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§ Landscape of attacks on Computer Vision Models

§ Adversarial Perturbations

§ Data Poisoning

§ Membership Inference

§ Reverse Engineering and Model Stealing

§ Watermarking

Outline
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Privacy & Security in Machine Learning: Towards Trustworthy AI
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• Widespread deployment of ML

• Future industry is fueled by data

• How to make
Machine Learning
privacy compliant and
secure?
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Fig. 4. Qualitative results on the Cityscapes validation set for Deeplab-v2 [3] (left) and
PSPNet [20] (right). The first four rows show the raw images, ground truth, baselines’
predictions and our predictions. The last row is a visual comparison of correctly classi-
fied pixels. In white areas, both predictions are correct, in red areas, only the baseline
prediction is correct and in cyan colored areas, the proposed predictions are correct,
while the baseline prediction is erroneous.

640⇥ 480. The quantitative results are summarized in Tab. 4. We improve over
Deeplab-v2 and PSPNet for 0.9 pp and 0.5 pp, respectively. For most classes, we
obtain comparable performance. Particularly, in the classes of “Sign”, “Fence”
and “Bicyclist”, our method achieves clear improvements over Deeplab-v2 as
well as PSPNet. This shows the benefit of our learned dilation: State-of-the art
methods can be improved to recognize a range of classes better.

4 Conclusion

In this paper, we have presented learnable dilated convolutions, which is fully
compatible with existing architectures and adds only little overhead. We have ap-
plied our novel convolutional layer to learn channel-based dilation factors in the
semantic segmentation scenario. Thus, we were able to improve the performance
of Deeplab-LargeFOV, Deeplab-v2 and PSPNet for the semantic segmentation
of street scenes consistently across two datasets. We showed that our method is
able to obtain visually more convincing results, and improved quantitative per-
formance. Besides, a series of ablation studies shows that learning the dilation
parameter is helpful to design better semantic segmentation models in practice.

ML Model
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Fig. 1. System’s attack surface: the generic model (top row) is illustrated with two example scenarios (bottom rows): a computer vision model used by an
automotive system to recognize traffic signs on the road and a network intrusion detection system.

deal of information about a model can be extracted from input
/ output pairs, and relatively little information is required
because of the transferability property exhibited by many
model architectures (See Section V-B).

Training Phase: Attacks on training attempt to learn, influence
or corrupt the model itself. The simplest and arguably weakest
attack on training is simply accessing a summary, partial or
all of the training data. Here, depending on the quality and
volume of training data, the adversary can create a substitute
model (also referred to as a surrogate or auxiliary model) to
use to mount attacks on the victim system. For example, the
adversary can use a substitute model to test potential inputs
before submitting them to the victim system [32]. Note that
these attacks are offline attempts at model reconnaissance, and
thus may be used to undermine privacy (see below).

There are two broad attack strategies for altering the model.
The first alters the training data either by inserting adversarial
inputs into the existing training data (injection) or altering the
training data directly (modification). In the case of reinforce-
ment learning, the adversary may modify the environment in
which the agent is evolving. Lastly, the adversaries can tamper
with the learning algorithm. We refer to these attacks as logic
corruption. Obviously, any adversary that can alter the learning
logic (and thus controls the model itself) is very powerful and
difficult to defend against.

C. Adversarial Goals
The last piece of a threat model is an articulation of the

goals of the adversary. We adopt a classical approach to
modeling adversarial goals by modeling desired ends as im-
pacting confidentiality, integrity, and availability (called a CIA
model), and adding a fourth property, privacy. Interestingly, a
duality emerges when taking a view in this way: attacks on
system integrity and availability are closely related in goal and
method, as are confidentiality and privacy.

As is often the case in security, ML systems face three types
of risks: failure to provide integrity, availability, and privacy.
Integrity and privacy can both be understood at the level of the
ML model itself, as well as for the entire system deploying it.
Availability is however ill defined for a model in isolation but
makes sense for the ML-based system as a whole. We discuss
below the range of adversarial goals that relate to each risk.

Confidentiality and Privacy: Attacks on confidentiality and
privacy are with respect to the model. Put another way, the
attacks achieving these goals attempt to extract information
about the model or training data as highlighted above. When
the model itself represents intellectual property, it requires that
the model and its parameters be confidential, e.g., financial
market systems [33]. In other contexts it is imperative that
the privacy of the training data be preserved, e.g., medical
applications [34]. Regardless of the goal, the attacks and
defenses for them relate to exposing or preventing the exposure
of the model and training data.

Machine learning models have enough capacity to capture
and memorize elements of their training data [35]. As such,
it is hard to provide guarantees that participation in a dataset
does not harm the privacy of an individual. Potential risks are
adversaries performing membership test (to know whether an
individual is in a dataset or not) [36], recovering of partially
known inputs (use the model to complete an input vector with
the most likely missing bits), and extraction of the training
data using the model’s predictions [35].

Integrity and Availability: Attacks on integrity and ability are
with respect to model outputs. Here the goal is to induce model
behavior as chosen by the adversary. Attacks attempting to
control model outputs are at the heart of integrity attacks—the
integrity of the inference process is undermined. For example,
attacks that attempt to induce false positives in a face recogni-
tion system affect the authentication process’s integrity [37].
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Machine Learning Systems’ attack surface
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§ Membership Inference Attacks

- Trying to infer information on the training data

- Only observing input/output

- High capacity models partially memorize the training data

§ Model Inference Attacks

- Trying to infer information about the model

- Only observing input/output

Goals: Confidentiality & Privacy
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§ Reduce

- Quality of model (confidence or consistency)

- Performance (speed)

- Access (denial of service)

§ Manipulating

- Training data: Poisoning Attacks

- Test data: Evasion Attacks

Goals: Integrity & Availability
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Evasion Attacks



Robustness of Machine Learning – Difficult to test in real-world (i.i.d, tails of 
the distribution, corner cases, rare examples)
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Real World Data



Robustness of Machine Learning – Difficult to test in real-world (i.i.d, tails)
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Human crafted/manipulated data



Adversarial Manipulation of Input
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Targeted and non-targeted attack

Targeted: Have an objective label.

