 
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind 
the armchair?, guitar)!!
QA2: (what is in front of the curtain?, 
guitar)!!
Spatial relations matter more in complex 
environments where reference resolution 
becomes more relevant. In cluttered scenes, 
pragmatism starts playing a more important 
role

The annotators are using different names to 
call the same things. The names of the 
brown object near the bed include ‘night 
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of 
image, are severely occluded or truncated. 
Yet, the annotators refer to them in the 
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent 
on the reference frame. Here the annotator 
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense 
knowledge for amodal completion. Here the 
annotator infers the 8th drawer from the 
context

QA: (What is the object on the counter in 
the corner?, microwave)!
References like ‘corner’ are difficult to 
resolve given current computer vision 
models. Yet such scene features are 
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not 
well captured by current vision techniques. 
Annotators use such attributes frequently 
for disambiguation.!

QA: (What is the shape of the green 
chair?, horse shaped)!
In this example, an annotator refers to a 
“horse shaped chair” which requires a quite 
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of 
refrigerator)!
On some occasions, the annotators prefer to 
use more complex responses. With spatial 
relations, we can increase the answer’s 
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not 
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair. Last two
examples (bottom-right column) are from the extended dataset not used in our experiments.

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
U
PS

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
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Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.
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M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
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Q: How many chairs are at the table?!
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H: pillow!
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Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.
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Towards a Visual Turing Test — Answering Questions on Images

Conclusions

• Pros 
• First proposal of Visual Turing Challenge based on diverse real-

world images 
• Multi-world for learning to answer questions about scenes 
• Bridging between symbolic reasoning and uncertainty in 

perception 
• Requires deep understanding of scenes at low annotation effort 

• Cons 
• Poor scalability 
• Some hand crafting of ontology and predicates
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Towards a Visual Turing Test — Answering Questions on Images

Our Approaches

• Classic AI, symbolic reasoning approach 

• Neural Network / Deep Learning / Vector Embedding (ICCV’15) 
 
Ask your Neurons: A Neural-based Approach to Answering 
Questions about Image 
Mateusz Malinowski, Marcus Rohrbach, Mario Fritz 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Ask Your Neurons: A Neural-based Approach 
to Answering Questions about Images

Mateusz Malinowski, Marcus Rohrbach, Mario Fritz 
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Towards a Visual Turing Test — Answering Questions on Images

Method: Ask Your Neurons
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CNN

chairs window <end>

is behind tablethe ?

LSTM

What

LSTM LSTM LSTM LSTM LSTM LSTM LSTM



Towards a Visual Turing Test — Answering Questions on Images

Two Key Ingredients

• Convolutional Neural Network

• Long Short Term Memory Recurrent Neural Network
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Convolutional Neural Networks

!26

• LeCun et al. 1989
• Neural network with specialized 

connectivity structure
• GoogleNet in our experiments
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Figure 3: GoogLeNet network with all the bells and whistles
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Towards a Visual Turing Test — Answering Questions on Images

Recurrent Neural Network

• Extension of neural networks to sequence modelling and prediction 
• Training is problematic due to vanishing/exploding gradient
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Towards a Visual Turing Test — Answering Questions on Images

Long Short Term Memory Networks (Schmidhuber)
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Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words aq,x =

�
a1,a2, ...,aN (q,x)

 
,

where at are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

ât = argmax
a2V

p(a|x, q, Ât�1;✓) (2)

where Ât�1 = {â1, . . . , ât�1} is the set of previous words,
with Â0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when ât = $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ Ât�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].
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Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a
concatenation of [x, q̂t].

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the correspond-
ing answer word at. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e�v)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) = ev�e�v

ev+e�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs vt, ht�1, and the memory cell ct�1 as
follows:

it = �(Wvivt +Whiht�1 + bi) (3)
f t = �(Wvfvt +Whfht�1 + bf ) (4)
ot = �(Wvovt +Whoht�1 + bo) (5)
gt = �(Wvgvt +Whght�1 + bg) (6)
ct = f t � ct�1 + it � gt (7)
ht = ot � �(ct) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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p(a|x, q, Ât�1;✓) (2)
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with Â0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
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q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a
concatenation of [x, q̂t].

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the correspond-
ing answer word at. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e�v)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) = ev�e�v

ev+e�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs vt, ht�1, and the memory cell ct�1 as
follows:

it = �(Wvivt +Whiht�1 + bi) (3)
f t = �(Wvfvt +Whfht�1 + bf ) (4)
ot = �(Wvovt +Whoht�1 + bo) (5)
gt = �(Wvgvt +Whght�1 + bg) (6)
ct = f t � ct�1 + it � gt (7)
ht = ot � �(ct) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly

3

Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words aq,x =

�
a1,a2, ...,aN (q,x)

 
,

where at are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

ât = argmax
a2V

p(a|x, q, Ât�1;✓) (2)
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tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
terwards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.
Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
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3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max
a2A

p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.
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where at are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

ât = argmax
a2V

p(a|x, q, Ât�1;✓) (2)

where Ât�1 = {â1, . . . , ât�1} is the set of previous words,
with Â0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when ât = $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ Ât�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a
concatenation of [x, q̂t].

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the correspond-
ing answer word at. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e�v)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) = ev�e�v

ev+e�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs vt, ht�1, and the memory cell ct�1 as
follows:

it = �(Wvivt +Whiht�1 + bi) (3)
f t = �(Wvfvt +Whfht�1 + bf ) (4)
ot = �(Wvovt +Whoht�1 + bo) (5)
gt = �(Wvgvt +Whght�1 + bg) (6)
ct = f t � ct�1 + it � gt (7)
ht = ot � �(ct) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
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where Ât�1 = {â1, . . . , ât�1} is the set of previous words,
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
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ciation of words with meaning. This is often referred to as
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3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max
a2A

p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image representation
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In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words aq,x =

�
a1,a2, ...,aN (q,x)

 
,

where at are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

ât = argmax
a2V

p(a|x, q, Ât�1;✓) (2)

where Ât�1 = {â1, . . . , ât�1} is the set of previous words,
with Â0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when ât = $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ Ât�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a
concatenation of [x, q̂t].

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the correspond-
ing answer word at. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e�v)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) = ev�e�v

ev+e�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs vt, ht�1, and the memory cell ct�1 as
follows:

it = �(Wvivt +Whiht�1 + bi) (3)
f t = �(Wvfvt +Whfht�1 + bf ) (4)
ot = �(Wvovt +Whoht�1 + bo) (5)
gt = �(Wvgvt +Whght�1 + bg) (6)
ct = f t � ct�1 + it � gt (7)
ht = ot � �(ct) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
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Combining RNNs and CNNs for description of visual
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37]. This is achieved by using the RNN-type model that
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ciation of words with meaning. This is often referred to as
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niques [15, 22], there is a recent trend of machine learning-
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sequence models as RNNs has carried over to this task
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We like to note that shortly after this work, several
neural-based models [24, 19, 7] have also been suggested.
Also several new datasets for Visual Turing Tests have just
been proposed [1, 35] that are worth further investigations.

3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max
a2A

p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image representation
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In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words aq,x =
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where at are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

ât = argmax
a2V

p(a|x, q, Ât�1;✓) (2)

where Ât�1 = {â1, . . . , ât�1} is the set of previous words,
with Â0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when ât = $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ Ât�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a
concatenation of [x, q̂t].

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the correspond-
ing answer word at. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e�v)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) = ev�e�v

ev+e�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs vt, ht�1, and the memory cell ct�1 as
follows:

it = �(Wvivt +Whiht�1 + bi) (3)
f t = �(Wvfvt +Whfht�1 + bf ) (4)
ot = �(Wvovt +Whoht�1 + bo) (5)
gt = �(Wvgvt +Whght�1 + bg) (6)
ct = f t � ct�1 + it � gt (7)
ht = ot � �(ct) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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p(a|x, q, Ât�1;✓) (2)
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answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question without accessing any visual information, which
beats the human baseline.

2. Related Work
As our method touches upon different areas in machine

learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [16, 17, 25], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [27, 29]
is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-
ing. Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [9] has shown
recent success on natural language tasks such as machine
translation [3, 28].

Combining RNNs and CNNs for description of visual
content. The task of describing visual content like still
images as well as videos has been successfully addressed
with a combination of the previous two ideas [5, 12, 31, 32,
37]. This is achieved by using the RNN-type model that
first gets to observe the visual content and is trained to af-
terwards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.
Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques [15, 22], there is a recent trend of machine learning-
based approaches [12, 13, 14] to find the associations. Our
approach follows the idea that we do not enforce or evaluate
any particular representation of “meaning” on the language
or image modality. We treat this as latent and leave this to
the joint training approach to establish an appropriate inter-
nal representation for the question answering task.

Textual question answering. Answering on purely tex-
tual questions has been studied in the NLP community
[2, 18] and state of the art techniques typically employ
semantic parsing to arrive at a logical form capturing the
intended meaning and infer relevant answers. Only very
recently, the success of the previously mentioned neural
sequence models as RNNs has carried over to this task
[10, 33]. More specifically [10] uses dependency-tree Re-
cursive NN instead of LSTM, and reduce the question-
answering problem to a classification task. Moreover, ac-
cording to [10] their method cannot be easily applied to vi-
sion. [33] propose different kind of network - memory net-
works - and it is unclear how to apply [33] to take advantage
of the visual content. However, neither [10] nor [33] show
an end-to-end, monolithic approaches that produce multiple
words answers for question on images.

Visual Turing Test. Most recently several approaches
have been proposed to approach Visual Turing Test [21],
i.e. answering question about visual content. For instance
[8] have proposed a binary (yes/no) version of Visual Tur-
ing Test on synthetic data. In [20], we present a question
answering system based on a semantic parser on a more var-
ied set of human question-answer pairs. In contrast, in this
work, our method is based on a neural architecture, which
is trained end-to-end and therefore liberates the approach
from any ontological commitment that would otherwise be
introduced by a semantic parser.

We like to note that shortly after this work, several
neural-based models [24, 19, 7] have also been suggested.
Also several new datasets for Visual Turing Tests have just
been proposed [1, 35] that are worth further investigations.

3. Approach
Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-
cording to a parametric probability measure:

â = arg max
a2A

p(a|x, q; ✓) (1)

where ✓ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q; ✓) in more details.

, - image representation
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• Symbolic approach (NIPS’14)
‣ Explicit representation
‣ Independent components

- Detectors, Semantic Parser, 
Database

‣ Components trained separately
‣ Many ‘hard’ design decisions

M. Malinowski, et. al. “A Multi-World Approach to Question Answering 
about Real-World Scenes based on Uncertain Input”. NIPS’14

Knowledge 
base

What is behind  
the table ? Logical Representation

λx.Behind(x,Table) chairs,  
window
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• Symbolic approach (NIPS’14)
‣ Explicit representation
‣ Independent components

- Detectors, Semantic Parser, 
Database

‣ Components trained separately
‣ Many ‘hard’ design decisions

• Ask Your Neurons (Our)
‣ Implicit representation 
‣ End-to-end formula

- From images and questions to 
answers

‣ Joint training
‣ Fewer design decisions

End-to-end, jointly trained architectureM. Malinowski, et. al. “A Multi-World Approach to Question Answering 
about Real-World Scenes based on Uncertain Input”. NIPS’14

Knowledge 
base

What is behind  
the table ? Logical Representation

λx.Behind(x,Table) chairs,  
window

CNN

chairs window <end>
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LSTM

What
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Figure 3: Task-specific instantiations of our LRCN model for activity recognition, image description, and video description.

for activity recognition ([16, 33, 13, 2, 1]). [33, 16] both
propose convolutional networks which learn filters based on
a stack of N input frames. Though we analyze clips of 16
frames in this work, we note that the LRCN system is more
flexible than [33, 16] since it is not constrained to analyz-
ing fixed length inputs and could potentially learn to rec-
ognize complex video sequences (e.g., cooking sequences
as presented in 6). [1, 2] use recurrent neural networks to
learn temporal dynamics of either traditional vision features
([1]) or deep features ([2]), but do not train their models
end-to-end and do not pre-train on larger object recognition
databases for important performance gains.

We explore two variants of the LRCN architecture: one
in which the LSTM is placed after the first fully connected
layer of the CNN (LRCN-fc6) and another in which the
LSTM is placed after the second fully connected layer of
the CNN (LRCN-fc7). We train the LRCN networks with
video clips of 16 frames. The LRCN predicts the video class
at each time step and we average these predictions for final
classification. At test time, we extract 16 frame clips with a
stride of 8 frames from each video and average across clips.

We also consider both RGB and flow inputs. Flow is
computed with [4] and transformed into a “flow image”
by centering x and y flow values around 128 and mul-
tiplying by a scalar such that flow values fall between 0
and 255. A third channel for the flow image is created
by calculating the flow magnitude. The CNN base of the
LRCN is a hybrid of the Caffe [14] reference model, a mi-
nor variant of AlexNet [22], and the network used by Zeiler
& Fergus [47]. The net is pre-trained on the 1.2M image
ILSVRC-2012 [32] classification training subset of the Im-
ageNet [7] dataset, giving the network a strong initialization
to facilitate faster training and prevent over-fitting to the rel-
atively small video datasets. When classifying center crops,

the top-1 classification accuracy is 60.2% and 57.4% for
the hybrid and Caffe reference models, respectively. In our
baseline model, T video frames are individually classified
by a CNN. As in the LSTM model, whole video classifica-
tion is done by averaging scores across all video frames.

4.1. Evaluation

We evaluate our architecture on the UCF-101 dataset
[36] which consists of over 12,000 videos categorized into
101 human action classes. The dataset is split into three
splits, with a little under 8,000 videos in the training set for
each split. We report accuracy for split-1.

Figure 1, columns 2-3, compare video classification of
our proposed models (LRCN-fc6, LRCN-fc7) against the
baseline architecture for both RGB and flow inputs. Each
LRCN network is trained end-to-end. To determine if end-
to-end training is necessary, we also train a LRCN-fc6
network in which only the LSTM parameters are learned.
The fully fine-tuned network increases performance from
70.47% to 71.12%, demonstrating that end-to-end fine-
tuning is indeed beneficial. The LRCN-fc6 network yields
the best results for both RGB and flow and improves upon
the baseline network by 2.12 % and 4.75% respectively.

RGB and flow networks can be combined by comput-
ing a weighted average of network scores as proposed in
[33]. Like [33], we report two weighted averages of the
predictions from the RGB and flow networks in Table 1
(right). Since the flow network outperforms the RGB net-
work, weighting the flow network higher unsurprisingly
leads to better accuracy. In this case, LRCN outperforms
the baseline single-frame model by 3.88%.

The LRCN shows clear improvement over the baseline
single-frame system and approaches the accuracy achieved
by other deep models. [33] report the results on UCF-101

Large building with a clock <end>

LSTM LSTM LSTM LSTM LSTM LSTM

• Neural Image Description
‣ Conditions on an image  

‣ Generates a description
- Sequence of words

‣ Loss at every step

J. Donahue, et. al. “Long-term Recurrent Convolutional Networks for 
Visual Recognition and Description”. CVPR15

Loss
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Figure 3: Task-specific instantiations of our LRCN model for activity recognition, image description, and video description.

for activity recognition ([16, 33, 13, 2, 1]). [33, 16] both
propose convolutional networks which learn filters based on
a stack of N input frames. Though we analyze clips of 16
frames in this work, we note that the LRCN system is more
flexible than [33, 16] since it is not constrained to analyz-
ing fixed length inputs and could potentially learn to rec-
ognize complex video sequences (e.g., cooking sequences
as presented in 6). [1, 2] use recurrent neural networks to
learn temporal dynamics of either traditional vision features
([1]) or deep features ([2]), but do not train their models
end-to-end and do not pre-train on larger object recognition
databases for important performance gains.

We explore two variants of the LRCN architecture: one
in which the LSTM is placed after the first fully connected
layer of the CNN (LRCN-fc6) and another in which the
LSTM is placed after the second fully connected layer of
the CNN (LRCN-fc7). We train the LRCN networks with
video clips of 16 frames. The LRCN predicts the video class
at each time step and we average these predictions for final
classification. At test time, we extract 16 frame clips with a
stride of 8 frames from each video and average across clips.

We also consider both RGB and flow inputs. Flow is
computed with [4] and transformed into a “flow image”
by centering x and y flow values around 128 and mul-
tiplying by a scalar such that flow values fall between 0
and 255. A third channel for the flow image is created
by calculating the flow magnitude. The CNN base of the
LRCN is a hybrid of the Caffe [14] reference model, a mi-
nor variant of AlexNet [22], and the network used by Zeiler
& Fergus [47]. The net is pre-trained on the 1.2M image
ILSVRC-2012 [32] classification training subset of the Im-
ageNet [7] dataset, giving the network a strong initialization
to facilitate faster training and prevent over-fitting to the rel-
atively small video datasets. When classifying center crops,

the top-1 classification accuracy is 60.2% and 57.4% for
the hybrid and Caffe reference models, respectively. In our
baseline model, T video frames are individually classified
by a CNN. As in the LSTM model, whole video classifica-
tion is done by averaging scores across all video frames.

4.1. Evaluation

We evaluate our architecture on the UCF-101 dataset
[36] which consists of over 12,000 videos categorized into
101 human action classes. The dataset is split into three
splits, with a little under 8,000 videos in the training set for
each split. We report accuracy for split-1.

Figure 1, columns 2-3, compare video classification of
our proposed models (LRCN-fc6, LRCN-fc7) against the
baseline architecture for both RGB and flow inputs. Each
LRCN network is trained end-to-end. To determine if end-
to-end training is necessary, we also train a LRCN-fc6
network in which only the LSTM parameters are learned.
The fully fine-tuned network increases performance from
70.47% to 71.12%, demonstrating that end-to-end fine-
tuning is indeed beneficial. The LRCN-fc6 network yields
the best results for both RGB and flow and improves upon
the baseline network by 2.12 % and 4.75% respectively.

RGB and flow networks can be combined by comput-
ing a weighted average of network scores as proposed in
[33]. Like [33], we report two weighted averages of the
predictions from the RGB and flow networks in Table 1
(right). Since the flow network outperforms the RGB net-
work, weighting the flow network higher unsurprisingly
leads to better accuracy. In this case, LRCN outperforms
the baseline single-frame model by 3.88%.

The LRCN shows clear improvement over the baseline
single-frame system and approaches the accuracy achieved
by other deep models. [33] report the results on UCF-101

Large building with a clock <end>

LSTM LSTM LSTM LSTM LSTM LSTM

• Neural Image Description
‣ Conditions on an image  

‣ Generates a description
- Sequence of words

‣ Loss at every step

• Ask Your Neurons (Our)
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What is behind the table? 
sofa

How many doors are open? 
1

What is the object on the 
counter in the corner?       
microwave

• Dataset for Question Answering on Real-world images
• 1449 RGBD indoor images (NYU-Depth V2 dataset)
• 12.5k question-answer pairs about colors, numbers, objects
• Human-type subjectivity is common in the dataset
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Methods Accuracy WUPS @0.9

Baseline: Symbolic (NIPS’14) 7.86% 11.86%

Language Only (Our) 17.15% 22.80%

Vision + Language (Our) 19.43% 25.28%

Human performance (NIPS’14) 50.20% 50.82%

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions

We have presented a neural architecture for answering
natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.

Acknowledgements. Marcus Rohrbach was supported by
a fellowship within the FITweltweit-Program of the German
Academic Exchange Service (DAAD).

References

[1] J. Berant and P. Liang. Semantic parsing via paraphrasing.
In ACL, 2014.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, D. Bahdanau, and Y. Bengio. Learning phrase

7

What is on the 
refrigerator?
magnet, paper

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions

We have presented a neural architecture for answering
natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.