Non-targeted: Don’t have an objective label, just want to mislead the
model to a di↵erent label.

Non-targeted samples have been shown easier to transfer.

This paper focus on targeted attack.

What if for the two models, the labels are di↵erent?

Yanpei Liu , Xinyun Chen , Chang Liu, Dawn Song (Shanghai JiaoTong University)Delving into Transferable Adversarial Examples and Black-box AttacksICLR 2017/ Presenter: Ji Gao 5 / 18

(Goodfellow 2018)

Good models make surprising 
mistakes in non-IID setting

Schoolbus Perturbation 
(rescaled for visualization)

Ostrich

+ =

(Szegedy et al, 2013)

“Adversarial examples”

Machine crafted/manipulated data

Right 
of 
way



Evasion Attack
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Evasion Attack
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§ Has been shown to work for all kind of input data:

- SPAM, malware, traffic signs, …

§ We require some notion that the change is small “small" 

- E.G. L0 (how many dimensions unchanged), L2, L_infinity norm (what is the largest change)

- Perceptual and domain specific norms are topic of research 

Evasion Attacks

15



§ Linear classifier / logistic regression

§ Find direction with strongest change

- Dimension with highest weight

§ Move axis parallel until label changes

Binary Classifier Evasion Attack
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§ Empirical Risk Minimization

§ Empirical Risk Minimization in adversarial conditions:

- Saddle point:

- Inner maximization finds adversarial versions with high loss

- Outer minimization tries to find parameters so that “adversarial loss” of inner attack is 
minimized

Adversarial Machine Learning: Evasion attacks
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Overall, these findings suggest that secure neural networks are within reach. In order to further
support this claim, we invite the community to attempt attacks against our MNIST and CIFAR10
networks in the form of a challenge. This will let us evaluate its robustness more accurately,
and potentially lead to novel attack methods in the process. The complete code, along with the
description of the challenge, is available at https://github.com/MadryLab/mnist_challenge and
https://github.com/MadryLab/cifar10_challenge.

2 An Optimization View on Adversarial Robustness

Much of our discussion will revolve around an optimization view of adversarial robustness. This
perspective not only captures the phenomena we want to study in a precise manner, but will
also inform our investigations. To this end, let us consider a standard classification task with an
underlying data distribution D over pairs of examples x 2 Rd and corresponding labels y 2 [k]. We
also assume that we are given a suitable loss function L(✓, x, y), for instance the cross-entropy loss
for a neural network. As usual, ✓ 2 Rp is the set of model parameters. Our goal then is to find
model parameters ✓ that minimize the risk E(x,y)⇠D[L(x, y, ✓)].

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk. Unfortunately, ERM often does not yield models that are
robust to adversarially crafted examples [7, 12, 13, 25]. Formally, there are efficient algorithms
(“adversaries”) that take an example x belonging to class c1 as input and find examples xadv such
that xadv is very close to x but the model incorrectly classifies xadv as belonging to class c2 6= c1.

In order to reliably train models that are robust to adversarial attacks, it is necessary to augment
the ERM paradigm appropriately. Instead of resorting to methods that directly focus on improving
the robustness to specific attacks, our approach is to first propose a concrete guarantee that an
adversarially robust model should satisfy. We then adapt our training methods towards achieving
this guarantee.

The first step towards such a guarantee is to specify an attack model, i.e., a precise definition
of the attacks our models should be resistant to. For each data point x, we introduce a set of
allowed perturbations S ✓ Rd that formalizes the manipulative power of the adversary. In image
classification, we choose S so that it captures perceptual similarity between images. For instance,
the `1-ball around x has recently been studied as a natural notion for adversarial perturbations [7].
While we focus on robustness against `1-bounded attacks in this paper, we remark that more
comprehensive notions of perceptual similarity are an important direction for future research.

Next, we modify the definition of population risk ED[L] by incorporating the above adversary.
Instead of feeding samples from the distribution D directly into the loss L, we allow the adversary
to perturb the input first. This gives rise to the following saddle point problem, which is our central
object of study:

min
✓

⇢(✓), where ⇢(✓) = E(x,y)⇠D


max
�2S

L(✓, x+ �, y)

�
. (2.1)

Formulations of this type (and their finite-sample counterparts) have a long history in robust
optimization, going back to Wald [26, 27, 28]. It turns out that this formulation is also particularly
useful in our context.

First, this formulation gives us a unifying perspective that encompasses much prior work on
adversarial robustness. Our perspective stems from viewing the saddle point problem as the
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§ How to perform inner maximization? (Attack)

§ Projected Gradient descent

§ One step method: Fast Gradient Sign Method (FGSM)

§ Multi-step method: FGSMk

Evasion Attacks: Fast Signed Gradient Method 
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composition of an inner maximization problem and an outer minimization problem. Both of these
problems have a natural interpretation in our context. The inner maximization problem aims to
find an adversarial version of a given data point x that achieves a high loss. This is precisely the
problem of attacking a given neural network. On the other hand, the goal of the outer minimization
problem is to find model parameters so that the “adversarial loss” given by the inner attack problem
is minimized. This is precisely the problem of training a robust classifier using adversarial training
techniques.

Second, the saddle point problem specifies a clear goal that an ideal robust classifier should
achieve, as well as a quantitative measure of its robustness. In particular, when the parameters ✓
yield a (nearly) vanishing risk, the corresponding model is perfectly robust to attacks specified by
our attack model.

Our paper investigates the structure of this saddle point problem in the context of deep neural
networks. These investigations then lead us to training techniques that produce models with high
resistance to a wide range of adversarial attacks. Before turning to our contributions, we briefly
review prior work on adversarial examples and describe in more detail how it fits into the above
formulation.

2.1 A Unified View on Attacks and Defenses

Prior work on adversarial examples has focused on two main questions:

1. How can we produce strong adversarial examples, i.e., adversarial examples that fool a model
with high confidence while requiring only a small perturbation?

2. How can we train a model so that there are no adversarial examples, or at least so that an
adversary cannot find them easily?