Acknowledgements. Marcus Rohrbach was supported by
a fellowship within the FITweltweit-Program of the German
Academic Exchange Service (DAAD).

References

[1] J. Berant and P. Liang. Semantic parsing via paraphrasing.
In ACL, 2014.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, D. Bahdanau, and Y. Bengio. Learning phrase

7

What is the color of the 
comforter?
blue, white

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions

We have presented a neural architecture for answering
natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.

Acknowledgements. Marcus Rohrbach was supported by
a fellowship within the FITweltweit-Program of the German
Academic Exchange Service (DAAD).

References

[1] J. Berant and P. Liang. Semantic parsing via paraphrasing.
In ACL, 2014.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, D. Bahdanau, and Y. Bengio. Learning phrase

7

How many drawers 
are there?
3

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions

We have presented a neural architecture for answering
natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.

Acknowledgements. Marcus Rohrbach was supported by
a fellowship within the FITweltweit-Program of the German
Academic Exchange Service (DAAD).

References

[1] J. Berant and P. Liang. Semantic parsing via paraphrasing.
In ACL, 2014.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, D. Bahdanau, and Y. Bengio. Learning phrase

7

What is the largest 
object?
bed



Towards a Visual Turing Test — Answering Questions on Images

Results on Full DAQUAR

!39

Methods Accuracy WUPS @0.9
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Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions

We have presented a neural architecture for answering
natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.
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Methods Accuracy WUPS @0.9

Baseline: Symbolic (NIPS’14) 7.86% 11.86%

Language Only (Our) 17.15% 22.80%

Vision + Language (Our) 19.43% 25.28%

Human performance (NIPS’14) 50.20% 50.82%

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).
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prior work by doubling performance on this challenging
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object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions

We have presented a neural architecture for answering
natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
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object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions

We have presented a neural architecture for answering
natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
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model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.

Acknowledgements. Marcus Rohrbach was supported by
a fellowship within the FITweltweit-Program of the German
Academic Exchange Service (DAAD).

References

[1] J. Berant and P. Liang. Semantic parsing via paraphrasing.
In ACL, 2014.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, D. Bahdanau, and Y. Bengio. Learning phrase

7

What is the largest 
object?
bed



Towards a Visual Turing Test — Answering Questions on Images

Qualitative Results

!41

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What is on the right side of 
the cabinet?
Vision + Language: 
Language Only:     

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What objects are found on the 
bed?
Vision + Language:   a                             
 
Language Only:          a             

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Neural-Image-QA: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 5. Correct answers by our “Neural-Image-QA” architecture.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Neural-Image-QA: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 6. Correct answers by our “Neural-Image-QA” architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Neural-Image-QA: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 7. Correct answers by our “Neural-Image-QA” architecture.

How many burner knobs are 
there?
Vision + Language: 4  
Language Only:      bed

bed

doll, pillow
6pillow

bed sheets,
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What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

How many chairs are there? 

Vision + Language: 1  
Language Only:      
Human:                   

How many glass cups are 
there?
Vision + Language: 2  
Language Only:     
Human:                  

What is on the left side of the 
bed?
Vision + Language: night stand  
Language Only:     
Human:                  2 4

4 6 night stand
ball
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1. New Performance Metric: Min Consensus
• WUPS handle word-level ambiguities
• But how to embrace many possible interpretations of both a question 

and a scene?
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What is the object on the 
floor in front of the wall? 
-.

Human 1: bed
Human 2: shelf 
Human 3: bed
Human 4: bookshelf
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• We extend WUPS scores by Min Consensus
‣ Finding at least one human answer that matches with the predicted one
‣ Treat all possible interpretations equal
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Figure 5. Study of inter human agreement. At x-axis: no consen-
sus (0%), at least half consensus (50%), full consensus (100%).
Results in %. Left: consensus on the whole data, right: consensus
on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-
swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:
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(9)

where for the i-th question Ai is the answer generated by the
architecture and T i

k is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
answers Ai and T i

k are sets of the words, and µ is a member-
ship measure, for instance WUP [34]. We call this metric
“Average Consensus Metric (ACM)” since, in the limits, as
K approaches the total number of humans, we truly mea-
sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement

Language only (ours)
- multiple words 8.86 12.46 38.89
- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05
- single word 9.13 13.06 43.48

Subset: � 50% agreement

Language only (ours)
- multiple words 21.17 27.43 66.68
- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30
- single word 24.10 30.94 71.95

Subset: Full Agreement

Language only (ours)
- multiple words 27.86 35.26 78.83
- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56
- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %
(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”
by replacing the averaging in Equation 9 with a max opera-
tor. We call such metric Min Consensus and suggest using
both metrics in the benchmarks. We will make the imple-
mentation of both metrics publicly available.
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Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset

What is the object on the 
floor in front of the wall? 
.

Human 1: bed
Human 2: shelf 
Human 3: bed
Human 4: bookshelf

1. New Performance Metric: Min Consensus
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Methods (Min Consensus) Accuracy WUPS @0.9

Language Only (Our) 22.56% 30.93%

Vision + Language (Our) 26.53% 34.87%

Human performance (Our) 60.50% 69.65%

Methods (Old Metric) Accuracy WUPS @0.9

Language Only (Our) 17.15% 22.8%

Vision + Language (Our) 19.43% 25.28%

Human performance (NIPS’14) 50.2% 50.82%



Towards a Visual Turing Test — Answering Questions on Images

Results on DAQUAR-Consensus

!46

What is in front of the curtain?
Model:     chair 
Human 1: guitar 
Human 2: chair    

What color are the beds?
Model:     white 
Human 1: white 
Human 2: pink    

How many steel chairs are there?
Model:     4 
Human 1: 2 
Human 2: 4    

What is the largest object?
Model:     bed 
Human 1: bed 
Human 2: quilt    



Towards a Visual Turing Test — Answering Questions on Images

• We extend WUPS scores by Average Consensus
‣ Averaging over multiple possible human answers
‣ Encourages the most agreeable answers 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Figure 5. Study of inter human agreement. At x-axis: no consen-
sus (0%), at least half consensus (50%), full consensus (100%).
Results in %. Left: consensus on the whole data, right: consensus
on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-
swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:
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µ(a, t)}

(9)

where for the i-th question Ai is the answer generated by the
architecture and T i

k is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
answers Ai and T i

k are sets of the words, and µ is a member-
ship measure, for instance WUP [34]. We call this metric
“Average Consensus Metric (ACM)” since, in the limits, as
K approaches the total number of humans, we truly mea-
sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement

Language only (ours)
- multiple words 8.86 12.46 38.89
- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05
- single word 9.13 13.06 43.48

Subset: � 50% agreement

Language only (ours)
- multiple words 21.17 27.43 66.68
- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30
- single word 24.10 30.94 71.95

Subset: Full Agreement

Language only (ours)
- multiple words 27.86 35.26 78.83
- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56
- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %
(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”
by replacing the averaging in Equation 9 with a max opera-
tor. We call such metric Min Consensus and suggest using
both metrics in the benchmarks. We will make the imple-
mentation of both metrics publicly available.
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Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset

For the Average Consensus:
answer chair is better than wall

What is in front of table? 
.

Human 1: chair
Human 2: chair  
Human 3: chair, bag
Human 4: wall

2. New Performance Metric: Average Consensus
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Methods (Average Consensus) Accuracy WUPS @0.9

Language Only (Our) 11.57% 18.97%

Vision + Language (Our) 13.51% 21.36%

Human performance (Our) 36.78% 45.68%
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Figure 5. Study of inter human agreement. At x-axis: no consen-
sus (0%), at least half consensus (50%), full consensus (100%).
Results in %. Left: consensus on the whole data, right: consensus
on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-
swering task, we have asked multiple participants to answer
the same question of the DAQUAR dataset given the respec-
tive image. We follow the same scheme as in the original
data collection effort, where the answer is a set of words or
numbers. We do not impose any further restrictions on the
answers. This extends the original data [20] to an average
of 5 test answers per image and question. We refer to this
dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:

1

NK

NX

i=1

KX

k=1

min{
Y

a2Ai

max
t2T i

k

µ(a, t),
Y

t2T i
k

max
a2Ai

µ(a, t)}

(9)

where for the i-th question Ai is the answer generated by the
architecture and T i

k is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
answers Ai and T i

k are sets of the words, and µ is a member-
ship measure, for instance WUP [34]. We call this metric
“Average Consensus Metric (ACM)” since, in the limits, as
K approaches the total number of humans, we truly mea-
sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement
Language only (ours)
- multiple words 8.86 12.46 38.89
- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05
- single word 9.13 13.06 43.48

Subset: � 50% agreement
Language only (ours)
- multiple words 21.17 27.43 66.68
- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30
- single word 24.10 30.94 71.95

Subset: Full Agreement
Language only (ours)
- multiple words 27.86 35.26 78.83
- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56
- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %
(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”
by replacing the averaging in Equation 9 with a max opera-
tor. We call such metric Min Consensus and suggest using
both metrics in the benchmarks. We will make the imple-
mentation of both metrics publicly available.

1
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max
k=1

0

@min{
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max
t2T i

k

µ(a, t),
Y

t2T i
k

max
a2Ai

µ(a, t)}

1

A

(10)

Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-
Consensus we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is a partial agreement,
but even full disagreement is possible. We split the dataset

Agreement Level

Amount of subjectivity in the task captured by the Consensus metric
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kernel length single view multi view
k = k  k

1 47.43 47.43
2 48.11 48.06
3 48.26 48.09
4 48.27 47.86

Table 7 Results on VQA validation set, “Question-only” model: Anal-
ysis of CNN questions encoders with different filter lengths, accuracy
in %, see Section 5.2.1 for discussion.

fication problem of the most frequent answers in the train-
ing set. For the evaluation of the different model variants
and design choices, we train on the training set and test on
the validation set. Only the final evaluations (Table 14) are
evaluated on the test set of the VQA challenge, we evalu-
ate on both parts test-dev and test-standard, where for the
latter the answers are not publicly available. As a perfor-
mance measure we use a Consensus variant of Accuracy
introduced in Antol et al (2015), where the predicted an-
swer gets score between 0 and 1, with 1 if it matches with at
least three human answers. We use ADAM (Kingma and Ba,
2014) throughout our experiments as we found out it per-
forms better than SGD with momentum. We keep default
hyper-parameters for ADAM. Employed Recurrent Neural
Networks maps input question into 500 dimensional vec-
tor representation. All the CNNs for text are using 500 fea-
ture maps in our experiments, but the output dimensionality
also depends on the number of views. In preliminary ex-
periments we found that removing question mark ’?’ in the
questions slightly improves the results, and we report the
numbers only with this setting. Since VQA has 10 answers
associated with each question, we need to consider a suit-
able training strategy that takes this into account. We have
examined the following strategies: picking an answer ran-
domly, randomly but if possible annotated as confidently
answered, all answers, or choosing the most frequent an-
swer. In the following, we only report the results using the
last strategy as we have found out little difference in accu-
racy between the strategies. To allow training and evaluating
many different models with limited time and computational
power, we do not fine-tune the visual representations in these
experiments, although our model would allow us to do so.
All the models, which are publicly available under https:
//github.com/mateuszmalinowski/Kraino, are
implemented in Keras (Chollet, 2015) and Theano (Bastien
et al, 2012).

5.2 Question-only

We start our analysis from “Question-only” models that do
not use images to answer on questions. Note that the “Question-
only” baselines play an important role in the question an-
swering about images tasks since it clearly studies effects

Question Word embedding
encoder learned GLOVE

BOW 47.41 47.91
CNN 48.26 48.53
GRU 47.60 48.11
LSTM 47.80 48.58

Table 8 Results on VQA validation set, “Question-only” model: Anal-
ysis of different questions encoders, accuracy in %, see Section 5.2 for
discussion.

top frequent answers
Encoder 1000 2000 3000

BOW 47.91 48.13 47.94
CNN 48.53 48.67 48.57
LSTM 48.58 48.86 48.65

Table 9 Results on VQA validation set, “Question-only” model: Anal-
ysis of the number of top frequent answer classes, with different ques-
tion encoders. All using GLOVE; accuracy in %; see Section 5.2.4 for
discussion.

of added vision. Hence, better overall performance of the
model is not obscured by a better language model. To un-
derstand better different design choices, we have conducted
our analysis along the different ’design’ dimensions.

5.2.1 CNN questions encoder

We first examine different hyper-parameters for CNNs to en-
code the question. We first consider the filter’s length of the
convolutional kernel. We run the model over different kernel
lengths ranging from 1 to 4 (Table 7, left column). We no-
tice that increasing the kernel lengths improves performance
up to length 3 were the performance levels out, we thus use
kernel length 3 in the following experiments for, such CNN
can be interpreted as a trigram model. We also tried to run
simultaneously a few kernels with different lengths. In Ta-
ble 7 (right column) one view corresponds to a kernel length
1, two views correspond to two kernels with length 1 and 2,
three views correspond to length 1, 2 and 3, etc. However,
we find that the best performance still achieve with a single
view and kernel length 3 or 4.

5.2.2 BOW questions encoder

Alternatively to neural network encoders, we consider Bag-
Of-Words (BOW) approach where one-hot representations
of the question words are first mapped to a shared embed-
ding space, and subsequently summed over (Equation 13),
i.e.  (question) :=

P
word We(word). Surprisingly, such a

simple approach gives very competitive results (first row in
Table 8) compared to the CNN encoding discussed in the
previous section (second row).
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kernel length single view multi view
k = k  k

1 47.43 47.43
2 48.11 48.06
3 48.26 48.09
4 48.27 47.86

Table 7 Results on VQA validation set, language only: Analysis of
CNN questions encoders with different filter lengths, accuracy in %,
see Section 5.2.1 for discussion.

evaluated on the test set of the VQA challenge, we evalu-
ate on both parts test-dev and test-standard, where for the
latter the answers are not publicly available. As a perfor-
mance measure we use a Consensus variant of Accuracy
introduced in Antol et al (2015), where the predicted an-
swer gets score between 0 and 1, with 1 if it matches with at
least three human answers. We use ADAM (Kingma and Ba,
2014) throughout our experiments as we found out it per-
forms better than SGD with momentum. We keep default
hyper-parameters for ADAM. Employed Recurrent Neural
Networks maps input question into 500 dimensional vec-
tor representation. All the CNNs for text are using 500 fea-
ture maps in our experiments, but the output dimensionality
also depends on the number of views. In preliminary ex-
periments we found that removing question mark ’?’ in the
questions slightly improves the results, and we report the
numbers only with this setting. Since VQA has 10 answers
associated with each question, we need to consider a suitable
training strategy that takes this into account. We have exam-
ined the following strategies: picking an answer randomly,
randomly but if possible annotated as confidently answered,
all answers, or choosing the most frequent answer. In the fol-
lowing, we only report the results using the last strategy as
we have found out little difference in accuracy between the
strategies. To allow training and evaluating many different
models with limited time and computational power, we do
not fine-tune the visual representations in these experiments,
although our model would allow us to do so. All the mod-
els, which we will make publicly available at the time of
publication, are implemented in Keras (Chollet, 2015) and
Theano (Bastien et al, 2012).

5.2 Question-only

We start our analysis from “Question-only” models that do
not use images to answer on questions. Note that the “Question-
only” baselines play an important role in the question an-
swering about images tasks since it clearly studies effects
of added vision. Hence, better overall performance of the
model is not obscured by a better language model. To un-
derstand better different design choices, we have conducted
our analysis along the different ’design’ dimensions.

Question Word embedding
encoder learned GLOVE

BOW 47.41 47.91
CNN 48.26 48.53
GRU 47.60 48.11
LSTM 47.80 48.58

Table 8 Results on VQA validation set, language only: Analysis of
different questions encoders, accuracy in %, see Section 5.2 for dis-
cussion.

top frequent answers
Encoder 1000 2000 3000

BOW 47.91 48.13 47.94
CNN 48.53 48.67 48.57
LSTM 48.58 48.86 48.65

Table 9 Results on VQA validation set, language only: Analysis of
the number of top frequent answer classes, with different question en-
coders. All using GLOVE; accuracy in %; see Section 5.2.4 for discus-
sion.

5.2.1 CNN questions encoder

We first examine different hyper-parameters for CNNs to en-
code the question. We first consider the filter’s length of the
convolutional kernel. We run the model over different kernel
lengths ranging from 1 to 4 (Table 7, left column). We no-
tice that increasing the kernel lengths improves performance
up to length 3 were the performance levels out, we thus use
kernel length 3 in the following experiments for, such CNN
can be interpreted as a trigram model. We also tried to run
simultaneously a few kernels with different lengths. In Ta-
ble 7 (right column) one view corresponds to a kernel length
1, two views correspond to two kernels with length 1 and 2,
three views correspond to length 1, 2 and 3, etc. However,
we find that the best performance still achieve with a single
view and kernel length 3 or 4.

5.2.2 BOW questions encoder

Alternatively to neural network encoders, we consider Bag-
Of-Words (BOW) approach where one-hot representations
of the question words are first mapped to a shared embed-
ding space, and subsequently summed over, i.e.  (question) :=P

word We(word). Surprisingly, such a simple approach gives
very competitive results (first row in Table 8) compared to
the CNN encoding discussed in the previous section (second
row).

Recurrent questions encoder We examine two recurrent ques-
tions encoders, LSTM (Hochreiter and Schmidhuber, 1997)
and a simpler GRU (Cho et al, 2014). The last two rows of
Table 8 show a slight advantage of using LSTM.

Kim’14 ; Kalchbrenner’14
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Question Encoder

Visual Encoder C Answer Decoder

Fig. 4 Our Refined Ask Your Neurons architecture for answering ques-
tions about images that includes the following modules: visual and
question encoders, and answer decoder. A multimodal embedding C
combines both encodings into a joint space that the decoder decodes
from. See subsection 3.2 for details.

3.2.1 Question encoders

The main goal of a question encoder is to capture a mean-
ing of the question, which we write here as  (q). Such an
encoder can range from a very structured one like Seman-
tic Parser used in Malinowski and Fritz (2014a) and Liang
et al (2013) that explicitly model compositional nature of the
question, to structureless Bag-Of-Word (BOW) approaches
that temporarily sum up the input question words (Figure 6).
In this work, we investigate a few encoders within such spec-
trum. Two recurrent question encoders, LSTM (Hochreiter
and Schmidhuber, 1997) (see subsubsection 3.1.1) and GRU
(Cho et al, 2014), that assume a temporal ordering in ques-
tions, as well as the aforementioned BOW.

Gated Recurrent Unit (GRU). GRU is a simpler variant of
LSTM that also uses gates (a reset gate r and an update
gate u) in order to keep long term dependencies. GRU is
expressed by the following set of equations:

rt = �(Wvrvt + Whrht�1 + br) (9)
ut = �(Wvuvt + Whuht�1 + bu) (10)
ct = Wvcvt + Whcht�1 + bc (11)
ht = ut � ht�1 + (1 � ut) � �(ct) (12)

where � is the sigmoid function, � is the hyperbolic tangent,
and vt, ht are input and hidden state at time t. The repre-
sentation of the question q is the hidden vector at last time
step, i.e.  RNN(q) := hT .

Bag-Of-Word (BOW). Conceptually the simplest, the BOW
approach (Figure 6) sums up over the words embeddings:

 BOW(q) :=
nX

t

We(qt). (13)

where W e is a matrix and qt is one-hot binary vector of the
word with exactly one 1 pointing to a place of the ’word’
in the vocabulary (Figure 6). BOW rejects words ordering
in the question, so that especially questions with swapped
arguments of spatial prepositions become indistinguishable,
i.e.
 BOW(red chair left of sofa) =  BOW(red sofa left of chair)
in the BOW sentence representation.

What is behind the table?

Embeddings of one-hot 
question words’ vectors

Filter length 3  
(trigram model)

Filter length 2 
(bigram model)

Number of filters

Second viewThird view

Question’s representation 

Temporal aggregation 
(sum pooling, RNN)

Fig. 5 CNN for encoding the question that convolves word embed-
dings (learnt or pre-trained) with different kernels, second and third
views are shown, see section 3.2.1 and Yang et al (2015) for details.

pixels, and then take the features from the last pooling layer,
which therefore have a dimension of 512�14�14, as shown
in Fig. 2. 14 � 14 is the number of regions in the image and
512 is the dimension of the feature vector for each region.
Accordingly, each feature vector in fI corresponds to a 32�
32 pixel region of the input images. We denote by fi, i 2
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer
perceptron to transform each feature vector to a new vec-
tor that has the same dimension as the question vector (de-
scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual
feature vector for the region indexed by i.

3.2. Question Model
As [25, 22, 6] show that LSTMs and CNNs are powerful

to capture the semantic meaning of texts, we explore both
models for question representations in this study.

3.2.1 LSTM based question model

LSTM LSTM LSTM…

what are bicycle

We We We

Question:

…

…

Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell
ct which reserves the state of a sequence. At each step,
the LSTM unit takes one input vector (word vector in our
case) xt and updates the memory cell ct, then output a hid-
den state ht. The update process uses the gate mechanism.
A forget gate ft controls how much information from past
state ct�1 is preserved. An input gate it controls how much
the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is
fed to the output as hidden state. The detailed update pro-
cess is as follows:

it =�(Wxixt + Whiht�1 + bi), (3)
ft =�(Wxfxt + Whfht�1 + bf ), (4)
ot =�(Wxoxt + Whoht�1 + bo), (5)
ct =ftct�1 + it tanh(Wxcxt + Whcht�1 + bc), (6)
ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and
memory cell, respectively. The weight matrix and bias are
parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot
vector representation of word at position t, we first embed
the words to a vector space through an embedding matrix
xt = Weqt. Then for every time step, we feed the embed-
ding vector of words in the question to LSTM:

xt =Weqt, t 2 {1, 2, ...T}, (8)
ht =LSTM(xt), t 2 {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting
in the basket on a bicycle is fed into the
LSTM. Then the final hidden layer is taken as the repre-
sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model

unigram
bigram

trigram
max pooling 

over time

convolution

w
hat

are

sitting

bicycle
…Question:

embedding

Figure 4: CNN based question model
In this study, we also explore to use a CNN similar

to [11] for question representation. Similar to the LSTM-
based question model, we first embed words to vectors
xt = Weqt and get the question vector by concatenating
the word vectors:

x1:T = [x1, x2, ..., xT ]. (10)

Then we apply convolution operation on the word embed-
ding vectors. We use three convolution filters, which have
the size of one (unigram), two (bigram) and three (trigram)
respectively. The t-th convolution output using window size
c is given by:

hc,t = tanh(Wcxt:t+c�1 + bc). (11)

The filter is applied only to window t : t + c � 1 of size c.
Wc is the convolution weight and bc is the bias. The feature
map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T�c+1]. (12)

Then we apply max-pooling over the feature maps of the
convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T�c+1]. (13)
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Fig. 6 Bag-Of-Words (BOW) for encoding the question, see sec-
tion 3.2.1 for details.

Convolutional Neural Network (CNN). Convolutional Neu-
ral Network (CNN) that models language (Kim, 2014; Kalch-
brenner et al, 2014; Ma et al, 2016; Yang et al, 2015) is gain-
ing popularity due to its speed and good accuracy for the
language-oriented tasks. Since it considers a larger context,
it arguably maintains more structure than BOW but does not
model such long term dependencies as recurrent neural net-
works. Figure 5 depicts our CNN architecture, which is very
similar to Ma et al (2016) and Yang et al (2015), that con-
volves word embeddings (we either learn it jointly with the
whole model or use GLOVE (Pennington et al, 2014) in our
experiments) with three convolutional kernels of length 1,
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no norm L2 norm

Concatenation 47.21 52.39
Summation 40.67 53.27
Piece-wise multiplication 49.50 52.70

Table 10 Results on VQA validation set, vision and language: Anal-
ysis of different multimodal techniques that combine vision with lan-
guage on BOW (with GLOVE word embedding and VGG-19 fc7), ac-
curacy in %, see Section 5.3.1.

Method Accuracy

BOW 53.27
CNN 54.23
GRU 54.23
LSTM 54.29

Table 11 Results on VQA validation set, vision and language: Anal-
ysis of different language encoders with GLOVE word embedding,
VGG-19, and Summation to combine vision and language. Results in
%, see Section 5.3.2 for discussion.

Recurrent questions encoder We examine two recurrent ques-
tions encoders, LSTM (Hochreiter and Schmidhuber, 1997)
and a simpler GRU (Cho et al, 2014). The last two rows of
Table 8 show a slight advantage of using LSTM.

5.2.3 Pre-trained words embedding

In all the previous experiments, we jointly learn the embed-
ding transformation W e together with the whole architec-
ture only on the VQA dataset. This means we do not have
any means for dealing with unknown words in questions at
test time apart from using a special token hUNKi to indicate
such class. To address such shortcoming, we investigate the
pre-trained word embedding transformation GLOVE (Pen-
nington et al, 2014) that encodes question words (technically
it maps one-hot vector into a 300 dimensional real vector).
This choice naturally extends the vocabulary of the ques-
tion words to about 2 million words extracted a large cor-
pus of web data – Common Crawl (Pennington et al, 2014)
– that is used to train the GLOVE embedding. Since the
BOW architecture in this scenario becomes shallow (only
classification weights are learnt), we add an extra hidden
layer between pooling and classification (without this em-
bedding, accuracy drops by 5%). Table 8 (right column)
summarizes our experiments with GLOVE. For all question
encoders, the word embedding consistently improves perfor-
mance which confirms that using a word embedding model
learnt from a larger corpus helps. LSTM benefits most from
GLOVE embedding, archiving the overall best performance
with 48.58% accuracy.

5.2.4 Top most frequent answers

Our experiments reported in Table 9 investigate predictions
using different number of answer classes. We experiment

Method Accuracy

AlexNet 53.69
GoogLeNet 54.52
VGG-19 54.29
ResNet-152 55.52

Table 12 Results on VQA validation set, vision and language: Differ-
ent visual encoders (with LSTM, GLOVE, the summation technique,
l2 normalized features). Results in %, see Section 5.3.3 for discussion.

Question only + Vision

Learnt - GLOVE - word embedding

Question encoding # Top 1000 answers Top 2000 answers

BOW 47.41 47.91 48.13 54.45
CNN 48.26 48.53 48.67 55.34
LSTM 47.80 48.58 48.86 55.52

Table 13 Results on VQA validation set, vision and language: Sum-
mary of our results, results in %, see Section 5.4 for discussion.
Columns denote, from the left to right, word embedding learnt to-
gether with the architecture, GLOVE embedding that replaces learnt
word embedding, truncating the dataset to 2000 most frequent answer
classes, and finally added visual representation to the model (ResNet-

152).

with a truncation of 1000, 2000, or 4000 most frequent classes.
For all question encoders (and always using GLOVE word
embedding), we find that a truncation at 2000 words is best,
being apparently a good compromise between answer fre-
quency and missing recall.

5.2.5 Summary Question-only

We achieve the best “Question-only” accuracy with GLOVE
word embedding, LSTM sentence encoding, and using the
top 2000 most frequent answers. This achieves an perfor-
mance of 48.86% accuracy. In the remaining experiments,
we use these settings for language and answer encoding.

5.3 Vision and Language

Although Question-only models can answer on a substantial
number of questions as they arguably capture common sense
knowledge, for further development we also need images.

5.3.1 Multimodal fusion

Table 10 investigates different techniques that combine vi-
sual and language representations. To speed up training, we
combine the last unit of the question encoder with the visual
encoder, as it is explicitly shown in Figure 4. In the exper-
iments we use Concatenation, Summation, and Piece-wise
multiplication on the BOW language encoder with GLOVE
word embedding and features extracted from the VGG-19
net. In addition, we also investigate using L2 normalization
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no norm L2 norm

Concatenation 47.21 52.39
Summation 40.67 53.27
Piece-wise multiplication 49.50 52.70

Table 10 Results on VQA validation set, vision and language: Anal-
ysis of different multimodal techniques that combine vision with lan-
guage on BOW (with GLOVE word embedding and VGG-19 fc7), ac-
curacy in %, see Section 5.3.1.

Method Accuracy

BOW 53.27
CNN 54.23
GRU 54.23
LSTM 54.29

Table 11 Results on VQA validation set, vision and language: Anal-
ysis of different language encoders with GLOVE word embedding,
VGG-19, and Summation to combine vision and language. Results in
%, see Section 5.3.2 for discussion.

Recurrent questions encoder We examine two recurrent ques-
tions encoders, LSTM (Hochreiter and Schmidhuber, 1997)
and a simpler GRU (Cho et al, 2014). The last two rows of
Table 8 show a slight advantage of using LSTM.

5.2.3 Pre-trained words embedding

In all the previous experiments, we jointly learn the embed-
ding transformation W e together with the whole architec-
ture only on the VQA dataset. This means we do not have
any means for dealing with unknown words in questions at
test time apart from using a special token hUNKi to indicate
such class. To address such shortcoming, we investigate the
pre-trained word embedding transformation GLOVE (Pen-
nington et al, 2014) that encodes question words (technically
it maps one-hot vector into a 300 dimensional real vector).
This choice naturally extends the vocabulary of the ques-
tion words to about 2 million words extracted a large cor-
pus of web data – Common Crawl (Pennington et al, 2014)
– that is used to train the GLOVE embedding. Since the
BOW architecture in this scenario becomes shallow (only
classification weights are learnt), we add an extra hidden
layer between pooling and classification (without this em-
bedding, accuracy drops by 5%). Table 8 (right column)
summarizes our experiments with GLOVE. For all question
encoders, the word embedding consistently improves perfor-
mance which confirms that using a word embedding model
learnt from a larger corpus helps. LSTM benefits most from
GLOVE embedding, archiving the overall best performance
with 48.58% accuracy.

5.2.4 Top most frequent answers

Our experiments reported in Table 9 investigate predictions
using different number of answer classes. We experiment

Method Accuracy

AlexNet 53.69
GoogLeNet 54.52
VGG-19 54.29
ResNet-152 55.52

Table 12 Results on VQA validation set, vision and language: Differ-
ent visual encoders (with LSTM, GLOVE, the summation technique,
l2 normalized features). Results in %, see Section 5.3.3 for discussion.

Question only + Vision

Learnt - GLOVE - word embedding

Question encoding # Top 1000 answers Top 2000 answers

BOW 47.41 47.91 48.13 54.45
CNN 48.26 48.53 48.67 55.34
LSTM 47.80 48.58 48.86 55.52

Table 13 Results on VQA validation set, vision and language: Sum-
mary of our results, results in %, see Section 5.4 for discussion.
Columns denote, from the left to right, word embedding learnt to-
gether with the architecture, GLOVE embedding that replaces learnt
word embedding, truncating the dataset to 2000 most frequent answer
classes, and finally added visual representation to the model (ResNet-

152).

with a truncation of 1000, 2000, or 4000 most frequent classes.
For all question encoders (and always using GLOVE word
embedding), we find that a truncation at 2000 words is best,
being apparently a good compromise between answer fre-
quency and missing recall.

5.2.5 Summary Question-only

We achieve the best “Question-only” accuracy with GLOVE
word embedding, LSTM sentence encoding, and using the
top 2000 most frequent answers. This achieves an perfor-
mance of 48.86% accuracy. In the remaining experiments,
we use these settings for language and answer encoding.

5.3 Vision and Language

Although Question-only models can answer on a substantial
number of questions as they arguably capture common sense
knowledge, for further development we also need images.

5.3.1 Multimodal fusion

Table 10 investigates different techniques that combine vi-
sual and language representations. To speed up training, we
combine the last unit of the question encoder with the visual
encoder, as it is explicitly shown in Figure 4. In the exper-
iments we use Concatenation, Summation, and Piece-wise
multiplication on the BOW language encoder with GLOVE
word embedding and features extracted from the VGG-19
net. In addition, we also investigate using L2 normalization

Visual 
Encoder

Multimodal 
Embedding

Answer 
Decoder

Question 
Encoder
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• The performance of the methods is dependent on the number of 
answers considered

• Many answers don’t have enough examples for learning good 
representation

• Architectures often decide to model only top frequent answers

Results on VQA
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kernel length single view multi view
k = k  k

1 47.43 47.43
2 48.11 48.06
3 48.26 48.09
4 48.27 47.86

Table 7 Results on VQA validation set, “Question-only” model: Anal-
ysis of CNN questions encoders with different filter lengths, accuracy
in %, see Section 5.2.1 for discussion.

fication problem of the most frequent answers in the train-
ing set. For the evaluation of the different model variants
and design choices, we train on the training set and test on
the validation set. Only the final evaluations (Table 14) are
evaluated on the test set of the VQA challenge, we evalu-
ate on both parts test-dev and test-standard, where for the
latter the answers are not publicly available. As a perfor-
mance measure we use a Consensus variant of Accuracy
introduced in Antol et al (2015), where the predicted an-
swer gets score between 0 and 1, with 1 if it matches with at
least three human answers. We use ADAM (Kingma and Ba,
2014) throughout our experiments as we found out it per-
forms better than SGD with momentum. We keep default
hyper-parameters for ADAM. Employed Recurrent Neural
Networks maps input question into 500 dimensional vec-
tor representation. All the CNNs for text are using 500 fea-
ture maps in our experiments, but the output dimensionality
also depends on the number of views. In preliminary ex-
periments we found that removing question mark ’?’ in the
questions slightly improves the results, and we report the
numbers only with this setting. Since VQA has 10 answers
associated with each question, we need to consider a suit-
able training strategy that takes this into account. We have
examined the following strategies: picking an answer ran-
domly, randomly but if possible annotated as confidently
answered, all answers, or choosing the most frequent an-
swer. In the following, we only report the results using the
last strategy as we have found out little difference in accu-
racy between the strategies. To allow training and evaluating
many different models with limited time and computational
power, we do not fine-tune the visual representations in these
experiments, although our model would allow us to do so.
All the models, which are publicly available under https:
//github.com/mateuszmalinowski/Kraino, are
implemented in Keras (Chollet, 2015) and Theano (Bastien
et al, 2012).

5.2 Question-only

We start our analysis from “Question-only” models that do
not use images to answer on questions. Note that the “Question-
only” baselines play an important role in the question an-
swering about images tasks since it clearly studies effects

Question Word embedding
encoder learned GLOVE

BOW 47.41 47.91
CNN 48.26 48.53
GRU 47.60 48.11
LSTM 47.80 48.58

Table 8 Results on VQA validation set, “Question-only” model: Anal-
ysis of different questions encoders, accuracy in %, see Section 5.2 for
discussion.

top frequent answers
Encoder 1000 2000 3000

BOW 47.91 48.13 47.94
CNN 48.53 48.67 48.57
LSTM 48.58 48.86 48.65

Table 9 Results on VQA validation set, “Question-only” model: Anal-
ysis of the number of top frequent answer classes, with different ques-
tion encoders. All using GLOVE; accuracy in %; see Section 5.2.4 for
discussion.

of added vision. Hence, better overall performance of the
model is not obscured by a better language model. To un-
derstand better different design choices, we have conducted
our analysis along the different ’design’ dimensions.

5.2.1 CNN questions encoder

We first examine different hyper-parameters for CNNs to en-
code the question. We first consider the filter’s length of the
convolutional kernel. We run the model over different kernel
lengths ranging from 1 to 4 (Table 7, left column). We no-
tice that increasing the kernel lengths improves performance
up to length 3 were the performance levels out, we thus use
kernel length 3 in the following experiments for, such CNN
can be interpreted as a trigram model. We also tried to run
simultaneously a few kernels with different lengths. In Ta-
ble 7 (right column) one view corresponds to a kernel length
1, two views correspond to two kernels with length 1 and 2,
three views correspond to length 1, 2 and 3, etc. However,
we find that the best performance still achieve with a single
view and kernel length 3 or 4.

5.2.2 BOW questions encoder

Alternatively to neural network encoders, we consider Bag-
Of-Words (BOW) approach where one-hot representations
of the question words are first mapped to a shared embed-
ding space, and subsequently summed over (Equation 13),
i.e.  (question) :=

P
word We(word). Surprisingly, such a

simple approach gives very competitive results (first row in
Table 8) compared to the CNN encoding discussed in the
previous section (second row).
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Answer Statistic: Rare World Issue
• Highly unbalanced problem
• Strong results for method that focus on subset (e.g. restricted output 

space, single word answers)
• Issue of dataset? Issue of metric?
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VQA DAQUAR

• Interesting read: 
Simple Baseline for Visual Question Answering  
Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus

http://arxiv.org/find/cs/1/au:+Zhou_B/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Tian_Y/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Sukhbaatar_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Szlam_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Fergus_R/0/1/0/all/0/1
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“Ask your neurons" again: How far goes global vision?
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Test-dev Test-standard
Yes/No Number Other All Yes/No Number Other All

DMN+ (Xiong et al, 2016) 80.5 36.8 48.3 60.3 - - - 60.4
FDA (Ilievski et al, 2016) 81.1 36.2 45.8 59.2 - - - 59.5
AMA (Wu et al, 2016) 81.0 38.4 45.2 59.2 81.1 37.1 45.8 59.4
SAN(2, CNN) (Yang et al, 2015) 79.3 36.6 46.1 58.7 - - - 58.9
Refined Ask Your Neurons 78.4 36.4 46.3 58.4 78.2 36.3 46.3 58.4
SMem-VQA (Xu and Saenko, 2015) 80.9 37.3 43.1 58.0 80.9 37.5 43.5 58.2
D-NMN (Andreas et al, 2016a) 80.5 37.4 43.1 57.9 - - - 58.0
DPPnet (Noh et al, 2015) 80.7 37.2 41.7 57.2 80.3 36.9 42.2 57.4
iBOWIMG (Zhou et al, 2015) 76.5 35.0 42.6 55.7 76.8 35.0 42.6 55.9
LSTM Q+I (Antol et al, 2015) 78.9 35.2 36.4 53.7 - - - 54.1
Comp. Mem. (Jiang et al, 2015) 78.3 35.9 34.5 52.7 - - - -

Table 15 Results on VQA test set, comparison with state-of-the-art: accuracy in %, from the challenge test server. Dash ’-’ denotes lack of data.

Accuracy on subset WUPS@0.9 on subset WUPS@0 on subset
all single word all single word all single word

Global

Ask Your Neurons 19.43 21.67 25.28 27.99 62.00 65.11
Refined Ask Your Neurons 24.48 26.67 29.78 32.55 62.80 66.25
Refined Ask Your Neurons ⇤ 25.74 27.26 31.00 33.25 63.14 66.79
IMG-CNN (Ma et al, 2016) 21.47 24.49 27.15 30.47 59.44 66.08

Attention

SAN (2, CNN) (Yang et al, 2015) - 29.30 - 35.10 - 68.60
DMN+ (Xiong et al, 2016) - 28.79 - - - -
ABC-CNN (Chen et al, 2015) - 25.37 - 31.35 - 65.89
Comp. Mem. (Jiang et al, 2015) 24.37 - 29.77 - 62.73 -

Table 16 Comparison with state-of-the-art on DAQUAR. Refined Ask Your Neurons architecture: LSTM + Vision with GLOVE and ResNet-152.
Ask Your Neurons architecture: originally presented in (Malinowski et al, 2015), results in %. In the comparison, we use original data (all), or a
subset with only single word answers (single word) that covers about 90% of the original data. Asterisk ’⇤’ after the method denotes using a box
filter that smooths the otherwise noisy validation accuracies. Dash ’-’ denotes lack of data.