Our perspective on the saddle point problem (2.1) gives answers to both these questions. On
the attack side, prior work has proposed methods such as the Fast Gradient Sign Method (FGSM)
and multiple variations of it [7]. FGSM is an attack for an `1-bounded adversary and computes an
adversarial example as

x+ " sgn(rxL(✓, x, y)).

One can interpret this attack as a simple one-step scheme for maximizing the inner part of the
saddle point formulation. A more powerful adversary is the multi-step variant FGSMk, which is
essentially projected gradient descent (PGD) on the negative loss function [12]:

xt+1 = ⇧x+S
�
xt + ↵ sgn(rxL(✓, x, y))

�
.

Other methods like FGSM with random perturbation have also been proposed [24]. Clearly, all
of these approaches can be viewed as specific attempts to solve the inner maximization problem
in (2.1).

On the defense side, the training dataset is often augmented with adversarial examples produced
by FGSM. This approach also directly follows from (2.1) when linearizing the inner maximization
problem. To solve the simplified robust optimization problem, we replace every training example
with its FGSM-perturbed counterpart. More sophisticated defense mechanisms such as training
against multiple adversaries can be seen as better, more exhaustive approximations of the inner
maximization problem.
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adversary cannot find them easily?

Our perspective on the saddle point problem (2.1) gives answers to both these questions. On
the attack side, prior work has proposed methods such as the Fast Gradient Sign Method (FGSM)
and multiple variations of it [7]. FGSM is an attack for an `1-bounded adversary and computes an
adversarial example as

x+ " sgn(rxL(✓, x, y)).

One can interpret this attack as a simple one-step scheme for maximizing the inner part of the
saddle point formulation. A more powerful adversary is the multi-step variant FGSMk, which is
essentially projected gradient descent (PGD) on the negative loss function [12]:

xt+1 = ⇧x+S
�
xt + ↵ sgn(rxL(✓, x, y))

�
.

Other methods like FGSM with random perturbation have also been proposed [24]. Clearly, all
of these approaches can be viewed as specific attempts to solve the inner maximization problem
in (2.1).

On the defense side, the training dataset is often augmented with adversarial examples produced
by FGSM. This approach also directly follows from (2.1) when linearizing the inner maximization
problem. To solve the simplified robust optimization problem, we replace every training example
with its FGSM-perturbed counterpart. More sophisticated defense mechanisms such as training
against multiple adversaries can be seen as better, more exhaustive approximations of the inner
maximization problem.
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composition of an inner maximization problem and an outer minimization problem. Both of these
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Our paper investigates the structure of this saddle point problem in the context of deep neural
networks. These investigations then lead us to training techniques that produce models with high
resistance to a wide range of adversarial attacks. Before turning to our contributions, we briefly
review prior work on adversarial examples and describe in more detail how it fits into the above
formulation.

2.1 A Unified View on Attacks and Defenses

Prior work on adversarial examples has focused on two main questions:

1. How can we produce strong adversarial examples, i.e., adversarial examples that fool a model
with high confidence while requiring only a small perturbation?

2. How can we train a model so that there are no adversarial examples, or at least so that an
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On the defense side, the training dataset is often augmented with adversarial examples produced
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Overall, these findings suggest that secure neural networks are within reach. In order to further
support this claim, we invite the community to attempt attacks against our MNIST and CIFAR10
networks in the form of a challenge. This will let us evaluate its robustness more accurately,
and potentially lead to novel attack methods in the process. The complete code, along with the
description of the challenge, is available at https://github.com/MadryLab/mnist_challenge and
https://github.com/MadryLab/cifar10_challenge.

2 An Optimization View on Adversarial Robustness

Much of our discussion will revolve around an optimization view of adversarial robustness. This
perspective not only captures the phenomena we want to study in a precise manner, but will
also inform our investigations. To this end, let us consider a standard classification task with an
underlying data distribution D over pairs of examples x 2 Rd and corresponding labels y 2 [k]. We
also assume that we are given a suitable loss function L(✓, x, y), for instance the cross-entropy loss
for a neural network. As usual, ✓ 2 Rp is the set of model parameters. Our goal then is to find
model parameters ✓ that minimize the risk E(x,y)⇠D[L(x, y, ✓)].

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk. Unfortunately, ERM often does not yield models that are
robust to adversarially crafted examples [7, 12, 13, 25]. Formally, there are efficient algorithms
(“adversaries”) that take an example x belonging to class c1 as input and find examples xadv such
that xadv is very close to x but the model incorrectly classifies xadv as belonging to class c2 6= c1.

In order to reliably train models that are robust to adversarial attacks, it is necessary to augment
the ERM paradigm appropriately. Instead of resorting to methods that directly focus on improving
the robustness to specific attacks, our approach is to first propose a concrete guarantee that an
adversarially robust model should satisfy. We then adapt our training methods towards achieving
this guarantee.

The first step towards such a guarantee is to specify an attack model, i.e., a precise definition
of the attacks our models should be resistant to. For each data point x, we introduce a set of
allowed perturbations S ✓ Rd that formalizes the manipulative power of the adversary. In image
classification, we choose S so that it captures perceptual similarity between images. For instance,
the `1-ball around x has recently been studied as a natural notion for adversarial perturbations [7].
While we focus on robustness against `1-bounded attacks in this paper, we remark that more
comprehensive notions of perceptual similarity are an important direction for future research.

Next, we modify the definition of population risk ED[L] by incorporating the above adversary.
Instead of feeding samples from the distribution D directly into the loss L, we allow the adversary
to perturb the input first. This gives rise to the following saddle point problem, which is our central
object of study:

min
✓

⇢(✓), where ⇢(✓) = E(x,y)⇠D


max
�2S

L(✓, x+ �, y)

�
. (2.1)

Formulations of this type (and their finite-sample counterparts) have a long history in robust
optimization, going back to Wald [26, 27, 28]. It turns out that this formulation is also particularly
useful in our context.

First, this formulation gives us a unifying perspective that encompasses much prior work on
adversarial robustness. Our perspective stems from viewing the saddle point problem as the
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Overall, these findings suggest that secure neural networks are within reach. In order to further
support this claim, we invite the community to attempt attacks against our MNIST and CIFAR10
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(a) Fast Gradient (b) Fast Gradient Sign

Figure 1: The CDF of the minimal transferable RMSD from VGG-16 to ResNet-152 using FG (a)
and FGS (b). The green line labels the median minimal transferable RMSD, while the red line labels
the minimal transferable RMSD to reach 90% percentage.

RMSD ResNet-152 ResNet-101 ResNet-50 VGG-16 GoogLeNet
ResNet-152 23.13 100% 2% 1% 1% 1%
ResNet-101 23.16 3% 100% 3% 2% 1%
ResNet-50 23.06 4% 2% 100% 1% 1%
VGG-16 23.59 2% 1% 2% 100% 1%

GoogLeNet 22.87 1% 1% 0% 1% 100%

Table 2: The matching rate of targeted adversarial images generated using the optimization-based
approach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, j) indicates that matching rate of the targeted adversarial images generated for model i (row)
when evaluated on model j (column). The top-5 results can be found in the appendix (Table 12).

3.3 COMPARISON WITH RANDOM PERTURBATIONS

We also evaluate the test accuracy when we add a Gaussian noise to the 100 images in our test
set. The concrete results can be found in the appendix, and we show the conclusion that the “trans-
ferability” of this approach is significantly worse than either optimization-based approaches or fast
gradient-based approaches.

4 TARGETED ADVERSARIAL EXAMPLES

In this section, we examine the transferability of targeted adversarial images. Table 2 presents
the results for using optimization-based approach. We observe that (1) the prediction of targeted
adversarial images can match the target labels when evaluated on the same model that is used to
generate the adversarial examples; but (2) the targeted adversarial images can be rarely predicted
as the target labels by a different model. We call the latter that the target labels do not transfer.
Even when we increase the distortion, we still do not observe improvements on making target label
transfer. Some results can be found in the appendix (Table 17). Even if we compute the matching
rate based on top-5 accuracy, the highest matching rate is only 10%. The results can be found in the
appendix (Table 18).

We also examine the targeted adversarial images generated by fast gradient-based approaches, and
we observe that the target labels do not transfer as well. The results are deferred to the appendix
(Table 25). In fact, most targeted adversarial images cannot mislead the model, for which the ad-
versarial images are generated, to predict the target labels, regardless of how large the distortion is
used. We attribute it to the fact that the fast gradient-based approaches only search for attacks in
a 1-D subspace. In this subspace, the total possible predictions may contain a small subset of all
labels, which usually does not contain the target label. In Section 6, we study decision boundaries
regarding this issue.

We also evaluate the matching rate of images added with Gaussian noise, as described in Section 3.3.
However, we observe that the matching rate of any of the 5 models is 0%. Therefore, we conclude
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RMSD ResNet-152 ResNet-101 ResNet-50 VGG-16 GoogLeNet
-ResNet-152 30.68 38% 76% 70% 97% 76%
-ResNet-101 30.76 75% 43% 69% 98% 73%
-ResNet-50 30.26 84% 81% 46% 99% 77%
-VGG-16 31.13 74% 78% 68% 24% 63%

-GoogLeNet 29.70 90% 87% 83% 99% 11%

Table 3: The matching rate of targeted adversarial images generated using the optimization-based
approach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, j) indicates that percentage of the targeted adversarial images generated for the ensemble of the
four models except model i (row) is predicted as the target label by model j (column). In each row,
the minus sign “�” indicates that the model of the row is not used when generating the attacks.
Results of top-5 matching rate can be found in the appendix (Table 13).

that by adding Gaussian noise, the attacker cannot generate successful targeted adversarial examples
at all, let alone targeted transferability.

5 ENSEMBLE-BASED APPROACHES

We hypothesize that if an adversarial image remains adversarial for multiple models, then it is more
likely to transfer to other models as well. We develop techniques to generate adversarial images for
multiple models. The basic idea is to generate adversarial images for the ensemble of the models.
Formally, given k white-box models with softmax outputs being J1, ..., Jk, an original image x,
and its ground truth y, the ensemble-based approach solves the following optimization problem (for
targeted attack):

argminx? � log
�
(

kX

i=1

↵iJi(x
?)) · 1y?

�
+ �d(x, x?) (6)

where y? is the target label specified by the adversary,
P

↵iJi(x?) is the ensemble model, and ↵i

are the ensemble weights,
Pk

i=1 ↵i = 1. Note that (6) is the targeted objective. The non-targeted
counterpart can be derived similarly. In doing so, we hope the generated adversarial images remain
adversarial for an additional black-box model Jk+1.

We evaluate the effectiveness of the ensemble-based approach. For each of the five models, we treat
it as the black-box model to attack, and generate adversarial images for the ensemble of the rest
four, which is considered as white-box. We evaluate the generated adversarial images over all five
models. Throughout the rest of the paper, we refer to the approaches evaluated in Section 3 and 4 as
the approaches using a single model, and to the ensemble-based approaches discussed in this section
as the approaches using an ensemble model.

Optimization-based approach. We use Adam to optimize the objective (6) with equal ensemble
weights across all models in the ensemble to generate targeted adversarial examples. In particular,
we set the learning rate of Adam to be 8 for each model. In each iteration, we compute the Adam
update for each model, sum up the four updates, and add the aggregation onto the image. We run 100
iterations of updates, and we observe that the loss converges after 100 iterations. By doing so, for the
first time, we observe a large proportion of the targeted adversarial images whose target labels can
transfer. The results are presented in Table 3. We observe that not all targeted adversarial images
can be misclassified to the target labels by the models used in the ensemble. This suggests that
while searching for an adversarial example for the ensemble model, there is no direct supervision to
mislead any individual model in the ensemble to predict the target label. Further, from the diagonal
numbers of the table, we observe that the transferability to ResNet models is better than to VGG-16
or GoogLeNet, when adversarial examples are generated against all models except the target model.