This shows how important a strong visual model is, as well
as the aforementioned details used in training. Likewise to
our conclusions on VQA, we are also observing an improve-
ment with attention based models (comparison in Attention

and Global sections in Table 16).

7 Conclusions

We have presented a neural architecture for answering natu-
ral language questions about images that contrasts with prior
efforts based on semantic parsing and outperforms prior sym-
bolic based approach by doubling performance on this chal-
lenging task. A variant of our model that does not use the
image to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense and prior knowledge that humans
use to accomplish this task. We observe that indoor scene
statistics, spatial reasoning, and small objects are not well
captured by the global CNN representation. We have ex-

tended our existing DAQUAR dataset to new DAQUAR-
Consensus, which now provides multiple reference answers
which allows to study inter-human agreement and consen-
sus on the question answer task. We propose two new met-
rics: “Average Consensus”, which takes into account human
disagreement, and “Min Consensus” that captures disagree-
ment in human question answering. Finally, we extend our
analysis to a large-scale dataset VQA showing competitive
performance, yet still using global visual model, and train-
ing the model solely on the provided question answer image
triples. Our analysis also shows the importance of strong vi-
sual model. Guided by our findings on VQA, we re-train our
model from scratch on DAQUAR and show a significant im-
provement of about 5% and 4.5% in Accuracy and WUPS
at 0.9 respectively.

Acknowledgements Marcus Rohrbach was supported by a fellowship
within the FITweltweit-Program of the German Academic Exchange
Service (DAAD). The project was in part supported by the Collabora-
tive Research Center (CRC) 1223 from the German Research Founda-
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Towards a Visual Turing Test — Answering Questions on Images

Conclusions
• Towards a Visual Turing Test

‣ Can machine answer questions about images?

• Novel Neural-based architecture
• End-to-end training on Image-Question-Answer triples
• Doubles the performance of the previous work on DAQUAR
• New Consensus Metrics to deal with many interpretations
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Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words aq,x =

�
a1,a2, ...,aN (q,x)

 
,

where at are words from a finite vocabulary V 0, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V 0 [ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

ât = argmax
a2V

p(a|x, q, Ât�1;✓) (2)

where Ât�1 = {â1, . . . , ât�1} is the set of previous words,
with Â0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when ât = $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ Ât�1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =⇥
q1, . . . , qn�1, J?K

⇤
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;✓) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].

Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât�1], i.e.
q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a
concatenation of [x, q̂t].

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the correspond-
ing answer word at. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity � : R 7! [0, 1], �(v) = (1 + e�v)

�1

and the hyperbolic tangent nonlinearity � : R 7! [�1, 1],
�(v) = ev�e�v

ev+e�v = 2�(2v)� 1, the LSTM updates for time
step t given inputs vt, ht�1, and the memory cell ct�1 as
follows:

it = �(Wvivt +Whiht�1 + bi) (3)
f t = �(Wvfvt +Whfht�1 + bf ) (4)
ot = �(Wvovt +Whoht�1 + bo) (5)
gt = �(Wvgvt +Whght�1 + bg) (6)
ct = f t � ct�1 + it � gt (7)
ht = ot � �(ct) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly

3

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What is on the right side of 
the cabinet?
Vision + Language: bed  
Language Only:     bed

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Neural-Image-QA: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 5. Correct answers by our “Neural-Image-QA” architecture.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Neural-Image-QA: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 6. Correct answers by our “Neural-Image-QA” architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Neural-Image-QA: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 7. Correct answers by our “Neural-Image-QA” architecture.

How many burner knobs 
are there?
Vision + Language: 4  
Language Only:     6
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Spectrum between Symbolic and Vector-based 
Approaches

• symbolic representation 
• high level of introspection  
• disjoint modules 
• “detailed” visual 

representation 
• limit coverage of 

concepts; semantic 
parsing can be fragile
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• vector representation 
• nebulous - but some hope 
• end to end learning 
• global CNN representation 

• continuous embedding of 
concepts

classic/symbolic
(NIPS’14)

deep learning
(ICCV’15)
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Figure 1: Overview of our approach to question answering with multiple latent worlds in contrast to single
world approach.

�W(T )] with the evaluation function �W , that evaluates a logical form on the world W . Follow-
ing [1] we use DCS Trees that yield the following recursive evaluation function �W : �W(T ) :=Td

j {v : v 2 �W(p), t 2 �W(Tj), Rj(v, t)} where T := hp, (T1, R1), (T2, R2), ..., (Td, Rd)i is
the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td, and
relations Rj that define the relationship between the current node and a subtree Tj .

The distribution over logical forms is modeled by a log-linear distribution P (T |Q) /
exp(✓T�(Q, T )) with features � measuring compatibility between Q and T and parameters ✓ learnt
from training data. The model learns by alternating between searching over a restricted space of
valid trees and gradient descent updates of the model parameters ✓. For a more detailed exposition,
we refer the reader to [1].

Since the method is agnostic to the choice of the knowledge representation W , it can be used for the
grounding problem with the image facts (middle and top parts of Figure 1) as demonstrated by [5].
In the paper, we give a special name to such worlds - perceived worlds.

Question answering on real-world images based on a perceived world Similar to [5], we
extend the work of [1] to operate now on what we call perceived world W . This still cor-
responds the single world approach in our overview Figure 1. However our world is now
populated with “facts” derived from automatic, semantic image segmentations S and we also
define predicates that are spatial relations in visual scenes. Therefore, we build this world
by running a state-of-the-art semantic segmentation algorithm [15] over the images, collect-
ing the recognized information about objects such as object class, 3D position, and color
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(a) Sampled worlds.
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(b) Object’s coordinates.

Figure 2: Fig. 2a shows a few sampled worlds. In the clock-wise order: original picture, most confident world,
and three possible worlds. Although, at first glance the most confident world seems to be a reasonable approach,
our experiments shows opposite - we can benefit from imperfect but multiple worlds. Fig. 2b shows object’s
coordinates (original and Z, Y , X images in the clock-wise order), which better represent the spatial location
of the objects than the image coordinates.
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Predicate Definition
closeAbove(A, B) above(A, B) and (Ymin(B) < Ymax(A) + ✏)

closeLeftOf(A, B) leftOf(A, B) and (Xmin(B) < Xmax(A) + ✏)
closeInFrontOf(A, B) inFrontOf(A, B) and (Zmin(B) < Zmax(A) + ✏)

Xaux(A, B) Xmean(A) < Xmax(B) and Xmin(B) < Xmean(A)
Zaux(A, B) Zmean(A) < Zmax(B) and Zmin(B) < Zmean(A)
haux(A, B) closeAbove(A, B) or closeBelow(A, B)
vaux(A, B) closeLeftOf(A, B) or closeRightOf(A, B)

au
xi

lia
ry

re
la

tio
ns

daux(A, B) closeInFrontOf(A, B) or closeBehind(A, B)
leftOf(A, B) Xmean(A) < Xmean(B))
above(A, B) Ymean(A) < Ymean(B)

inFrontOf(A, B) Zmean(A) < Zmean(B))

sp
at

ia
l

on(A, B) closeAbove(A, B) and Zaux(A, B) and Xaux(A, B)
close(A, B) haux(A, B) or vaux(A, B) or daux(A, B)

Table 1: Predicates defining spatial relations between A and B. Auxiliary relations define actual spatial re-
lations. The Y axis points downwards, functions Xmax, Xmin, ... take appropriate values from the tuple
predicate, and ✏ is a ’small’ amount. Symmetrical relations such as rightOf , below, behind, etc. can readily
be defined in terms of other relations (i.e. below(A,B) = above(B,A)).

(Figure 1 - middle part). Every object hypothesis is therefore represented as an n-tuple:
predicate(instance id, image id, color, spatial loc) where predicate 2 {bag, bed, books, ...},
instance id is the object’s id, image id is id of the image containing the object, color is esti-
mated color of the object [16], and spatial loc is the object’s position in the image. Latter is
represented as (Xmin, Xmax, Xmean, Ymin, Ymax, Ymean, Zmin, Zmax, Zmean) and defines mini-
mal, maximal, and mean location of the object along X, Y, Z axes. To obtain the coordinates we
fit axis parallel cuboids to the cropped 3d objects based on the semantic segmentation. Note that
the X, Y, Z coordinate system is aligned with direction of gravity [15]. As shown in Figure 2b, this
is a more meaningful representation of the object’s coordinates over simple image coordinates. In
training we use facts from all training images, whereas in test case only facts from the test image.

We realize that the skilled use of spatial relations is a complex task and grounding spatial relations is
a research thread on its own (e.g. [17] and [18]). For our purposes, we focus on predefined relations
defined in Table 1, while the association of them as well as the object classes are still dealt within
the question answering architecture.

Multi-worlds approach for combining uncertain visual perception and symbolic reasoning

Up to now, we have considered the output of the semantic segmentation as “hard facts”. We now
draw on ideas from probabilistic databases [14] and propose a multi-world approach as outlined
in the lower part of Figure 1 that takes the uncertainty in the segmentation of the visual input into
account by marginalizing over multiple possible worlds W derived from the segmentation S . The
posterior over the answer A given question Q and semantic segmentation S of the image is calcu-
lated according to a Bayesian formulation by marginalizing over the latent worlds W in addition to
the logical forms T :

P (A | Q, S) =
X

W

X

T
P (A | W, T )P (W | S) P (T | Q) (2)

The semantic segmentation of the image is a set of segments si with the associated probabilities
pij over the C object categories cj . More precisely S = {(s1, L1), (s2, L2), ..., (sk, Lk)} where
Li = {(cj , pij)}Cj=1, P (si = cj) = pij , and k is the number of segments of given image. Let
Ŝf =

�
(s1, cf(1)), (s2, cf(2)), ..., (sk, cf(k)))

 
be an assignment of the categories into segments of

the image according to the binding function f 2 F = {1, ..., C}{1,...,k}. Using such notation, for
a fixed binding function f , a world W is a set of tuples consistent with Ŝf , and define P (W |S) =Q

i p(i,f(i)). Hence we have as many possible words as binding functions, that is C
k. Eq. 2 becomes

quickly intractable for k and C seen in practice, wherefore we use a sampling strategy that draws a
finite sample ~W = (W1, W2, ..., WN ) from P (·|S):

P (A | Q, S) =
1

N

NX

a=1

X

T
P (A | Wa, T )P (T |Q) (3)

under an assumption that for each segment si every object’s category cj is drawn independently
according to pij . A few sampled perceived words are shown in Figure 2a.
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Figure 1: Overview of our approach to question answering with multiple latent worlds in contrast to single
world approach.

�W(T )] with the evaluation function �W , that evaluates a logical form on the world W . Follow-
ing [1] we use DCS Trees that yield the following recursive evaluation function �W : �W(T ) :=Td

j {v : v 2 �W(p), t 2 �W(Tj), Rj(v, t)} where T := hp, (T1, R1), (T2, R2), ..., (Td, Rd)i is
the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td, and
relations Rj that define the relationship between the current node and a subtree Tj .

The distribution over logical forms is modeled by a log-linear distribution P (T |Q) /
exp(✓T�(Q, T )) with features � measuring compatibility between Q and T and parameters ✓ learnt
from training data. The model learns by alternating between searching over a restricted space of
valid trees and gradient descent updates of the model parameters ✓. For a more detailed exposition,
we refer the reader to [1].

Since the method is agnostic to the choice of the knowledge representation W , it can be used for the
grounding problem with the image facts (middle and top parts of Figure 1) as demonstrated by [5].
In the paper, we give a special name to such worlds - perceived worlds.

Question answering on real-world images based on a perceived world Similar to [5], we
extend the work of [1] to operate now on what we call perceived world W . This still cor-
responds the single world approach in our overview Figure 1. However our world is now
populated with “facts” derived from automatic, semantic image segmentations S and we also
define predicates that are spatial relations in visual scenes. Therefore, we build this world
by running a state-of-the-art semantic segmentation algorithm [15] over the images, collect-
ing the recognized information about objects such as object class, 3D position, and color
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(a) Sampled worlds.
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(b) Object’s coordinates.

Figure 2: Fig. 2a shows a few sampled worlds. In the clock-wise order: original picture, most confident world,
and three possible worlds. Although, at first glance the most confident world seems to be a reasonable approach,
our experiments shows opposite - we can benefit from imperfect but multiple worlds. Fig. 2b shows object’s
coordinates (original and Z, Y , X images in the clock-wise order), which better represent the spatial location
of the objects than the image coordinates.
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Predicate Definition
closeAbove(A, B) above(A, B) and (Ymin(B) < Ymax(A) + ✏)

closeLeftOf(A, B) leftOf(A, B) and (Xmin(B) < Xmax(A) + ✏)
closeInFrontOf(A, B) inFrontOf(A, B) and (Zmin(B) < Zmax(A) + ✏)

Xaux(A, B) Xmean(A) < Xmax(B) and Xmin(B) < Xmean(A)
Zaux(A, B) Zmean(A) < Zmax(B) and Zmin(B) < Zmean(A)
haux(A, B) closeAbove(A, B) or closeBelow(A, B)
vaux(A, B) closeLeftOf(A, B) or closeRightOf(A, B)

au
xi

lia
ry

re
la

tio
ns

daux(A, B) closeInFrontOf(A, B) or closeBehind(A, B)
leftOf(A, B) Xmean(A) < Xmean(B))
above(A, B) Ymean(A) < Ymean(B)

inFrontOf(A, B) Zmean(A) < Zmean(B))

sp
at

ia
l

on(A, B) closeAbove(A, B) and Zaux(A, B) and Xaux(A, B)
close(A, B) haux(A, B) or vaux(A, B) or daux(A, B)

Table 1: Predicates defining spatial relations between A and B. Auxiliary relations define actual spatial re-
lations. The Y axis points downwards, functions Xmax, Xmin, ... take appropriate values from the tuple
predicate, and ✏ is a ’small’ amount. Symmetrical relations such as rightOf , below, behind, etc. can readily
be defined in terms of other relations (i.e. below(A,B) = above(B,A)).

(Figure 1 - middle part). Every object hypothesis is therefore represented as an n-tuple:
predicate(instance id, image id, color, spatial loc) where predicate 2 {bag, bed, books, ...},
instance id is the object’s id, image id is id of the image containing the object, color is esti-
mated color of the object [16], and spatial loc is the object’s position in the image. Latter is
represented as (Xmin, Xmax, Xmean, Ymin, Ymax, Ymean, Zmin, Zmax, Zmean) and defines mini-
mal, maximal, and mean location of the object along X, Y, Z axes. To obtain the coordinates we
fit axis parallel cuboids to the cropped 3d objects based on the semantic segmentation. Note that
the X, Y, Z coordinate system is aligned with direction of gravity [15]. As shown in Figure 2b, this
is a more meaningful representation of the object’s coordinates over simple image coordinates. In
training we use facts from all training images, whereas in test case only facts from the test image.

We realize that the skilled use of spatial relations is a complex task and grounding spatial relations is
a research thread on its own (e.g. [17] and [18]). For our purposes, we focus on predefined relations
defined in Table 1, while the association of them as well as the object classes are still dealt within
the question answering architecture.

Multi-worlds approach for combining uncertain visual perception and symbolic reasoning

Up to now, we have considered the output of the semantic segmentation as “hard facts”. We now
draw on ideas from probabilistic databases [14] and propose a multi-world approach as outlined
in the lower part of Figure 1 that takes the uncertainty in the segmentation of the visual input into
account by marginalizing over multiple possible worlds W derived from the segmentation S . The
posterior over the answer A given question Q and semantic segmentation S of the image is calcu-
lated according to a Bayesian formulation by marginalizing over the latent worlds W in addition to
the logical forms T :

P (A | Q, S) =
X

W

X

T
P (A | W, T )P (W | S) P (T | Q) (2)

The semantic segmentation of the image is a set of segments si with the associated probabilities
pij over the C object categories cj . More precisely S = {(s1, L1), (s2, L2), ..., (sk, Lk)} where
Li = {(cj , pij)}Cj=1, P (si = cj) = pij , and k is the number of segments of given image. Let
Ŝf =

�
(s1, cf(1)), (s2, cf(2)), ..., (sk, cf(k)))

 
be an assignment of the categories into segments of

the image according to the binding function f 2 F = {1, ..., C}{1,...,k}. Using such notation, for
a fixed binding function f , a world W is a set of tuples consistent with Ŝf , and define P (W |S) =Q

i p(i,f(i)). Hence we have as many possible words as binding functions, that is C
k. Eq. 2 becomes

quickly intractable for k and C seen in practice, wherefore we use a sampling strategy that draws a
finite sample ~W = (W1, W2, ..., WN ) from P (·|S):

P (A | Q, S) =
1

N

NX

a=1

X

T
P (A | Wa, T )P (T |Q) (3)

under an assumption that for each segment si every object’s category cj is drawn independently
according to pij . A few sampled perceived words are shown in Figure 2a.
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Fig. 7. Examples of support and structure class inference with the LP solution. !
: support from below, ( : support from behind, + : support from hidden region.
Correct support predictions in green, incorrect in red. Ground in pink, Furniture in
Purple, Props in Blue, Structure in Yellow, Grey indicates missing structure class label.
Incorrect structure predictions are striped.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Figure 1: Overview of our approach to question answering with multiple latent worlds in contrast to single
world approach.

�W(T )] with the evaluation function �W , that evaluates a logical form on the world W . Follow-
ing [1] we use DCS Trees that yield the following recursive evaluation function �W : �W(T ) :=Td

j {v : v 2 �W(p), t 2 �W(Tj), Rj(v, t)} where T := hp, (T1, R1), (T2, R2), ..., (Td, Rd)i is
the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td, and
relations Rj that define the relationship between the current node and a subtree Tj .

The distribution over logical forms is modeled by a log-linear distribution P (T |Q) /
exp(✓T�(Q, T )) with features � measuring compatibility between Q and T and parameters ✓ learnt
from training data. The model learns by alternating between searching over a restricted space of
valid trees and gradient descent updates of the model parameters ✓. For a more detailed exposition,
we refer the reader to [1].

Since the method is agnostic to the choice of the knowledge representation W , it can be used for the
grounding problem with the image facts (middle and top parts of Figure 1) as demonstrated by [5].
In the paper, we give a special name to such worlds - perceived worlds.

Question answering on real-world images based on a perceived world Similar to [5], we
extend the work of [1] to operate now on what we call perceived world W . This still cor-
responds the single world approach in our overview Figure 1. However our world is now
populated with “facts” derived from automatic, semantic image segmentations S and we also
define predicates that are spatial relations in visual scenes. Therefore, we build this world
by running a state-of-the-art semantic segmentation algorithm [15] over the images, collect-
ing the recognized information about objects such as object class, 3D position, and color
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(a) Sampled worlds.
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(b) Object’s coordinates.

Figure 2: Fig. 2a shows a few sampled worlds. In the clock-wise order: original picture, most confident world,
and three possible worlds. Although, at first glance the most confident world seems to be a reasonable approach,
our experiments shows opposite - we can benefit from imperfect but multiple worlds. Fig. 2b shows object’s
coordinates (original and Z, Y , X images in the clock-wise order), which better represent the spatial location
of the objects than the image coordinates.
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Predicate Definition
closeAbove(A, B) above(A, B) and (Ymin(B) < Ymax(A) + ✏)

closeLeftOf(A, B) leftOf(A, B) and (Xmin(B) < Xmax(A) + ✏)
closeInFrontOf(A, B) inFrontOf(A, B) and (Zmin(B) < Zmax(A) + ✏)

Xaux(A, B) Xmean(A) < Xmax(B) and Xmin(B) < Xmean(A)
Zaux(A, B) Zmean(A) < Zmax(B) and Zmin(B) < Zmean(A)
haux(A, B) closeAbove(A, B) or closeBelow(A, B)
vaux(A, B) closeLeftOf(A, B) or closeRightOf(A, B)

au
xi

lia
ry

re
la

tio
ns

daux(A, B) closeInFrontOf(A, B) or closeBehind(A, B)
leftOf(A, B) Xmean(A) < Xmean(B))
above(A, B) Ymean(A) < Ymean(B)

inFrontOf(A, B) Zmean(A) < Zmean(B))

sp
at

ia
l

on(A, B) closeAbove(A, B) and Zaux(A, B) and Xaux(A, B)
close(A, B) haux(A, B) or vaux(A, B) or daux(A, B)

Table 1: Predicates defining spatial relations between A and B. Auxiliary relations define actual spatial re-
lations. The Y axis points downwards, functions Xmax, Xmin, ... take appropriate values from the tuple
predicate, and ✏ is a ’small’ amount. Symmetrical relations such as rightOf , below, behind, etc. can readily
be defined in terms of other relations (i.e. below(A,B) = above(B,A)).

(Figure 1 - middle part). Every object hypothesis is therefore represented as an n-tuple:
predicate(instance id, image id, color, spatial loc) where predicate 2 {bag, bed, books, ...},
instance id is the object’s id, image id is id of the image containing the object, color is esti-
mated color of the object [16], and spatial loc is the object’s position in the image. Latter is
represented as (Xmin, Xmax, Xmean, Ymin, Ymax, Ymean, Zmin, Zmax, Zmean) and defines mini-
mal, maximal, and mean location of the object along X, Y, Z axes. To obtain the coordinates we
fit axis parallel cuboids to the cropped 3d objects based on the semantic segmentation. Note that
the X, Y, Z coordinate system is aligned with direction of gravity [15]. As shown in Figure 2b, this
is a more meaningful representation of the object’s coordinates over simple image coordinates. In
training we use facts from all training images, whereas in test case only facts from the test image.

We realize that the skilled use of spatial relations is a complex task and grounding spatial relations is
a research thread on its own (e.g. [17] and [18]). For our purposes, we focus on predefined relations
defined in Table 1, while the association of them as well as the object classes are still dealt within
the question answering architecture.

Multi-worlds approach for combining uncertain visual perception and symbolic reasoning

Up to now, we have considered the output of the semantic segmentation as “hard facts”. We now
draw on ideas from probabilistic databases [14] and propose a multi-world approach as outlined
in the lower part of Figure 1 that takes the uncertainty in the segmentation of the visual input into
account by marginalizing over multiple possible worlds W derived from the segmentation S . The
posterior over the answer A given question Q and semantic segmentation S of the image is calcu-
lated according to a Bayesian formulation by marginalizing over the latent worlds W in addition to
the logical forms T :

P (A | Q, S) =
X

W

X

T
P (A | W, T )P (W | S) P (T | Q) (2)

The semantic segmentation of the image is a set of segments si with the associated probabilities
pij over the C object categories cj . More precisely S = {(s1, L1), (s2, L2), ..., (sk, Lk)} where
Li = {(cj , pij)}Cj=1, P (si = cj) = pij , and k is the number of segments of given image. Let
Ŝf =

�
(s1, cf(1)), (s2, cf(2)), ..., (sk, cf(k)))

 
be an assignment of the categories into segments of

the image according to the binding function f 2 F = {1, ..., C}{1,...,k}. Using such notation, for
a fixed binding function f , a world W is a set of tuples consistent with Ŝf , and define P (W |S) =Q

i p(i,f(i)). Hence we have as many possible words as binding functions, that is C
k. Eq. 2 becomes

quickly intractable for k and C seen in practice, wherefore we use a sampling strategy that draws a
finite sample ~W = (W1, W2, ..., WN ) from P (·|S):

P (A | Q, S) =
1

N

NX

a=1

X

T
P (A | Wa, T )P (T |Q) (3)

under an assumption that for each segment si every object’s category cj is drawn independently
according to pij . A few sampled perceived words are shown in Figure 2a.
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Andreas et al. (2015) describe a heuristic ap-
proach for decomposing visual question answering
tasks into sequence of modular sub-problems. For
example, the question What color is the bird? might
be answered in two steps: first, “where is the bird?”
(Figure 2a), second, “what color is that part of the
image?” (Figure 2c). This first step, a generic mod-
ule called find, can be expressed as a fragment of
a neural network that maps from image features and
a lexical item (here bird) to a distribution over pix-
els. This operation is commonly referred to as the
attention mechanism, and is a standard tool for ma-
nipulating images (Xu et al., 2015) and text repre-
sentations (Hermann et al., 2015)

The first contribution of this paper is an exten-
sion and generalization of this mechanism to enable
fully-differentiable reasoning about more structured
semantic representations. Figure 2b shows how the
same module can be used to focus on the entity
Georgia in a non-visual grounding domain; more
generally, by representing every entity in the uni-
verse of discourse as a feature vector, we can obtain
a distribution over entities that corresponds roughly
to a logical set-valued denotation.

Having obtained such a distribution, existing neu-
ral approaches use it to immediately compute a
weighted average of image features and project back
into a labeling decision—a describe module (Fig-
ure 2c). But the logical perspective suggests a num-
ber of novel modules that might operate on atten-
tions: e.g. combining them (by analogy to conjunc-
tion or disjunction) or inspecting them directly with-
out a return to feature space (by analogy to quantifi-
cation, Figure 2d). These modules are discussed in
detail in Section 4. Unlike their formal counterparts,
they are differentiable end-to-end, facilitating their
integration into learned models. Building on previ-
ous work, we learn behavior for a collection of het-
erogeneous modules from (world, question, answer)
triples.

The second contribution of this paper is a model
for learning to assemble such modules composition-
ally. Isolated modules are of limited use—to ob-
tain expressive power comparable to either formal
approaches or monolithic deep networks, they must
be composed into larger structures. Figure 2 shows
simple examples of composed structures, but for
realistic question-answering tasks, even larger net-

black	and	white

Georgia

Atlanta

Montgomery

Georgia

Atlanta

Montgomery

exists

true

find bird

describe color

find state(a) (b)

(c) (d)

Figure 2: Simple neural module networks, corresponding to
the questions What color is the bird? and Are there any states?

(a) A neural find module for computing an attention over
pixels. (b) The same operation applied to a knowledge base.
(c) Using an attention produced by a lower module to identify
the color of the region of the image attended to. (d) Performing
quantification by evaluating an attention directly.

works are required. Thus our goal is to automati-
cally induce variable-free, tree-structured computa-
tion descriptors. We can use a familiar functional
notation from formal semantics (e.g. Liang et al.,
2011) to represent these computations.1 We write
the two examples in Figure 2 as

(describe[color] find[bird])

and
(exists find[state])

respectively. These are network layouts: they spec-
ify a structure for arranging modules (and their lex-
ical parameters) into a complete network. Andreas
et al. (2015) use hand-written rules to deterministi-
cally transform dependency trees into layouts, and
restricted to producing simple structures like the
above for non-synthetic data. For full generality, we
will need to solve harder problems, like transform-
ing What cities are in Georgia? (Figure 1) into

(and
find[city]
(relate[in] lookup[Georgia]))

In this paper, we present a model for learning to se-
lect such structures from a set of automatically gen-
erated candidates. We call this model a dynamic
neural module network.

1But note that unlike formal semantics, the behavior of the
primitive functions here is itself unknown.

Stacked Attention Networks for Image Question Answering
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Abstract

This paper presents stacked attention networks (SANs)

that learn to answer natural language questions from im-

ages. SANs use semantic representation of a question as

query to search for the regions in an image that are related

to the answer. We argue that image question answering

(QA) often requires multiple steps of reasoning. Thus, we

develop a multiple-layer SAN in which we query an image

multiple times to infer the answer progressively. Experi-

ments conducted on four image QA data sets demonstrate

that the proposed SANs significantly outperform previous

state-of-the-art approaches. The visualization of the atten-

tion layers illustrates the progress that the SAN locates the

relevant visual clues that lead to the answer of the question

layer-by-layer.

1. Introduction

With the recent advancement in computer vision and
in natural language processing (NLP), image question an-
swering (QA) becomes one of the most active research ar-
eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-
tems that have been studied extensively in the NLP commu-
nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
to the content of a reference image.

Most of the recently proposed image QA models are
based on neural networks [7, 21, 18, 1, 19]. A commonly
used approach was to extract a global image feature vector
using a convolution neural network (CNN) [15] and encode
the corresponding question as a feature vector using a long
short-term memory network (LSTM) [9] and then combine
them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained

regions in an image.
By examining the image QA data sets, we find that it is

often that case that answering a question from an image re-
quires multi-step reasoning. Take the question and image in
Fig. 1 as an example. There are several objects in the im-
age: bicycles, window, street, baskets and

Question:
What are sitting 
in the basket on 

a bicycle?

CNN/
LSTM

Softm
ax

dogs
Answer:

CNN

+
Query

+

Attention layer 1 Attention layer 2

feature vectors of different
parts of image

(a) Stacked Attention Network for Image QA

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. The
stacked attention network first focuses on all referred concepts,
e.g., bicycle, basket and objects in the basket (dogs) in
the first attention layer and then further narrows down the focus in
the second layer and finds out the answer dog.

Figure 1: Model architecture and visualization

dogs. To answer the question what are sitting in
the basket on a bicycle, we need to first locate
those objects (e.g. basket, bicycle) and concepts
(e.g., sitting in) referred in the question, then gradu-
ally rule out irrelevant objects, and finally pinpoint to the re-
gion that are most indicative to infer the answer (i.e., dogs
in the example).

In this paper, we propose stacked attention networks
(SANs) that allow multi-step reasoning for image QA.
SANs can be viewed as an extension of the attention mech-
anism that has been successfully applied in image caption-
ing [30] and machine translation [2]. The overall architec-
ture of SAN is illustrated in Fig. 1a. The SAN consists of
three major components: (1) the image model, which uses
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VQA: Visual Question Answering
www.visualqa.org

Stanislaw Antol⇤, Aishwarya Agrawal⇤, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural
language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such
as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas
of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a
more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA
is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can
be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers
(www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human
performance.

F

1 INTRODUCTION
We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-

ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian

• ⇤
The first two authors contributed equally.

• S. Antol, A. Agrawal, J. Lu, D. Batra, and D. Parikh are with Virginia

Tech.

• M. Mitchell and C. L. Zitnick are with Microsoft Research, Redmond.

Does it appear to be rainy? 
Does this person have 20/20 vision? 

Is this person expecting company? 
What is just under the tree? 

How many slices of pizza are there? 
Is this a vegetarian pizza? 

What color are her eyes? 
What is the mustache made of? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this
paper, we present both an open-ended answering task and a
multiple-choice task [43], [31]. Unlike the open-answer task
that requires a free-form response, the multiple-choice task
only requires an algorithm to pick from a predefined list of
possible answers.
We present a large dataset that contains 204,721 images from
the MS COCO dataset [30] and a newly created abstract
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Visual Madlibs: Fill in the blank Image Generation and Question Answering

Licheng Yu, Eunbyung Park, Alexander C. Berg, and Tamara L. Berg
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Abstract

In this paper, we introduce a new dataset consisting of

360,001 focused natural language descriptions for 10,738

images. This dataset, the Visual Madlibs dataset, is col-

lected using automatically produced fill-in-the-blank tem-

plates designed to gather targeted descriptions about: peo-

ple and objects, their appearances, activities, and interac-

tions, as well as inferences about the general scene or its

broader context. We provide several analyses of the Vi-

sual Madlibs dataset and demonstrate its applicability to

two new description generation tasks: focused description

generation, and multiple-choice question-answering for im-

ages. Experiments using joint-embedding and deep learn-

ing methods show promising results on these tasks.

1. Introduction

Much of everyday language and discourse concerns the
visual world around us, making understanding the rela-
tionship between the physical world and language describ-
ing that world an important challenge problem for AI.
Understanding this complex and subtle relationship will
have broad applicability toward inferring human-like under-
standing for images, producing natural human robot interac-
tions, and for tasks like natural language grounding in NLP.
In computer vision, along with improvements in deep learn-
ing based visual recognition, there has been an explosion of
recent interest in methods to automatically generate natural
language descriptions for images [5, 9, 15, 32, 16, 20] or
videos [31, 8]. However, most of these methods and exist-
ing datasets have focused on only one type of description, a
generic description for the entire image.

In this paper, we collect a new dataset of focused, tar-
geted, descriptions, the Visual Madlibs dataset, as illus-
trated in Figure 1. To collect this dataset, we introduce au-
tomatically produced fill-in-the-blank templates designed to
collect a range of different descriptions for visual content in
an image. For example, a user might be presented with an

Figure 1: An example from the Visual Madlibs Dataset.
This dataset collects targeted descriptions for people and
objects, denoting their appearances, affordances, activities,
and interactions. It also provides descriptions of broader
emotional, spatial and temporal context for an image.

image and a fill-in-the-blank template such as “The frisbee
is [blank]” and asked to fill in the [blank] with a descrip-
tion of the appearance of frisbee. Alternatively, they could
be asked to fill in the [blank] with a description of what
the person is doing with the frisbee. Fill-in-the-blank ques-
tions can be targeted to collect descriptions about people
and objects, their appearances, activities, and interactions,
as well as descriptions of the general scene or the broader
emotional, spatial, or temporal context of an image. Us-
ing these templates, we collect a large collection of 360,001
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Person A is …

t = 1 t = 2 t = T

“How” “many” “books”

LSTM

...Softmax

One Two ... Red Bird
.21 .56 ... .09 .01

LinearImage

CNN

Word Embedding

Figure 2: VIS+LSTM Model

3.1 Models

In recent years, recurrent neural networks (RNNs) have enjoyed some successes in the field of nat-
ural language processing (NLP). Long short-term memory (LSTM) [19] is a form of RNN which
is easier to train than standard RNNs because of its linear error propagation and multiplicative gat-
ings. Our model builds directly on top of the LSTM sentence model and is called the “VIS+LSTM”
model. It treats the image as one word of the question. We borrowed this idea of treating the image
as a word from caption generation work done by Vinyals et al. [1]. We compare this newly proposed
model with a suite of simpler models in the Experimental Results section.

1. We use the last hidden layer of the 19-layer Oxford VGG Conv Net [20] trained on Ima-
geNet 2014 Challenge [21] as our visual embeddings. The CNN part of our model is kept
frozen during training.

2. We experimented with several different word embedding models: randomly initialized em-
bedding, dataset-specific skip-gram embedding and general-purpose skip-gram embedding
model [22]. The word embeddings are trained with the rest of the model.

3. We then treat the image as if it is the first word of the sentence. Similar to DeViSE [23],
we use a linear or affine transformation to map 4096 dimension image feature vectors to a
300 or 500 dimensional vector that matches the dimension of the word embeddings.

4. We can optionally treat the image as the last word of the question as well through a different
weight matrix and optionally add a reverse LSTM, which gets the same content but operates
in a backward sequential fashion.

5. The LSTM(s) outputs are fed into a softmax layer at the last timestep to generate answers.

3.2 Question-Answer Generation

The currently available DAQUAR dataset contains approximately 1500 images and 7000 questions
on 37 common object classes, which might be not enough for training large complex models. An-
other problem with the current dataset is that simply guessing the modes can yield very good accu-
racy.

We aim to create another dataset, to produce a much larger number of QA pairs and a more even
distribution of answers. While collecting human generated QA pairs is one possible approach, and
another is to synthesize questions based on image labeling, we instead propose to automatically
convert descriptions into QA form. In general, objects mentioned in image descriptions are easier to
detect than the ones in DAQUAR’s human generated questions, and than the ones in synthetic QAs
based on ground truth labeling. This allows the model to rely more on rough image understanding
without any logical reasoning. Lastly the conversion process preserves the language variability in
the original description, and results in more human-like questions than questions generated from
image labeling.

As a starting point we used the MS-COCO dataset [17], but the same method can be applied to any
other image description dataset, such as Flickr [24], SBU [25], or even the internet.
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What is the doing cat ? <BOA> Sitting on umbrella the 

CNN 

LSTM 

Embedding 

Fusing 

Sitting on umbrella the <EOA> 

Shared 

Shared 

Intermediate 

Softmax 

Figure 2: Illustration of the mQA model architecture. We input an image and a question about the
image (i.e. “What is the cat doing?”) to the model. The model is trained to generate the answer to
the question (i.e. “Sitting on the umbrella”). The weight matrix in the word embedding layers of
the two LSTMs (one for the question and one for the answer) are shared. In addition, as in [25], this
weight matrix is also shared, in a transposed manner, with the weight matrix in the Softmax layer.
Different colors in the figure represent different components of the model. (Best viewed in color.)

There are some concurrent and independent works on this topic: [1, 23, 32]. [1] propose a large-
scale dataset also based on MS COCO. They also provide some simple baseline methods on this
dataset. Compared to them, we propose a stronger model for this task and evaluate our method using
human judges. Our dataset also contains two different kinds of language, which can be useful for
other tasks, such as machine translation. Because we use a different set of annotators and different
requirements of the annotation, our dataset and the [1] can be complementary to each other, and lead
to some interesting topics, such as dataset transferring for visual question answering.

Both [23] and [32] use a model containing a single LSTM and a CNN. They concatenate the question
and the answer (for [32], the answer is a single word. [23] also prefer a single word as the answer),
and then feed them to the LSTM. Different from them, we use two separate LSTMs for questions
and answers respectively in consideration of the different properties (e.g. grammar) of questions and
answers, while allow the sharing of the word-embeddings. For the dataset, [23] adopt the dataset
proposed in [22], which is much smaller than our FM-IQA dataset. [32] utilize the annotations in
MS COCO and synthesize a dataset with four pre-defined types of questions (i.e. object, number,
color, and location). They also synthesize the answer with a single word. Their dataset can also be
complementary to ours.

3 The Multimodal QA (mQA) Model

We show the architecture of our mQA model in Figure 2. The model has four components: (I). a
Long Short-Term Memory (LSTM [12]) for extracting semantic representation of a question, (II). a
deep Convolutional Neural Network (CNN) for extracting the image representation, (III). an LSTM
to extract representation of the current word in the answer and its linguistic context, and (IV). a
fusing component that incorporates the information from the first three parts together and generates
the next word in the answer. These four components can be jointly trained together 3. The details
of the four model components are described in Section 3.1. The effectiveness of the important
components and strategies are analyzed in Section 5.3.

The inputs of the model are a question and the reference image. The model is trained to generate
the answer. The words in the question and answer are represented by one-hot vectors (i.e. binary
vectors with the length of the dictionary size N and have only one non-zero vector indicating its
index in the word dictionary). We add a hBOAi sign and a hEOAi sign, as two spatial words in
the word dictionary, at the beginning and the end of the training answers respectively. They will be
used for generating the answer to the question in the testing stage.

In the testing stage, we input an image and a question about the image into the model first. To
generate the answer, we start with the start sign hBOAi and use the model to calculate the probability
distribution of the next word. We then use a beam search scheme that keeps the best K candidates

3In practice, we fix the CNN part because the gradient returned from LSTM is very noisy. Finetuning the
CNN takes a much longer time than just fixing it, and does not improve the performance significantly.
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Abstract

This paper presents stacked attention networks (SANs)

that learn to answer natural language questions from im-

ages. SANs use semantic representation of a question as

query to search for the regions in an image that are related

to the answer. We argue that image question answering

(QA) often requires multiple steps of reasoning. Thus, we

develop a multiple-layer SAN in which we query an image

multiple times to infer the answer progressively. Experi-

ments conducted on four image QA data sets demonstrate

that the proposed SANs significantly outperform previous

state-of-the-art approaches. The visualization of the atten-

tion layers illustrates the progress that the SAN locates the

relevant visual clues that lead to the answer of the question

layer-by-layer.