We also evaluate non-targeted adversarial images generated by the ensemble-based approach. We
observe that the generated adversarial images have almost perfect transferability. We use the same
procedure as for the targeted version, except the objective to generate the adversarial images. We
evaluate the generated adversarial images over all models. The results are presented in Table 4.
The generated adversarial images all have RMSDs around 17, which are lower than 22 to 23 of

8
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Variants Loss L Stopping Step sizecondition

FGS[6] � log f̂y 1 iteration Fixed
FGV[31] � log f̂y 1 iteration Fixed

BI[12] � log f̂y K iterations Fixed
GA � log f̂y K iterations Fixed

DF[21] fyc � fy K it._ fooled Adaptive
GAMAN fy? � fy K iterations Fixed

Table 1: Conceptual differences among AIP methods. fy0
is

the model score for class y0, and f̂ denotes the softmax out-
put of f . y is the ground truth label, and y? is the most likely
label among wrong ones. yc is the label with the closest lin-
earised decision boundary.

Basic Iterative (BI) [12]. BI is identical to GA, except that
rL(x) is replaced with sign (rL(x)).
DeepFool (DF) [21]. DF algorithm solves the objective:

min
t

||t||2 s.t. argmax
y

fy (x+ t) 6= y (6)

which finds the minimal perturbation such that the pre-
diction is wrong. Although the objective is different, we
show that the DF algorithm can also be seen as a first-order
method solving equation 5 for some loss function.

DF first finds the class with the nearest decision hyper-
plane, denoted by c. To simplify the search, c is found on
the linear approximation of f around x (tangent function).
The normal vector to the decision hyperplane is given by
rf c �rfy . At each iteration, the algorithm computes the
minimal step size along this direction to reach the decision
hyperplane. Since f is not linear, the algorithm may need
more than one iterations to cross the decision hyperplane.

We observe that if we set the loss function as L =
f c � fy the gradient ascent direction matches the DF step
directions rf c �rfy . We thus regard DF as a gradient as-
cent algorithm with each step size minimised to just induce
a wrong prediction.

Projection and clipping. The norm constraint || · ||2  ✏ as
well as RGB value constraint to [0, 255] must be enforced
on the solution. [16, 12] suggest applying projections after
each iteration. We follow this practice. For BW images, we
average the gradients for each RGB channel.

4.2. Our AIP methods

As we will demonstrate in §5.2, the above approaches are
fragile to simple image processing techniques. We propose
novel AIP approaches here, focusing on robustness.

1
Gaman is a Zen Buddhist term for endurance.

Gradient Ascent – Maximal Among Non-GT (GAMAN1
).

Even if the prediction label is changed by the AIP, this
would not be robust if the perturbed input is still close to
the decision boundary. DeepFool (DF) is not expected to be
robust, as it stops iterations as soon as the decision boundary
is reached. On the other hand, DF guides the solution to the
closest decision boundary; if we let DF iterate beyond the
decision boundary with a fixed step size with fixed number
of iterations, the solution is likely to proceed more deeply
into the territory of the wrong label, improving robustness.

This motivates our GAMAN variant. Instead of the costly
computation of c at each iteration, we approximate c ⇡
y? := argmin

y0 6=y
fy0

, the most likely prediction among wrong

labels. We set the loss function as L = fy? � fy , and
perform gradient ascent with a fixed step size � for K itera-
tions. This approach is similar but different from the imper-
sonation AIPs previously considered [32, 16], which drive
the solution to a fixed impersonation target ȳ. In contrast,
y? may change during the iterations.

Vaccination against image processing. The above meth-
ods maximise classification loss functions with respect to a
fixed recogniser. For countering an AIP-neutralising image
processing technique nj , we consider including the image
processing step in the loss function: L(nj(x + t)). Any
first-order method considered above can be used, as long as
nj is differentiable. If the processing function is random,
we average the gradients from multiple samples. We refer
to this technique as vaccination. Note that this technique is
complimentary to the above mentioned methods.

Selective AIPs. We present another complimentary tech-
nique for generating AIPs targetted to a selected subset of
recognisers. To avoid recognition from M while author-
ising B to recognise, we propose to maximise a mixed loss

X

k2M
�kLk �

X

k02B
�k0Lk0 (7)

with �k,�k0 > 0.

5. Empirical Studies

We have set up a game theoretical framework to study the
dynamics between the user U and the recogniser R. In par-
ticular, previous adversarial image perturbation (AIP) tech-
niques are studied, and new variants are proposed.

In this section, we present a case study of the framework
on person recognition. Before presenting the game the-
oretical analysis, we evaluate the performance of existing
and newly proposed AIP techniques (§5.2), and the effect-
iveness of R’s image processing strategies ⇥r (§5.3). The
full game is introduced (§5.4) after specifying U ’s strategy
space; we study this system in depth. Finally, we show res-
ults on the recogniser-selective AIPs (§5.5).

Overall, these findings suggest that secure neural networks are within reach. In order to further
support this claim, we invite the community to attempt attacks against our MNIST and CIFAR10
networks in the form of a challenge. This will let us evaluate its robustness more accurately,
and potentially lead to novel attack methods in the process. The complete code, along with the
description of the challenge, is available at https://github.com/MadryLab/mnist_challenge and
https://github.com/MadryLab/cifar10_challenge.

2 An Optimization View on Adversarial Robustness

Much of our discussion will revolve around an optimization view of adversarial robustness. This
perspective not only captures the phenomena we want to study in a precise manner, but will
also inform our investigations. To this end, let us consider a standard classification task with an
underlying data distribution D over pairs of examples x 2 Rd and corresponding labels y 2 [k]. We
also assume that we are given a suitable loss function L(✓, x, y), for instance the cross-entropy loss
for a neural network. As usual, ✓ 2 Rp is the set of model parameters. Our goal then is to find
model parameters ✓ that minimize the risk E(x,y)⇠D[L(x, y, ✓)].

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk. Unfortunately, ERM often does not yield models that are
robust to adversarially crafted examples [7, 12, 13, 25]. Formally, there are efficient algorithms
(“adversaries”) that take an example x belonging to class c1 as input and find examples xadv such
that xadv is very close to x but the model incorrectly classifies xadv as belonging to class c2 6= c1.