1. Introduction

With the recent advancement in computer vision and
in natural language processing (NLP), image question an-
swering (QA) becomes one of the most active research ar-
eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-
tems that have been studied extensively in the NLP commu-
nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
to the content of a reference image.

Most of the recently proposed image QA models are
based on neural networks [7, 21, 18, 1, 19]. A commonly
used approach was to extract a global image feature vector
using a convolution neural network (CNN) [15] and encode
the corresponding question as a feature vector using a long
short-term memory network (LSTM) [9] and then combine
them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained

regions in an image.
By examining the image QA data sets, we find that it is

often that case that answering a question from an image re-
quires multi-step reasoning. Take the question and image in
Fig. 1 as an example. There are several objects in the im-
age: bicycles, window, street, baskets and

Question:
What are sitting 
in the basket on 

a bicycle?

CNN/
LSTM

Softm
ax

dogs
Answer:

CNN

+
Query

+

Attention layer 1 Attention layer 2

feature vectors of different
parts of image

(a) Stacked Attention Network for Image QA

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. The
stacked attention network first focuses on all referred concepts,
e.g., bicycle, basket and objects in the basket (dogs) in
the first attention layer and then further narrows down the focus in
the second layer and finds out the answer dog.

Figure 1: Model architecture and visualization

dogs. To answer the question what are sitting in
the basket on a bicycle, we need to first locate
those objects (e.g. basket, bicycle) and concepts
(e.g., sitting in) referred in the question, then gradu-
ally rule out irrelevant objects, and finally pinpoint to the re-
gion that are most indicative to infer the answer (i.e., dogs
in the example).

In this paper, we propose stacked attention networks
(SANs) that allow multi-step reasoning for image QA.
SANs can be viewed as an extension of the attention mech-
anism that has been successfully applied in image caption-
ing [30] and machine translation [2]. The overall architec-
ture of SAN is illustrated in Fig. 1a. The SAN consists of
three major components: (1) the image model, which uses

1

ar
X

iv
:1

51
1.

02
27

4v
1 

 [c
s.L

G
]  

7 
N

ov
 2

01
5

A cat.
Why is the person holding a knife?
To cut the cake with.

What kind of animal is in the photo?

At the top.
Where are the carrots?

Three.
How many people are there?

cat

cake

A B

C D

Figure 8: Object groundings and attention heat maps. We visu-
alize the attention heat maps (with Gaussian blur) on the images.
The brighter regions indicate larger attention terms, i.e., where the
model focuses. The bounding boxes show the object-level ground-
ings of the objects mentioned in the answers.

subjects are not trained before answering the questions;
however, the LSTM model manages to learn the priors of
answers from the training set. In addition, both the ques-
tions and image content contribute to better results. The
Question + Image baseline shows large improvement on
overall accuracy (52.1%) than the ones when either the
question or the image is absent. Finally, our attention-based
LSTM model (LSTM-Att) outperforms other baselines on
all question types, except the how category, achieving the
best model performance of 55.6%.

We show qualitative results of human experiments and
the LSTM models on the telling QA task in Fig. 7. Both
humans and the baseline models make mistakes with and
without images. Human subjects fail to tell a sheep apart
from a goat in the last example, whereas the LSTM model
gives the correct answer. On the other hand, humans suc-
cessfully answer the fourth why question when seeing the
image, where the LSTM model fails in both cases.

The object groundings help us analyzing the behavior
of the attention-based model. First, we examine where the
model focuses by visualizing the attention terms of Eq. (10).
The attention terms vary as the model reads the QA words
one by one. We perform max pooling along time to find
the maximum attention weight on each of the 14⇥14 image
grid, producing an attention heat map. We see if the model
attends to the objects mentioned in QA pair. The answer ob-
ject boxes occupy an average of 12% of image area; while
the peak of the attention heat map resides in answer object
boxes 24% of the time. That indicates a tendency for the
model to attend to the answer-related regions. We visualize

Figure 9: Impact of object category frequency on the model accu-
racy in the pointing QA task. The x-axis shows the upper bound
object category frequency of each bin. The y-axis shows the mean
accuracy within each bin. The accuracy increases gradually as the
model sees more instances from the same category. Meanwhile,
the model manages to handle infrequent categories by transferring
knowledge from larger categories.

the attention heat maps on example QA pairs in Fig. 8. The
top two examples show QA pairs with answers containing
an object. The peaks of the attention heat maps reside in the
bounding boxes of the target objects. The bottom two ex-
amples show QA pairs with answers containing no object.
The attention heat maps are scattered around the image grid.
For instance, the model attends to the four corners and the
borders of the image to look for the carrots in Fig. 8(c).

Furthermore, we use object groundings to examine the
model’s behavior on the pointing QA. Fig. 9 shows the im-
pact of object category frequency on the QA accuracy. We
divide the object categories into different bins based on their
frequencies (by power of 2) in the training set. We com-
pute the mean accuracy over the test set QA pairs within
each bin. We observe increased accuracy for categories
with more object instances. However, the model is able to
transfer knowledge from common categories to rare ones,
generating an adequate performance (over 50%) on object
categories with only a few instances.

7. Conclusions
In this paper, we propose to leverage the visually

grounded 7W questions to facilitate a deeper understand-
ing of images beyond recognizing objects. Previous visual
QA works lack a tight semantic link between textual de-
scriptions and image regions. We link the object mentions
to their bounding boxes in the images. Object grounding
allows us to resolve coreference ambiguity, study objects
in the QA context, and evaluate on a new type of visually
grounded QA. We propose an attention-based LSTM model
to achieve the state-of-the-art performance on the QA tasks.
Future research directions include exploring ways of utiliz-
ing common sense knowledge to improve the model’s per-
formance on QA tasks that require complex reasoning.
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Abstract

Visual question answering is fundamentally composi-

tional in nature—a question like where is the dog? shares

substructure with questions like what color is the dog? and

where is the cat? This paper seeks to simultaneously exploit

the representational capacity of deep networks and the com-

positional linguistic structure of questions. We describe a

procedure for constructing and learning neural module net-
works, which compose collections of jointly-trained neural

“modules” into deep networks for question answering. Our

approach decomposes questions into their linguistic sub-

structures, and uses these structures to dynamically instan-

tiate modular networks (with reusable components for rec-

ognizing dogs, classifying colors, etc.). The resulting com-

pound networks are jointly trained. We evaluate our ap-

proach on two challenging datasets for visual question an-

swering, achieving state-of-the-art results on both the VQA

natural image dataset and a new dataset of complex ques-

tions about abstract shapes.

1. Introduction
This paper describes an approach to visual question an-

swering based on neural module networks (NMNs). We an-
swer natural language questions about images using collec-
tions of jointly-trained neural “modules”, dynamically com-
posed into deep networks based on linguistic structure.

Concretely, given an image and an associated question
(e.g. where is the dog?), we wish to predict a corresponding
answer (e.g. on the couch, or perhaps just couch) (Figure 1).
The visual QA task has significant significant applications
to human-robot interaction, search, and accessibility, and
has been the subject of a great deal of recent research at-
tention [2, 7, 20, 22, 25, 32]. The task requires sophisti-
cated understanding of both visual scenes and natural lan-
guage. Recent successful approaches represent questions
as bags of words, or encode the question using a recurrent
neural network [22] and train a simple classifier on the en-
coded question and image. In contrast to these monolithic

wherecount color ...

dog standing ...

LSTM couch

cat

CNN

Where is 
the dog?

LayoutParser

Figure 1: A schematic representation of our proposed
model—the shaded gray area is a neural module network of
the kind introduced in this paper. Our approach uses a nat-
ural language parser to dynamically lay out a deep network
composed of reusable modules. For visual question answer-
ing tasks, an additional sequence model provides sentence
context and learns common-sense knowledge.

approaches, another line of work for textual QA [18] and
image QA [21] uses semantic parsers to decompose ques-
tions into logical expressions. These logical expressions
are evaluated against a purely logical representation of the
world, which may be provided directly or extracted from an
image [16].

In this paper we draw from both lines of research,
presenting a technique for integrating the representational
power of neural networks with the flexible compositional
structure afforded by symbolic approaches to semantics.
Rather than relying on a monolithic network structure to
answer all questions, our approach assembles a network on
the fly from a collection of specialized, jointly-learned mod-
ules (Figure 1). Rather than using logic to reason over truth
values, we remain entirely in the domain of visual features
and attentions.

Our approach first analyzes each question with a seman-
tic parser, and uses this analysis to determine the basic com-
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Towards a Visual Turing Test — Answering Questions on Images

Datasets
• DAQUAR (NIPS’14, ours)

‣ 1449 indoor images
‣ ~12.5k question-answer pairs
‣ ~600 answer words (output space)
‣ Many words answers (set of objects)

• DAQUAR-Reduced (NIPS’14, ours)
‣ A subset of DAQUAR with 37 answer words

• Toronto COCO-QA (NIPS’15, M. Ren et. al.)
‣ ~123k images
‣ ~118k question-answer pairs (semi-synthetic)
‣ Only one-word answers

• VQA (ICCV’15, S. Antol et. al.)
‣ ~205k images
‣ ~614k questions with 10 answers per question 
‣ Open-ended answers (in practice ignored)

‣ Visual Madlibs (ICCV’15)
‣ Filling in blanks
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VQA: Visual Question Answering
www.visualqa.org

Stanislaw Antol⇤, Aishwarya Agrawal⇤, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural
language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such
as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas
of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a
more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA
is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can
be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers
(www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human
performance.

F

1 INTRODUCTION
We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-

ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian

• ⇤
The first two authors contributed equally.

• S. Antol, A. Agrawal, J. Lu, D. Batra, and D. Parikh are with Virginia

Tech.

• M. Mitchell and C. L. Zitnick are with Microsoft Research, Redmond.

Does it appear to be rainy? 
Does this person have 20/20 vision? 

Is this person expecting company? 
What is just under the tree? 

How many slices of pizza are there? 
Is this a vegetarian pizza? 

What color are her eyes? 
What is the mustache made of? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this
paper, we present both an open-ended answering task and a
multiple-choice task [43], [31]. Unlike the open-answer task
that requires a free-form response, the multiple-choice task
only requires an algorithm to pick from a predefined list of
possible answers.
We present a large dataset that contains 204,721 images from
the MS COCO dataset [30] and a newly created abstract
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What is the mustache made of?

DAQUAR 1553
What is there in front of the
sofa?
Ground truth: table
IMG+BOW: table (0.74)
2-VIS+BLSTM: table (0.88)
LSTM: chair (0.47)

COCOQA 5078
How many leftover donuts is
the red bicycle holding?
Ground truth: three
IMG+BOW: two (0.51)
2-VIS+BLSTM: three (0.27)
BOW: one (0.29)

COCOQA 1238
What is the color of the tee-
shirt?
Ground truth: blue
IMG+BOW: blue (0.31)
2-VIS+BLSTM: orange (0.43)
BOW: green (0.38)

COCOQA 26088
Where is the gray cat sitting?
Ground truth: window
IMG+BOW: window (0.78)
2-VIS+BLSTM: window (0.68)
BOW: suitcase (0.31)

Figure 1: Sample questions and responses of a variety of models. Correct answers are in green and
incorrect in red. The numbers in parentheses are the probabilities assigned to the top-ranked answer
by the given model. The leftmost example is from the DAQUAR dataset, and the others are from
our new COCO-QA dataset.

number of object classes appearing in the questions (37-class and 894-class). There are mainly three
types of questions in this dataset: object type, object color, and number of objects. Some questions
are easy but many questions are very hard to answer even for humans. Since DAQUAR is the only
publicly available image-based QA dataset, it is one of our benchmarks to evaluate our models.

Together with the release of the DAQUAR dataset, Malinowski and Fritz presented an approach
which combines semantic parsing and image segmentation. Their approach is notable as one of the
first attempts at image QA, but it has a number of limitations. First, a human-defined possible set
of predicates are very dataset-specific. To obtain the predicates, their algorithm also depends on the
accuracy of the image segmentation algorithm and image depth information. Second, their model
needs to compute all possible spatial relations in the training images. Even though the model limits
this to the nearest neighbors of the test images, it could still be an expensive operation in larger
datasets. Lastly the accuracy of their model is not very strong. We show below that some simple
baselines perform better.

Very recently there has been a number of parallel efforts on both creating datasets and proposing
new models [13, 14, 15, 16]. Both Antol et al. [13] and Gao et al. [15] used MS-COCO [17] images
and created an open domain dataset with human generated questions and answers. In Anto et al.’s
work, the authors also included cartoon pictures besides real images. Some questions require logical
reasoning in order to answer correctly. Both Malinowski et al. [14] and Gao et al. [15] use recurrent
networks to encode the sentence and output the answer. Whereas Malinowski et al. use a single
network to handle both encoding and decoding, Gao et al. used two networks, a separate encoder
and decoder. Lastly, bilingual (Chinese and English) versions of the QA dataset are available in Gao
et al.’s work. Ma et al. [16] use CNNs to both extract image features and sentence features, and fuse
the features together with another multi-modal CNN.

Our approach is developed independently from the work above. Similar to the work of Malinowski
et al. and Gao et al., we also experimented with recurrent networks to consume the sequential
question input. Unlike Gao et al., we formulate the task as a classification problem, as there is no
single well- accepted metric to evaluate sentence-form answer accuracy [18]. Thus, we place more
focus on a limited domain of questions that can be answered with one word. We also formulate and
evaluate a range of other algorithms, that utilize various representations drawn from the question
and image, on these datasets.

3 Proposed Methodology

The methodology presented here is two-fold. On the model side we develop and apply various forms
of neural networks and visual-semantic embeddings on this task, and on the dataset side we propose
new ways of synthesizing QA pairs from currently available image description datasets.

2

How many leftover donuts is 
the red bicycle holding?

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

8

What is on the refrigerator?
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made of?

bananasAI System

!70



Real images (from COCO)

Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in COntext.” ECCV 2014.
http://mscoco.org/
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and abstract scenes.
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VQA Dataset
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Dataset Stats

• >250K images (COCO + 50K Abstract Scenes)

• >750K questions (3 per image)

• ~10M answers (10 w/ image + 3 w/o image)

!74



Two modalities of answering

• Open Ended
• Multiple Choice (18 choices)

– 1 correct answer
– 3 plausible choices
– 10 most popular answers
– Rest random answers
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Accuracy Metric
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Human Accuracy (Real)

Overall Yes/No Number Other
Open Ended 83.30 95.77 83.39 72.67

Multiple Choice 91.54 97.40 86.97 87.91
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Human Accuracy (Real)

Overall Yes/No Number Other
Open Ended 83.30 95.77 83.39 72.67

Multiple Choice 91.54 97.40 86.97 87.91
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Human Accuracy (Abstract)

Overall Yes/No Number Other
Open Ended 87.49 95.96 95.04 75.33

Multiple Choice 93.57 97.78 96.71 88.73
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Human Accuracy (Abstract)

Overall Yes/No Number Other
Open Ended 87.49 95.96 95.04 75.33

Multiple Choice 93.57 97.78 96.71 88.73
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Memory Networks 
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•  Good models exist for some data structures 
– RNN for temporal structure 
– ConvNet for spatial structure 

•  But we still struggle with some type of  
dependencies 
– out-of-order access 
–  long-term dependency 
– unordered set 

Motivation 



Ex) Question & Answering on story 

Sam moved to the garden. 
Mary left the milk. 
John left the football. 
Daniel moved to the garden. 
Sam went to the kitchen. 
Sandra moved to the hallway. 
Mary moved to the hallway. 
Mary left the milk. 
Sam drops the apple there. 
 

Q: Where was the apple after the garden?  

out-of-order 



Overview 

•  We propose a neural network model with 
external memory 
– Reads from memory with soft attention 

– Performs multiple lookups (hops) on memory 
– End-to-end training with backpropagation 

•  End-to-end Memory Network (MemN2N) 



•  It is based on “Memory Networks” by  
[Weston, Chopra & Bordes ICLR 2015] 
– Hard attention 
–  requires explicit supervision of  attention during 

training 
– Only feasible for simple tasks 
– Severely limits application of  the model 

•  MemN2N is soft attention version 
•  Only need supervision on the final output  
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Memory Vectors 
E.g.) constructing memory vectors with Bag-of-Words (BoW) 
1.  Embed each word  
2.  Sum embedding vectors 

E.g.) temporal structure: special words for time and include them in BoW 

Memory Vector Embedding Vectors 

Time embedding 

 \text{1: ``Sam drops apple''}\rightarrow v_\text{{\color{Red} Sam}} + v_\text{{\color{Red} drops}} + v_\text{{\color{Red} apple}} + v_\text{{\color{DarkGreen} 1}} = m_1  
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Towards a Visual Turing Test — Answering Questions on Images

Attention Mechanism and Memory Networks
• Architecture

• Example results:

!90

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k

(different ways to combine o
k and u

k are proposed later):

u
k+1 = u

k + o
k
. (4)

2

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [24] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We will apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 20]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [25] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by memory lookups to the
word sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [22] (using version 1.1 of the dataset).
A given QA task consists of a set of statements, followed by a question whose answer is typically
a single word (in a few tasks, answers are a set of words). The answer is available to the model at
training time, but must be predicted at test time. There are a total of 20 different types of tasks that
probe different forms of reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [22], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I

sentences {xi} where I  320; a question sentence q and answer a. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and

ci =
P

j Cxij . The input vector u representing the question is also embedded as a bag of words:
u =

P
j Bqj . This has the drawback that it cannot capture the order of the words in the sentence,

which is important for some tasks.

We therefore propose a second representation that encodes the position of words within the
sentence. This takes the form: mi =

P
j lj ·Axij , where · is an element-wise multiplication. lj is a
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Related Work (II) 

•  RNNsearch [Bahdanau et al. 2015]  
–  Encoder-decoder RNN with attention 
–  Our model can be considered as an attention model with multiple 

hops 
•  Recent works on external memory 

–  Stack memory for RNNs [Joulin & Mikolov. 2015] 
–  Neural Turing Machine [Graves et al. 2014] 

•  Early works on neural network and memory 
–  [Steinbuch & Piske. 1963]; [Taylor. 1959] 
–  [Das et al. 1992]; [Mozer et al. 1993] 

•  Concurrent works 
–  Dynamic Memory Networks [Kumar et al. 2015] 
–  Attentive reader [Hermann et al. 2015] 
–  Stack, Queue [Grefenstette et al. 2015] 



Experiment on bAbI Q&A data 

•  Data: 20 bAbI tasks [Weston et al. arXiv: 1502.05698, 2015] 
•  Answer questions after reading short story 
•  Small vocabulary, simple language 
•  Different tasks require different reasoning 
•  Training data size 1K or 10K for each task  

our model is somewhat simpler, not requiring operations like sharpening. Furthermore, we apply
our memory model to textual reasoning tasks, which qualitatively differ from the more abstract
operations of sorting and recall tackled by the NTM.

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [23] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We also apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 19]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [24] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by lookups to the word
sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [21]. A given QA task consists of
a set of statements, followed by a question whose answer is typically a single word (in a few tasks,
answers are a set of words). The answer is available to the model at training time, but must be
predicted at test time. There are a total of 20 different types of tasks that probe different forms of
reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [21], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I

sentences {xi} where I  320; a question sentence q and answer a. The examples are randomly
split into disjoint train and test sets each containing 1000 examples. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details
Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and
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Examples of  Attention Weights 

•  2 test cases: 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the k

th hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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supporting sentences.
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5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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Experiment on Language modeling 

•  Data 
– Penn Treebank:   1M words   10K vocab 
– Text8 (Wikipedia):  16M words   40K vocab 

•  Model 
– Controller module: linear + non-linearity 
– Each word as a memory vector 
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Conclusion 

•  Proposed a neural net model with external 
memory 
– Soft attention over memory locations 
– End-to-end training with backpropagation 

•  Good results on a toy QA tasks 
•  Comparable to LSTM on language modeling 
•  Versatile model: also apply to writing and games 

Code http://github.com/facebook/MemNN     Poster #7  
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Abstract

This paper presents stacked attention networks (SANs)

that learn to answer natural language questions from im-

ages. SANs use semantic representation of a question as

query to search for the regions in an image that are related

to the answer. We argue that image question answering

(QA) often requires multiple steps of reasoning. Thus, we

develop a multiple-layer SAN in which we query an image

multiple times to infer the answer progressively. Experi-

ments conducted on four image QA data sets demonstrate

that the proposed SANs significantly outperform previous

state-of-the-art approaches. The visualization of the atten-

tion layers illustrates the progress that the SAN locates the

relevant visual clues that lead to the answer of the question

layer-by-layer.

1. Introduction

With the recent advancement in computer vision and
in natural language processing (NLP), image question an-
swering (QA) becomes one of the most active research ar-
eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-
tems that have been studied extensively in the NLP commu-
nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
to the content of a reference image.

Most of the recently proposed image QA models are
based on neural networks [7, 21, 18, 1, 19]. A commonly
used approach was to extract a global image feature vector
using a convolution neural network (CNN) [15] and encode
the corresponding question as a feature vector using a long
short-term memory network (LSTM) [9] and then combine
them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained

regions in an image.
By examining the image QA data sets, we find that it is

often that case that answering a question from an image re-
quires multi-step reasoning. Take the question and image in
Fig. 1 as an example. There are several objects in the im-
age: bicycles, window, street, baskets and

Question:
What are sitting 
in the basket on 

a bicycle?

CNN/
LSTM

Softm
ax

dogs
Answer:

CNN

+
Query

+

Attention layer 1 Attention layer 2

feature vectors of different
parts of image

(a) Stacked Attention Network for Image QA

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. The
stacked attention network first focuses on all referred concepts,
e.g., bicycle, basket and objects in the basket (dogs) in
the first attention layer and then further narrows down the focus in
the second layer and finds out the answer dog.

Figure 1: Model architecture and visualization

dogs. To answer the question what are sitting in
the basket on a bicycle, we need to first locate
those objects (e.g. basket, bicycle) and concepts
(e.g., sitting in) referred in the question, then gradu-
ally rule out irrelevant objects, and finally pinpoint to the re-
gion that are most indicative to infer the answer (i.e., dogs
in the example).

In this paper, we propose stacked attention networks
(SANs) that allow multi-step reasoning for image QA.
SANs can be viewed as an extension of the attention mech-
anism that has been successfully applied in image caption-
ing [30] and machine translation [2]. The overall architec-
ture of SAN is illustrated in Fig. 1a. The SAN consists of
three major components: (1) the image model, which uses
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Abstract

This paper presents stacked attention networks (SANs)

that learn to answer natural language questions from im-

ages. SANs use semantic representation of a question as

query to search for the regions in an image that are related

to the answer. We argue that image question answering

(QA) often requires multiple steps of reasoning. Thus, we

develop a multiple-layer SAN in which we query an image

multiple times to infer the answer progressively. Experi-

ments conducted on four image QA data sets demonstrate

that the proposed SANs significantly outperform previous

state-of-the-art approaches. The visualization of the atten-

tion layers illustrates the progress that the SAN locates the

relevant visual clues that lead to the answer of the question

layer-by-layer.

1. Introduction

With the recent advancement in computer vision and
in natural language processing (NLP), image question an-
swering (QA) becomes one of the most active research ar-
eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-
tems that have been studied extensively in the NLP commu-
nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
to the content of a reference image.

Most of the recently proposed image QA models are
based on neural networks [7, 21, 18, 1, 19]. A commonly
used approach was to extract a global image feature vector
using a convolution neural network (CNN) [15] and encode
the corresponding question as a feature vector using a long
short-term memory network (LSTM) [9] and then combine
them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained

regions in an image.
By examining the image QA data sets, we find that it is

often that case that answering a question from an image re-
quires multi-step reasoning. Take the question and image in
Fig. 1 as an example. There are several objects in the im-
age: bicycles, window, street, baskets and
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stacked attention network first focuses on all referred concepts,
e.g., bicycle, basket and objects in the basket (dogs) in
the first attention layer and then further narrows down the focus in
the second layer and finds out the answer dog.

Figure 1: Model architecture and visualization
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the basket on a bicycle, we need to first locate
those objects (e.g. basket, bicycle) and concepts
(e.g., sitting in) referred in the question, then gradu-
ally rule out irrelevant objects, and finally pinpoint to the re-
gion that are most indicative to infer the answer (i.e., dogs
in the example).

In this paper, we propose stacked attention networks
(SANs) that allow multi-step reasoning for image QA.
SANs can be viewed as an extension of the attention mech-
anism that has been successfully applied in image caption-
ing [30] and machine translation [2]. The overall architec-
ture of SAN is illustrated in Fig. 1a. The SAN consists of
three major components: (1) the image model, which uses
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The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
X

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
the caption generation process. Different from [30, 27], the
approach proposed in [6] first used a CNN to detect words
given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
used a deep multimodal similarity model (DMSM) to re-
rank the candidates. Instead of using a RNN or a LSTM,
the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
search of image QA, several data sets have been constructed
in [19, 21, 7, 1] either through automatic generation based
on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
ple attention layers are used to support multi-step reasoning
for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.
We describe the three major components of SAN in this sec-
tion: the image model, the question model, and the stacked
attention model.
3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the
representation of images. Specifically, the VGGNet [23] is
used to extract the image feature map fI from a raw image
I:

image

448

448
512 14

14

feature map

Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.
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Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
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given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
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the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
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on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
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We describe the three major components of SAN in this sec-
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Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448

pixels, and then take the features from the last pooling layer,
which therefore have a dimension of 512⇥14⇥14, as shown
in Fig. 2. 14⇥ 14 is the number of regions in the image and
512 is the dimension of the feature vector for each region.
Accordingly, each feature vector in fI corresponds to a 32⇥
32 pixel region of the input images. We denote by fi, i 2
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer
perceptron to transform each feature vector to a new vec-
tor that has the same dimension as the question vector (de-
scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual
feature vector for the region indexed by i.

3.2. Question Model

As [25, 22, 6] show that LSTMs and CNNs are powerful
to capture the semantic meaning of texts, we explore both
models for question representations in this study.

3.2.1 LSTM based question model

LSTM LSTM LSTM…

what are bicycle

We We We

Question:

…

…

Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell
ct which reserves the state of a sequence. At each step,
the LSTM unit takes one input vector (word vector in our
case) xt and updates the memory cell ct, then output a hid-
den state ht. The update process uses the gate mechanism.
A forget gate ft controls how much information from past
state ct�1 is preserved. An input gate it controls how much
the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is
fed to the output as hidden state. The detailed update pro-
cess is as follows:

it =�(Wxixt +Whiht�1 + bi), (3)
ft =�(Wxfxt +Whfht�1 + bf ), (4)
ot =�(Wxoxt +Whoht�1 + bo), (5)
ct =ftct�1 + it tanh(Wxcxt +Whcht�1 + bc), (6)
ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and
memory cell, respectively. The weight matrix and bias are
parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot
vector representation of word at position t, we first embed
the words to a vector space through an embedding matrix
xt = Weqt. Then for every time step, we feed the embed-
ding vector of words in the question to LSTM:

xt =Weqt, t 2 {1, 2, ...T}, (8)
ht =LSTM(xt), t 2 {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting
in the basket on a bicycle is fed into the
LSTM. Then the final hidden layer is taken as the repre-
sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model

unigram
bigram

trigram
max pooling 

over time

convolution

w
hat

are

sitting

bicycle
…Question:

embedding

Figure 4: CNN based question model
In this study, we also explore to use a CNN similar

to [11] for question representation. Similar to the LSTM-
based question model, we first embed words to vectors
xt = Weqt and get the question vector by concatenating
the word vectors:

x1:T = [x1, x2, ..., xT ]. (10)

Then we apply convolution operation on the word embed-
ding vectors. We use three convolution filters, which have
the size of one (unigram), two (bigram) and three (trigram)
respectively. The t-th convolution output using window size
c is given by:

hc,t = tanh(Wcxt:t+c�1 + bc). (11)

The filter is applied only to window t : t + c � 1 of size c.
Wc is the convolution weight and bc is the bias. The feature
map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T�c+1]. (12)

Then we apply max-pooling over the feature maps of the
convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T�c+1]. (13)

The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
X

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

14 * 14 = 196
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The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
X

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
the caption generation process. Different from [30, 27], the
approach proposed in [6] first used a CNN to detect words
given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
used a deep multimodal similarity model (DMSM) to re-
rank the candidates. Instead of using a RNN or a LSTM,
the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
search of image QA, several data sets have been constructed
in [19, 21, 7, 1] either through automatic generation based
on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
ple attention layers are used to support multi-step reasoning
for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.
We describe the three major components of SAN in this sec-
tion: the image model, the question model, and the stacked
attention model.
3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the
representation of images. Specifically, the VGGNet [23] is
used to extract the image feature map fI from a raw image
I:
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Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448
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image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
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bi-direction LSTMs, respectively. However, the authors
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features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
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compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
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Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448

pixels, and then take the features from the last pooling layer,
which therefore have a dimension of 512⇥14⇥14, as shown
in Fig. 2. 14⇥ 14 is the number of regions in the image and
512 is the dimension of the feature vector for each region.
Accordingly, each feature vector in fI corresponds to a 32⇥
32 pixel region of the input images. We denote by fi, i 2
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer
perceptron to transform each feature vector to a new vec-
tor that has the same dimension as the question vector (de-
scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual
feature vector for the region indexed by i.

3.2. Question Model

As [25, 22, 6] show that LSTMs and CNNs are powerful
to capture the semantic meaning of texts, we explore both
models for question representations in this study.

3.2.1 LSTM based question model
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…
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Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell
ct which reserves the state of a sequence. At each step,
the LSTM unit takes one input vector (word vector in our
case) xt and updates the memory cell ct, then output a hid-
den state ht. The update process uses the gate mechanism.
A forget gate ft controls how much information from past
state ct�1 is preserved. An input gate it controls how much
the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is
fed to the output as hidden state. The detailed update pro-
cess is as follows:

it =�(Wxixt +Whiht�1 + bi), (3)
ft =�(Wxfxt +Whfht�1 + bf ), (4)
ot =�(Wxoxt +Whoht�1 + bo), (5)
ct =ftct�1 + it tanh(Wxcxt +Whcht�1 + bc), (6)
ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and
memory cell, respectively. The weight matrix and bias are
parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot
vector representation of word at position t, we first embed
the words to a vector space through an embedding matrix
xt = Weqt. Then for every time step, we feed the embed-
ding vector of words in the question to LSTM:

xt =Weqt, t 2 {1, 2, ...T}, (8)
ht =LSTM(xt), t 2 {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting
in the basket on a bicycle is fed into the
LSTM. Then the final hidden layer is taken as the repre-
sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model
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Figure 4: CNN based question model
In this study, we also explore to use a CNN similar

to [11] for question representation. Similar to the LSTM-
based question model, we first embed words to vectors
xt = Weqt and get the question vector by concatenating
the word vectors:

x1:T = [x1, x2, ..., xT ]. (10)

Then we apply convolution operation on the word embed-
ding vectors. We use three convolution filters, which have
the size of one (unigram), two (bigram) and three (trigram)
respectively. The t-th convolution output using window size
c is given by:

hc,t = tanh(Wcxt:t+c�1 + bc). (11)

The filter is applied only to window t : t + c � 1 of size c.
Wc is the convolution weight and bc is the bias. The feature
map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T�c+1]. (12)

Then we apply max-pooling over the feature maps of the
convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T�c+1]. (13)

The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
X

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The
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sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in
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spectively.
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Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
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ṽI =
X

i

pivi, (17)
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Compared to models that simply combine the ques-
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els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
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a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
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That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
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els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:
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where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the
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gle attention layer is not sufficient to locate the correct
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uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:
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Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The
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The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
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pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
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where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X
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pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
the caption generation process. Different from [30, 27], the
approach proposed in [6] first used a CNN to detect words
given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
used a deep multimodal similarity model (DMSM) to re-
rank the candidates. Instead of using a RNN or a LSTM,
the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
search of image QA, several data sets have been constructed
in [19, 21, 7, 1] either through automatic generation based
on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
ple attention layers are used to support multi-step reasoning
for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.
We describe the three major components of SAN in this sec-
tion: the image model, the question model, and the stacked
attention model.
3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the
representation of images. Specifically, the VGGNet [23] is
used to extract the image feature map fI from a raw image
I:
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Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
the caption generation process. Different from [30, 27], the
approach proposed in [6] first used a CNN to detect words
given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
used a deep multimodal similarity model (DMSM) to re-
rank the candidates. Instead of using a RNN or a LSTM,
the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
search of image QA, several data sets have been constructed
in [19, 21, 7, 1] either through automatic generation based
on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
ple attention layers are used to support multi-step reasoning
for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.
We describe the three major components of SAN in this sec-
tion: the image model, the question model, and the stacked
attention model.
3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the
representation of images. Specifically, the VGGNet [23] is
used to extract the image feature map fI from a raw image
I:

image

448

448
512 14

14

feature map

Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448

pixels, and then take the features from the last pooling layer,
which therefore have a dimension of 512⇥14⇥14, as shown
in Fig. 2. 14⇥ 14 is the number of regions in the image and
512 is the dimension of the feature vector for each region.
Accordingly, each feature vector in fI corresponds to a 32⇥
32 pixel region of the input images. We denote by fi, i 2
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer
perceptron to transform each feature vector to a new vec-
tor that has the same dimension as the question vector (de-
scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual
feature vector for the region indexed by i.

3.2. Question Model

As [25, 22, 6] show that LSTMs and CNNs are powerful
to capture the semantic meaning of texts, we explore both
models for question representations in this study.

3.2.1 LSTM based question model

LSTM LSTM LSTM…

what are bicycle

We We We

Question:

…

…

Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell
ct which reserves the state of a sequence. At each step,
the LSTM unit takes one input vector (word vector in our
case) xt and updates the memory cell ct, then output a hid-
den state ht. The update process uses the gate mechanism.
A forget gate ft controls how much information from past
state ct�1 is preserved. An input gate it controls how much
the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is
fed to the output as hidden state. The detailed update pro-
cess is as follows:

it =�(Wxixt +Whiht�1 + bi), (3)
ft =�(Wxfxt +Whfht�1 + bf ), (4)
ot =�(Wxoxt +Whoht�1 + bo), (5)
ct =ftct�1 + it tanh(Wxcxt +Whcht�1 + bc), (6)
ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and
memory cell, respectively. The weight matrix and bias are
parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot
vector representation of word at position t, we first embed
the words to a vector space through an embedding matrix
xt = Weqt. Then for every time step, we feed the embed-
ding vector of words in the question to LSTM:

xt =Weqt, t 2 {1, 2, ...T}, (8)
ht =LSTM(xt), t 2 {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting
in the basket on a bicycle is fed into the
LSTM. Then the final hidden layer is taken as the repre-
sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model
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Figure 4: CNN based question model
In this study, we also explore to use a CNN similar

to [11] for question representation. Similar to the LSTM-
based question model, we first embed words to vectors
xt = Weqt and get the question vector by concatenating
the word vectors:

x1:T = [x1, x2, ..., xT ]. (10)

Then we apply convolution operation on the word embed-
ding vectors. We use three convolution filters, which have
the size of one (unigram), two (bigram) and three (trigram)
respectively. The t-th convolution output using window size
c is given by:

hc,t = tanh(Wcxt:t+c�1 + bc). (11)

The filter is applied only to window t : t + c � 1 of size c.
Wc is the convolution weight and bc is the bias. The feature
map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T�c+1]. (12)

Then we apply max-pooling over the feature maps of the
convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T�c+1]. (13)

The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
X

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph
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A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.
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The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the
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Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:
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where u0 is initialized to be vQ. Then the aggregated image
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That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
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final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
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sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.
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tion only relates to dogs. Therefore, using the one global
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that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
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the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:
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weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the
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are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
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That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
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uk = ṽkI + uk�1. We repeat this K times and then use the
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Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
the caption generation process. Different from [30, 27], the
approach proposed in [6] first used a CNN to detect words
given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
used a deep multimodal similarity model (DMSM) to re-
rank the candidates. Instead of using a RNN or a LSTM,
the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
search of image QA, several data sets have been constructed
in [19, 21, 7, 1] either through automatic generation based
on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
ple attention layers are used to support multi-step reasoning
for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.
We describe the three major components of SAN in this sec-
tion: the image model, the question model, and the stacked
attention model.
3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the
representation of images. Specifically, the VGGNet [23] is
used to extract the image feature map fI from a raw image
I:

image
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Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
the caption generation process. Different from [30, 27], the
approach proposed in [6] first used a CNN to detect words
given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
used a deep multimodal similarity model (DMSM) to re-
rank the candidates. Instead of using a RNN or a LSTM,
the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
search of image QA, several data sets have been constructed
in [19, 21, 7, 1] either through automatic generation based
on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
ple attention layers are used to support multi-step reasoning
for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.
We describe the three major components of SAN in this sec-
tion: the image model, the question model, and the stacked
attention model.
3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the
representation of images. Specifically, the VGGNet [23] is
used to extract the image feature map fI from a raw image
I:
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fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448

pixels, and then take the features from the last pooling layer,
which therefore have a dimension of 512⇥14⇥14, as shown
in Fig. 2. 14⇥ 14 is the number of regions in the image and
512 is the dimension of the feature vector for each region.
Accordingly, each feature vector in fI corresponds to a 32⇥
32 pixel region of the input images. We denote by fi, i 2
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer
perceptron to transform each feature vector to a new vec-
tor that has the same dimension as the question vector (de-
scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual
feature vector for the region indexed by i.

3.2. Question Model

As [25, 22, 6] show that LSTMs and CNNs are powerful
to capture the semantic meaning of texts, we explore both
models for question representations in this study.