In order to reliably train models that are robust to adversarial attacks, it is necessary to augment
the ERM paradigm appropriately. Instead of resorting to methods that directly focus on improving
the robustness to specific attacks, our approach is to first propose a concrete guarantee that an
adversarially robust model should satisfy. We then adapt our training methods towards achieving
this guarantee.

The first step towards such a guarantee is to specify an attack model, i.e., a precise definition
of the attacks our models should be resistant to. For each data point x, we introduce a set of
allowed perturbations S ✓ Rd that formalizes the manipulative power of the adversary. In image
classification, we choose S so that it captures perceptual similarity between images. For instance,
the `1-ball around x has recently been studied as a natural notion for adversarial perturbations [7].
While we focus on robustness against `1-bounded attacks in this paper, we remark that more
comprehensive notions of perceptual similarity are an important direction for future research.

Next, we modify the definition of population risk ED[L] by incorporating the above adversary.
Instead of feeding samples from the distribution D directly into the loss L, we allow the adversary
to perturb the input first. This gives rise to the following saddle point problem, which is our central
object of study:

min
✓

⇢(✓), where ⇢(✓) = E(x,y)⇠D


max
�2S

L(✓, x+ �, y)

�
. (2.1)

Formulations of this type (and their finite-sample counterparts) have a long history in robust
optimization, going back to Wald [26, 27, 28]. It turns out that this formulation is also particularly
useful in our context.

First, this formulation gives us a unifying perspective that encompasses much prior work on
adversarial robustness. Our perspective stems from viewing the saddle point problem as the
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where Z (x) 2 RK is the logit layer representation (logits) in the
DNN for x such that [Z (x)]k represents the predicted probability
that x belongs to class k , and � � 0 is a tuning parameter for
attack transferability. Carlini and Wagner set � = 0 for attacking
a targeted DNN, and suggested large � when performing transfer
attacks. The rationale behind the use of the loss function in (2) can
be explained by the softmax classi�cation rule based on the logit
layer representation; the output (con�dence score) of a DNN F (x)
is determined by the softmax function:

[F (x)]k =
exp([Z (x)]k )ÕK
i=1 exp([Z (x)]i )

, 8 k 2 {1, . . . ,K}. (3)

Therefore, based on the softmax decision rule in (3),maxi,t [Z (x)]i�
[Z (x)]t  0 implies that the adversarial example x attains the high-
est con�dence score for class t and hence the targeted attack is
successful. On the other hand,maxi,t [Z (x)]i � [Z (x)]t > 0 implies
that the targeted attack using x is unsuccessful. The role of � en-
sures a constant gap between [Z (x)]t and maxi,t [Z (x)]i , which
explains why setting large � is e�ective in transfer attacks.

Finally, the box constraint x 2 [0, 1]p implies that the adversarial
example has to be generated from the valid image space. In practice,
every image can satisfy this box constraint by dividing each pixel
value by the maximum attainable pixel value (e.g., 255). Carlini and
Wagner remove the box constraint by replacing x with 1+tanhw

2 ,
where w 2 Rp . By using this change-of-variable, the optimization
problem in (1) becomes an unconstrained minimization problem
with w as an optimizer, and typical optimization tools for DNNs
(i.e., back propagation) can be applied for solving the optimal w
and obtain the corresponding adversarial example x.

3.3 Proposed black-box attack via zeroth order
stochastic coordinate descent

The attack formulation using (1) and (2) presumes a white-box
attack because (i): the logit layer representation in (2) is an inter-
nal state information of a DNN; and (ii) back propagation on the
targeted DNN is required for solving (1). We amend our attack to
the black-box setting by proposing the following approaches: (i)
modify the loss function f (x, t) in (1) such that it only depends on
the output F of a DNN and the desired class label t ; and (ii) compute
an approximate gradient using a �nite di�erence method instead
of actual back propagation on the targeted DNN, and solve the
optimization problem via zeroth order optimization. We elucidate
these two approaches below.
• Loss function f (x, t) based on F : Inspired by (2), we propose
a new hinge-like loss function based on the output F of a DNN,
which is de�ned as

f (x, t) = max{max
i,t

log[F (x)]i � log[F (x)]t ,��}, (4)

where � � 0 and log 0 is de�ned as �1. We note that log(·) is a
monotonic function such that for any x ,� � 0, log� � logx if and
only if � � x . This implies that maxi,t log[F (x)]i � log[F (x)]t  0
means x attains the highest con�dence score for class t . We �nd that
the log operator is essential to our black-box attack since very often
a well-trained DNN yields a skewed probability distribution on its
output F (x) such that the con�dence score of one class signi�cantly
dominates the con�dence scores of the other classes. The use of the

log operator lessens the dominance e�ect while preserving the order
of con�dence scores due to monotonicity. Similar to (2), � in (4)
ensures a constant gap between maxi,t log[F (x)]i and log[F (x)]t .

For untargeted attacks, an adversarial attack is successful when
x is classi�ed as any class other than the original class label t0.
A similar loss function can be used (we drop the variable t for
untargeted attacks):

f (x) = max{log[F (x)]t0 �max
i,t0

log[F (x)]i ,��}, (5)

where t0 is the original class label for x, and maxi,t0 log[F (x)]i
represents the most probable predicted class other than t0.
• Zeroth order optimization on the loss function: We discuss
our optimization techniques for any general function f used for
attacks (the regularization term in (1) can be absorbed as a part of
f ). We use the symmetric di�erence quotient [23] to estimate the
gradient @f (x)

@xi (de�ned as �̂i ):

�̂i B
@ f (x)
@xi

⇡ f (x + hei ) � f (x � hei )
2h

, (6)

whereh is a small constant (we seth = 0.0001 in all our experiments)
and ei is a standard basis vector with only the i-th component as 1.
The estimation error (not including the error introduced by limited
numerical precision) is in the order of O(h2). Although numerical
accuracy is a concern, accurately estimating the gradient is usually
not necessary for successful adversarial attacks. One example is
FGSM, which only requires the sign (rather than the exact value)
of the gradient to �nd adversarial examples. Therefore, even if our
zeroth order estimations may not be very accurate, they su�ce to
achieve very high success rates, as we will show in our experiments.

For any x 2 Rp , we need to evaluate the objective function 2p
times to estimate gradients of all p coordinates. Interestingly, with
just one more objective function evaluation, we can also obtain the
coordinate-wise Hessian estimate (de�ned as ĥi ):

ĥi B
@2 f (x)
@x2ii

⇡ f (x + hei ) � 2f (x) + f (x � hei )
h2

. (7)

Remarkably, since f (x) only needs to be evaluated once for all p
coordinates, we can obtain the Hessian estimates without additional
function evaluations.

It is worth noting that stochastic gradient descent and batch gra-
dient descent are two most commonly used algorithms for training
DNNs, and the C&W attack [8] also used gradient descent to attack
a DNN in the white-box setting. Unfortunately, in the black-box
setting, the network structure is unknown and the gradient compu-
tation via back propagation is prohibited. To tackle this problem, a
naive solution is applying (6) to estimate gradient, which requires
2p objective function evaluations. However, this naive solution is
too expensive in practice. Even for an input image size of 64⇥64⇥3,
one full gradient descent step requires 24, 576 evaluations, and typ-
ically hundreds of iterations may be needed until convergence. To
resolve this issue, we propose the following coordinate-wise update,
which only requires 2 function evaluations for each step.

• Stochastic coordinate descent: Coordinate descentmethods
have been extensively studied in optimization literature [3]. At
each iteration, one variable (coordinate) is chosen randomly and is

Algorithm 1 Stochastic Coordinate Descent

1: while not converged do
2: Randomly pick a coordinate i 2 {1, . . . ,p}
3: Compute an update �⇤ by approximately minimizing

argmin
�

f (x + �ei )

4: Update xi  xi + �⇤
5: end while

updated by approximately minimizing the objective function along
that coordinate (see Algorithm 1 for details). The most challenging
part in Algorithm 1 is to compute the best coordinate update in
step 3. After estimating the gradient and Hessian for xi , we can
use any �rst or second order method to approximately �nd the
best � . In �rst-order methods, we found that ADAM [20]’s update
rule signi�cantly outperforms vanilla gradient descent update and
other variants in our experiments, so we propose to use a zeroth-
order coordinate ADAM, as described in Algorithm 2. We also use
Newton’s method with both estimated gradient and Hessian to
update the chosen coordinate, as proposed in Algorithm 3. Note
that when Hessian is negative (indicating the objective function is
concave along direction xi ), we simply update xi by its gradient.
We will show the comparison of these two methods in Section 4.
Experimental results suggest coordinate-wise ADAM is faster than
Newton’s method.

Algorithm 2 ZOO-ADAM: Zeroth Order Stochastic Coordinate
Descent with Coordinate-wise ADAM
Require: Step size �, ADAM states M 2 Rp ,� 2 Rp ,T 2 Zp ,

ADAM hyper-parameters �1 = 0.9, �2 = 0.999, � = 10�8
1: M  0,�  0,T  0
2: while not converged do
3: Randomly pick a coordinate i 2 {1, · · · ,p}
4: Estimate �̂i using (6)
5: Ti  Ti + 1
6: Mi  �1Mi + (1 � �1)�̂i , �i  �2�i + (1 � �2)�̂2i
7: M̂i = Mi/(1 � �Ti1 ), �̂i = �i/(1 � �Ti2 )
8: �

⇤ = �� M̂ip
�̂i+�

9: Update xi  xi + �⇤
10: end while

Note that for algorithmic illustration we only update one coor-
dinate for each iteration. In practice, to achieve the best e�ciency
of GPU, we usually evaluate the objective in batches, and thus a
batch of �̂i and ĥi can be estimated. In our implementation we
estimate B = 128 pixels’ gradients and Hessians per iteration, and
then update B coordinates in a single iteration.

3.4 Attack-space dimension reduction
We �rst de�ne �x = x�x0 and �x 2 Rp to be the adversarial noise
added to the original image x0. Our optimization procedure starts
with �x = 0. For networks with a large input size p, optimizing
over Rp (we call it attack-space) using zeroth order methods can be
quite slow because we need to estimate a large number of gradients.

Algorithm 3 ZOO-Newton: Zeroth Order Stochastic Coordinate
Descent with Coordinate-wise Newton’s Method
Require: Step size �
1: while not converged do
2: Randomly pick a coordinate i 2 {1, · · · ,p}
3: Estimate �̂i and ĥi using (6) and (7)
4: if ĥi  0 then
5: �

⇤  ���̂i
6: else
7: �

⇤  �� �̂i
ĥi

8: end if
9: Update xi  xi + �⇤
10: end while

Instead of directly optimizing �x 2 Rp , we introduce a dimen-
sion reduction transformation D(y) where y 2 Rm , ran�e(D) 2 Rp ,
andm < p. The transformation can be linear or non-linear. Then,
we use D(y) to replace �x = x � x0 in (1):

minimizey kD(y)k22 + c · f (x0 + D(y), t) (8)

subject to x0 + D(y) 2 [0, 1]p .

The use of D(y) e�ectively reduces the dimension of attack-space
from p tom. Note that we do not alter the dimension of an input im-
age x but only reduce the permissible dimension of the adversarial
noise. A convenient transformation is to de�neD to be the upscaling
operator that resizes y as a size-p image, such as the bilinear inter-
polation method1. For example, in the Inception-v3 network y can
be a small adversarial noise image with dimensionm = 32 ⇥ 32 ⇥ 3,
while the original image dimension is p = 299 ⇥ 299 ⇥ 3. Other
transformations like DCT (discrete cosine transformation) can also
be used. We will show the e�ectiveness of this method in Section 4.