3.2.1 LSTM based question model
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Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell
ct which reserves the state of a sequence. At each step,
the LSTM unit takes one input vector (word vector in our
case) xt and updates the memory cell ct, then output a hid-
den state ht. The update process uses the gate mechanism.
A forget gate ft controls how much information from past
state ct�1 is preserved. An input gate it controls how much
the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is
fed to the output as hidden state. The detailed update pro-
cess is as follows:

it =�(Wxixt +Whiht�1 + bi), (3)
ft =�(Wxfxt +Whfht�1 + bf ), (4)
ot =�(Wxoxt +Whoht�1 + bo), (5)
ct =ftct�1 + it tanh(Wxcxt +Whcht�1 + bc), (6)
ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and
memory cell, respectively. The weight matrix and bias are
parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot
vector representation of word at position t, we first embed
the words to a vector space through an embedding matrix
xt = Weqt. Then for every time step, we feed the embed-
ding vector of words in the question to LSTM:

xt =Weqt, t 2 {1, 2, ...T}, (8)
ht =LSTM(xt), t 2 {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting
in the basket on a bicycle is fed into the
LSTM. Then the final hidden layer is taken as the repre-
sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model
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Figure 4: CNN based question model
In this study, we also explore to use a CNN similar

to [11] for question representation. Similar to the LSTM-
based question model, we first embed words to vectors
xt = Weqt and get the question vector by concatenating
the word vectors:

x1:T = [x1, x2, ..., xT ]. (10)

Then we apply convolution operation on the word embed-
ding vectors. We use three convolution filters, which have
the size of one (unigram), two (bigram) and three (trigram)
respectively. The t-th convolution output using window size
c is given by:

hc,t = tanh(Wcxt:t+c�1 + bc). (11)

The filter is applied only to window t : t + c � 1 of size c.
Wc is the convolution weight and bc is the bias. The feature
map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T�c+1]. (12)

Then we apply max-pooling over the feature maps of the
convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T�c+1]. (13)

The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
X

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The
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of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.
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as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the
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are put on the visual regions that are more relevant to
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That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
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final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
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ṽkI =
X

i

pki vi, (21)
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sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:
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Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:
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where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:
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uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795
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tions are generated on 795 and 654 images respectively. The
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max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
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hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in
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spectively.
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that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
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ṽI =
X

i

pivi, (17)
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uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
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tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:
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pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the
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ṽI =
X

i

pivi, (17)
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Compared to models that simply combine the ques-
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els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
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That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:
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Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The

a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,
we propose a stacked attention network for image QA tasks.
Second, we perform comprehensive evaluations on four
image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
approaches by a substantial margin. Third, we perform a
detailed analysis where we visualize the outputs of differ-
ent attention layers of the SAN and demonstrate the process
that the SAN takes multiple steps to progressively focus the
attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,
6, 27, 12, 10, 20]. In [27], the system first extracted a high
level image feature vector from GoogleNet and then fed it
into a LSTM to generate captions. The method proposed in
[30] went one step further to use an attention mechanism in
the caption generation process. Different from [30, 27], the
approach proposed in [6] first used a CNN to detect words
given the images, then used a maximum entropy language
model to generate a list of caption candidates, and finally
used a deep multimodal similarity model (DMSM) to re-
rank the candidates. Instead of using a RNN or a LSTM,
the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is
given and the task is to learn the relevant visual and text rep-
resentation to infer the answer. In order to facilitate the re-
search of image QA, several data sets have been constructed
in [19, 21, 7, 1] either through automatic generation based
on image caption data or by human labeling of questions
and answers given images. Among them, the image QA
data set in [21] is generated based on the COCO caption
data set. Given a sentence that describes an image, the au-
thors first used a parser to parse the sentence, then replaced
the key word in the sentence using question words and the
key word became the answer. [7] created an image QA data
set through human labeling. The initial version was in Chi-
nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected
questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
LSTM to encoder the images and questions and then used
another LSTM to decode the answers. They both fed the
image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
found the concatenation of image features and bag of words
features worked the best. [1] first encoded questions with
LSTMs and then combined question vectors with image
vectors by element wise multiplication. [17] used a CNN
for question modeling and used convolution operations to
combine question vectors and image feature vectors. We
compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,
which has been proved very successful in image captioning,
has not been explored for image QA. The SAN adapt the at-
tention mechanism to image QA, and can be viewed as a
significant extension to previous models [30] in that multi-
ple attention layers are used to support multi-step reasoning
for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.
We describe the three major components of SAN in this sec-
tion: the image model, the question model, and the stacked
attention model.
3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the
representation of images. Specifically, the VGGNet [23] is
used to extract the image feature map fI from a raw image
I:
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Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the
last inner product layer, we choose the features fI from the
last pooling layer, which retains spatial information of the
original images. We first rescale the images to be 448⇥448
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a CNN to extract high level image representations, e.g. one
vector for each region of the image; (2) the question model,
which uses a CNN or a LSTM to extract a semantic vector
of the question and (3) the stacked attention model, which
locates, via multi-step reasoning, the image regions that are
relevant to the question for answer prediction. As illustrated
in Fig. 1a, the SAN first uses the question vector to query
the image vectors in the first visual attention layer, then
combine the question vector and the retrieved image vectors
to form a refined query vector to query the image vectors
again in the second attention layer. The higher-level atten-
tion layer gives a sharper attention distribution focusing on
the regions that are more relevant to the answer. Finally, we
combine the image features from the highest attention layer
with the last query vector to predict the answer.
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we propose a stacked attention network for image QA tasks.
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image QA benchmarks, demonstrating that the proposed
multiple-layer SAN outperforms previous state-of-the-art
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questions and answers not only for real images, but also for
abstract scenes.

Several image QA models were proposed in the litera-
ture. [18] used semantic parsers and image segmentation
methods to predict answers based on images and questions.
[19, 7] both used encoder-decoder framework to generate
answers given images and questions. They first used a
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image feature to every LSTM cell. [21] proposed sev-
eral neural network based models, including the encoder-
decoder based models that use single direction LSTMs and
bi-direction LSTMs, respectively. However, the authors
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features worked the best. [1] first encoded questions with
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Abstract

This paper presents stacked attention networks (SANs)

that learn to answer natural language questions from im-

ages. SANs use semantic representation of a question as

query to search for the regions in an image that are related

to the answer. We argue that image question answering

(QA) often requires multiple steps of reasoning. Thus, we

develop a multiple-layer SAN in which we query an image

multiple times to infer the answer progressively. Experi-

ments conducted on four image QA data sets demonstrate

that the proposed SANs significantly outperform previous

state-of-the-art approaches. The visualization of the atten-

tion layers illustrates the progress that the SAN locates the

relevant visual clues that lead to the answer of the question

layer-by-layer.

1. Introduction

With the recent advancement in computer vision and
in natural language processing (NLP), image question an-
swering (QA) becomes one of the most active research ar-
eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-
tems that have been studied extensively in the NLP commu-
nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
to the content of a reference image.

Most of the recently proposed image QA models are
based on neural networks [7, 21, 18, 1, 19]. A commonly
used approach was to extract a global image feature vector
using a convolution neural network (CNN) [15] and encode
the corresponding question as a feature vector using a long
short-term memory network (LSTM) [9] and then combine
them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained

regions in an image.
By examining the image QA data sets, we find that it is

often that case that answering a question from an image re-
quires multi-step reasoning. Take the question and image in
Fig. 1 as an example. There are several objects in the im-
age: bicycles, window, street, baskets and

Question:
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(e.g., sitting in) referred in the question, then gradu-
ally rule out irrelevant objects, and finally pinpoint to the re-
gion that are most indicative to infer the answer (i.e., dogs
in the example).

In this paper, we propose stacked attention networks
(SANs) that allow multi-step reasoning for image QA.
SANs can be viewed as an extension of the attention mech-
anism that has been successfully applied in image caption-
ing [30] and machine translation [2]. The overall architec-
ture of SAN is illustrated in Fig. 1a. The SAN consists of
three major components: (1) the image model, which uses
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Abstract

This paper presents stacked attention networks (SANs)

that learn to answer natural language questions from im-

ages. SANs use semantic representation of a question as

query to search for the regions in an image that are related

to the answer. We argue that image question answering

(QA) often requires multiple steps of reasoning. Thus, we

develop a multiple-layer SAN in which we query an image

multiple times to infer the answer progressively. Experi-

ments conducted on four image QA data sets demonstrate

that the proposed SANs significantly outperform previous

state-of-the-art approaches. The visualization of the atten-

tion layers illustrates the progress that the SAN locates the

relevant visual clues that lead to the answer of the question

layer-by-layer.

1. Introduction
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nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
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them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained
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The max-pooling over these vectors is a coordinate-wise
max operation. For convolution feature maps of different
sizes c = 1, 2, 3, we concatenate them to form the feature
representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.
The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,
bigrams and trigrams are drawn in red, blue and orange, re-
spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-
ture vector vQ, SAN predicts the answer via multi-step rea-
soning.

In many cases, an answer only related to a small region
of an image. For example, in Fig. 1b, although there are
multiple objects in the image: bicycles, baskets,
window, street and dogs and the answer to the ques-
tion only relates to dogs. Therefore, using the one global
image feature vector to predict the answer could lead to sub-
optimal results due to the noises introduced from regions
that are irrelevant to the potential answer. Instead, reason-
ing via multiple attention layers progressively, the SAN are
able to gradually filter out noises and pinpoint the regions
that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-
tor vQ, we first feed them through a single layer neural net-
work and then a softmax function to generate the attention
distribution over the regions of the image:

hA =tanh(WI,AvI � (WQ,AvQ + bA)), (15)
pI =softmax(WPhA + bP ), (16)

where vI 2 Rd⇥m, d is the image representation dimen-
sion and m is the number of image regions, vQ 2 Rd is a
d dimensional vector. Suppose WI,A,WQ,A 2 Rk⇥d and
WP 2 R1⇥k, then pI 2 Rm is an m dimensional vector,
which corresponds to the attention probability of each im-
age region given vQ. Note that we denote by � the addition
of a matrix and a vector. Since WI,AvI 2 Rk⇥m and both
WQ,AhQ, bA 2 Rk are vectors, the addition between a ma-
trix and a vector is performed by adding each column of the
matrix by the vector.

Based on the attention distribution, we calculate the
weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-
tor vQ to form a refined query vector u as in Eq. 18. u is
regarded as a refined query since it encodes both question
information and the visual information that is relevant to the

potential answer:

ṽI =
X

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-
tion vector and the global image vector, attention mod-
els construct a more informative u since higher weights
are put on the visual regions that are more relevant to
the question. However, for complicated questions, a sin-
gle attention layer is not sufficient to locate the correct
region for answer prediction. For example, the question
in Fig. 1 what are sitting in the basket on
a bicycle refers to some subtle relationships among
multiple objects in an image. Therefore, we iterate the
above query-attention process using multiple attention lay-
ers, each extracting more fine-grained visual attention infor-
mation for answer prediction. Formally, the SANs take the
following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image
feature vector is added to the previous query vector to form
a new query vector:

ṽkI =
X

i

pki vi, (21)

uk =ṽkI + uk�1. (22)

That is, in every layer, we use the combined question
and image vector uk�1 as the query for the image. After the
image region is picked, we update the new query vector as
uk = ṽkI + uk�1. We repeat this K times and then use the
final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-
ple. In the first attention layer, the model identifies roughly
the area that are relevant to basket, bicycle, and
sitting in. In the second attention layer, the model fo-
cuses more sharply on the region that corresponds to the
answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.
DAQUAR-ALL is proposed in [18]. There are 6, 795

training questions and 5, 673 test questions. These ques-
tions are generated on 795 and 654 images respectively. The
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Methods Accuracy WUPS0.9 WUPS0.0

Multi-World: [18]
Multi-World 7.9 11.9 38.8

Ask-Your-Neurons: [19]
Language 17.2 22.8 58.4
Language + IMG 19.4 25.3 62.0
CNN: [17]
IMG-CNN 23.4 29.6 63.0

Ours:
SAN(1, LSTM) 28.9 34.7 68.5
SAN(1, CNN) 29.2 35.1 67.8
SAN(2, LSTM) 29.3 34.9 68.1
SAN(2, CNN) 29.3 35.1 68.6

Human :[18]

Human 50.2 50.8 67.3

Table 1: DAQUAR-ALL results, in percentage

Methods Accuracy WUPS0.9 WUPS0.0

Multi-World: [18]
Multi-World 12.7 18.2 51.5

Ask-Your-Neurons: [19]
Language 31.7 38.4 80.1
Language + IMG 34.7 40.8 79.5

VSE: [21]
GUESS 18.2 29.7 77.6
BOW 32.7 43.2 81.3
LSTM 32.7 43.5 81.6
IMG+BOW 34.2 45.0 81.5
VIS+LSTM 34.4 46.1 82.2
2-VIS+BLSTM 35.8 46.8 82.2

CNN: [17]
IMG-CNN 39.7 44.9 83.1

Ours:
SAN(1, LSTM) 45.2 49.6 84.0
SAN(1, CNN) 45.2 49.6 83.7
SAN(2, LSTM) 46.2 51.2 85.1

SAN(2, CNN) 45.5 50.2 83.6

Human :[18]

Human 60.3 61.0 79.0

Table 2: DAQUAR-REDUCED results, in percentage

racy, respectively. On the larger COCO-QA data set, the
proposed two-layer SANs significantly outperform the best
baselines from [17] (IMG-CNN) and [21] (IMG+BOW and
2-VIS+BLSTM) by 5.1% and 6.6% in accuracy (Table. 3).
Table. 5 summarizes the performance of various models on
VQA, which is the largest among the four data sets. The
overall results show that our best model, SAN(2, CNN),

Methods Accuracy WUPS0.9 WUPS0.0

VSE: [21]
GUESS 6.7 17.4 73.4
BOW 37.5 48.5 82.8
LSTM 36.8 47.6 82.3
IMG 43.0 58.6 85.9
IMG+BOW 55.9 66.8 89.0
VIS+LSTM 53.3 63.9 88.3
2-VIS+BLSTM 55.1 65.3 88.6

CNN: [17]
IMG-CNN 55.0 65.4 88.6
CNN 32.7 44.3 80.9

Ours:
SAN(1, LSTM) 59.6 69.6 90.1
SAN(1, CNN) 60.7 70.6 90.5
SAN(2, LSTM) 61.0 71.0 90.7
SAN(2, CNN) 61.6 71.6 90.9

Table 3: COCO-QA results, in percentage

Methods Objects Number Color Location

VSE: [21]
GUESS 2.1 35.8 13.9 8.9
BOW 37.3 43.6 34.8 40.8
LSTM 35.9 45.3 36.3 38.4
IMG 40.4 29.3 42.7 44.2
IMG+BOW 58.7 44.1 52.0 49.4
VIS+LSTM 56.5 46.1 45.9 45.5
2-VIS+BLSTM 58.2 44.8 49.5 47.3

Ours:
SAN(1, LSTM) 62.5 49.0 54.8 51.6
SAN(1, CNN) 63.6 48.7 56.7 52.7
SAN(2, LSTM) 63.6 49.8 57.9 52.8
SAN(2, CNN) 64.5 48.6 57.9 54.0

Table 4: COCO-QA accuracy per class, in percentage

outperforms the LSTM Q+I model, the best baseline from
[1], by 3.9% absolute. The superior performance of the
SANs across all four benchmarks demonstrate the effective-
ness of using multiple layers of attention.

In order to study the strength and weakness of the SAN
in detail, we report performance at the question-type level
on the two large data sets, COCO-QA and VQA, in Ta-
ble. 4 and 5, respectively. We observe that on COCO-
QA, compared to the two best baselines, IMG+BOW and
2-VIS+BLSTM, out best model SAN(2, CNN) improves
7.2% in the question type of Color, followed by 6.1% in Ob-

jects, 5.7% in Location and 4.2% in Number. We observe
similar trend of improvements on VQA. As shown in Ta-
ble. 5, compared to the best baseline LSTM Q+I, the biggest
improvement of SAN(2, CNN) is in the Other type, 10.0%,
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ble. 4 and 5, respectively. We observe that on COCO-
QA, compared to the two best baselines, IMG+BOW and
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Methods All
Yes/No

36%
Number

10%
Other
54%

VQA: [1]
Question 48.1 75.7 36.7 27.1
Image 28.1 64.0 0.4 3.8
Q+I 52.6 75.6 33.7 37.4
LSTM Q 48.8 78.2 35.7 26.6
LSTM Q+I 53.7 78.9 35.2 36.4

Ours:
SAN(1, LSTM) 56.6 78.1 41.6 44.8
SAN(1, CNN) 56.9 78.8 42.0 45.0
SAN(2, LSTM) 57.3 78.3 42.2 45.9
SAN(2, CNN) 57.6 78.6 41.8 46.4

Human: [1]
Human 83.3 95.8 83.4 72.7

Table 5: VQA results, in percentage
followed by the 6.6% improvement in Number. Note that
the Other type in VQA refers to questions that usually have
the form of “what color, what kind, what are, what type,
where” etc., which are similar to question types of Color,
Objects and Location in COCO-QA. The VQA data set has
a special Yes/No type of questions. The SAN does not im-
prove the performance of this type of questions. This could
due to that the answer for a Yes/No question is very ques-
tion dependent, so better modeling of the visual informa-
tion does not provide much additional gains. This also con-
firms the similar observation reported in [1], e.g., using ad-
ditional image information only slightly improves the per-
formance in Yes/No, as shown in Table. 5, Q+I vs Question,
and LSTM Q+I vs LSTM Q.

Our results demonstrate clearly the positive impact of
using multiple attention layers. In all four data sets, two-
layer SANs always perform better than the one-layer SAN.
Specifically, on COCO-QA, on average the two-layer SANs
outperform the one-layer SANs by 2.2% in the type of
Color, followed by 1.3% and 1.0% in the Location and Ob-

jects categories, and then 0.4% in Number. This aligns to
the order of the improvements of the SAN over baselines.
Similar trends are observed on VQA (Table. 5), e.g., the
two-layer SAN improve over the one-layer SAN by 1.4%
for the Other type of question, followed by 0.2% improve-
ment for Number, and flat for Yes/No.

4.5. Visualization of attention layers

In this section, we present analysis to demonstrate that
using multiple attention layers to perform multi-step rea-
soning leads to more fine-grained attention layer-by-layer
in locating the regions that are relevant to the potential an-
swers. We do so by visualizing the outputs of the atten-
tion layers of a sample set of images from the COCO-QA
test set. Note the attention probability distribution is of size

14⇥ 14 and the original image is 448⇥ 448, we up-sample
the attention probability distribution and apply a Gaussian
filter to make it the same size as the original image.

Fig. 5 presents six examples. More examples are pre-
sented in the appendix. They cover types as broad as Object,
Numbers, Color and Location. For each example, the three
images from left to right are the original image, the output
of the first attention layer and the output of the second at-
tention layer, respectively. The bright part of the image is
the detected attention. Across all those examples, we see
that in the first attention layer, the attention is scattered on
many objects in the image, largely corresponds to the ob-
jects and concepts referred in the question, whereas in the
second layer, the attention is far more focused on the re-
gions that lead to the correct answer. For example, consider
the question what is the color of the horns,
which asks the color of the horn on the woman’s head in
Fig. 5(f). In the output of the first attention layer, the model
first recognizes a woman in the image. In the output of the
second attention layer, the attention is focused on the head
of the woman, which leads to the answer of the question:
the color of the horn is red.

4.6. Errors analysis

We randomly sample 100 images from the COCO-QA
test set that the SAN make mistakes. We group the errors
into four categories: (i) the SANs focus the attention on the
wrong regions (22%), e.g., the example in Fig. 6(a); (ii) the
SANs focus on the right region but predict a wrong answer
(42%), e.g., the examples in Fig. 6(b)(c)(d); (iii) the answer
is ambiguous, the SANs give answers that are different from
labels, but might be acceptable (31%). E.g., in Fig. 6(e), the
answer label is pot, but out model predicts vase, which
is also visually reasonable; (iv) the labels are clearly wrong
(5%). E.g., in Fig. 6(f), our model gives the correct answer
trains while the label cars is wrong.

5. Conclusion

In this paper, we propose a new stacked attention net-
work (SAN) for image QA. SAN uses a multiple-layer at-
tention mechanism that queries an image multiple times to
locate the relevant visual region and to infer the answer pro-
gressively. Experimental results demonstrate that the pro-
posed SAN significantly outperforms previous state-of-the-
art approaches by a substantial margin on all four image QA
data sets. The visualization of the attention layers further il-
lustrates the process that the SAN focuses the attention to
the relevant visual clues that lead to the answer of the ques-
tion layer-by-layer.

VQA
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Figure 5: Visualization of two attention layers

Figure 6: Examples of mistakes
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Figure 5: Visualization of two attention layers

Figure 6: Examples of mistakes
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