3.5 Hierarchical attack
When applying attack-space dimension reduction with a smallm,
although the attack-space is e�cient to optimize using zeroth order
methods, a valid attack might not be found due to the limited search
space. Conversely, if a largem is used, a valid attack can be found
in that space, but the optimization process may take a long time.
Thus, for large images and di�cult attacks, we propose to use a
hierarchical attack scheme, where we use a series of transforma-
tions D1,D2 · · · with dimensionsm1,m2, · · · to gradually increase
m during the optimization process. In other words, at a speci�c
iteration j (according to the dimension increasing schedule) we set
yj = D

�1
i (Di�1(yj�1)) to increase the dimension of y frommi�1 to

mi (D�1 denotes the inverse transformation of D).
For example, when using image scaling as the dimension reduc-

tion technique, D1 upscales y fromm1 = 32⇥32⇥3 to 299⇥299⇥3,
and D2 upscales y fromm2 = 64 ⇥ 64 ⇥ 3 to 299 ⇥ 299 ⇥ 3. We start
withm1 = 32 ⇥ 32 ⇥ 3 variables to optimize with and use D1 as the
transformation, then after a certain number of iterations (when the
decrease in the loss function is inapparent, indicating the need of a
larger attack-space), we upscale y from 32 ⇥ 32 ⇥ 3 to 64 ⇥ 64 ⇥ 3,
and use D2 for the following iterations.

1See the details at https://en.wikipedia.org/wiki/Bilinear_interpolation
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Overall, these findings suggest that secure neural networks are within reach. In order to further
support this claim, we invite the community to attempt attacks against our MNIST and CIFAR10
networks in the form of a challenge. This will let us evaluate its robustness more accurately,
and potentially lead to novel attack methods in the process. The complete code, along with the
description of the challenge, is available at https://github.com/MadryLab/mnist_challenge and
https://github.com/MadryLab/cifar10_challenge.

2 An Optimization View on Adversarial Robustness

Much of our discussion will revolve around an optimization view of adversarial robustness. This
perspective not only captures the phenomena we want to study in a precise manner, but will
also inform our investigations. To this end, let us consider a standard classification task with an
underlying data distribution D over pairs of examples x 2 Rd and corresponding labels y 2 [k]. We
also assume that we are given a suitable loss function L(✓, x, y), for instance the cross-entropy loss
for a neural network. As usual, ✓ 2 Rp is the set of model parameters. Our goal then is to find
model parameters ✓ that minimize the risk E(x,y)⇠D[L(x, y, ✓)].

Empirical risk minimization (ERM) has been tremendously successful as a recipe for finding
classifiers with small population risk. Unfortunately, ERM often does not yield models that are
robust to adversarially crafted examples [7, 12, 13, 25]. Formally, there are efficient algorithms
(“adversaries”) that take an example x belonging to class c1 as input and find examples xadv such
that xadv is very close to x but the model incorrectly classifies xadv as belonging to class c2 6= c1.

In order to reliably train models that are robust to adversarial attacks, it is necessary to augment
the ERM paradigm appropriately. Instead of resorting to methods that directly focus on improving
the robustness to specific attacks, our approach is to first propose a concrete guarantee that an
adversarially robust model should satisfy. We then adapt our training methods towards achieving
this guarantee.

The first step towards such a guarantee is to specify an attack model, i.e., a precise definition
of the attacks our models should be resistant to. For each data point x, we introduce a set of
allowed perturbations S ✓ Rd that formalizes the manipulative power of the adversary. In image
classification, we choose S so that it captures perceptual similarity between images. For instance,
the `1-ball around x has recently been studied as a natural notion for adversarial perturbations [7].
While we focus on robustness against `1-bounded attacks in this paper, we remark that more
comprehensive notions of perceptual similarity are an important direction for future research.

Next, we modify the definition of population risk ED[L] by incorporating the above adversary.
Instead of feeding samples from the distribution D directly into the loss L, we allow the adversary
to perturb the input first. This gives rise to the following saddle point problem, which is our central
object of study:

min
✓

⇢(✓), where ⇢(✓) = E(x,y)⇠D


max
�2S

L(✓, x+ �, y)

�
. (2.1)

Formulations of this type (and their finite-sample counterparts) have a long history in robust
optimization, going back to Wald [26, 27, 28]. It turns out that this formulation is also particularly
useful in our context.

First, this formulation gives us a unifying perspective that encompasses much prior work on
adversarial robustness. Our perspective stems from viewing the saddle point problem as the

3

Maximize (attack)

Minimize (defend)

Maximize (attack)

Minimize (defend)

…

…



§ For datasets with lots of training data:

- Robustness for small norm balls

§ No defenses for bigger norm balls

§ At some point – semantic shifts
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Method Steps Source Accuracy
Natural - - 87.3%
FGSM - A 56.1%
PGD 7 A 50.0%
PGD 20 A 45.8%
CW 30 A 46.8%
FGSM - A’ 67.0%
PGD 7 A’ 64.2%
CW 30 A’ 78.7%
FGSM - Anat 85.6%
PGD 7 Anat 86.0%

Table 2: CIFAR10: Performance of the adversarially trained network against different adversaries
for " = 8. For each model of attack we show the most effective attack in bold. The source networks
considered for the attack are: the network itself (A) (white-box attack), an independtly initialized
and trained copy of the network (A’), a copy of the network trained on natural examples (Anat).

Resistance for different values of " and `2-bounded attacks. In order to perform a broader
evaluation of the adversarial robustness of our models, we run two kinds of additional experiments.
On one hand, we investigate the resistance to `1-bounded attacks for different values of ". On the
other hand, we examine the resistance of our model to attacks that are bounded in `2 as opposed
to `1 norm. The results appear in Figure 6. We emphasize that the models we are examining
here correspond to training against `1-bounded attacks with the original value of " = 0.3, for
MNIST, and " = 8 for CIFAR10. In particular, our MNIST model retains significant resistance to
`2-norm-bounded perturbations too – it has quite good accuracy in this regime even for " = 4.5. To
put this value of " into perspective, we provide a sample of corresponding adversarial examples in
Figure 12 of Appendix D. One can observe that the underlying perturbations are large enough that
even human could be confused.
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(a) MNIST, `1 norm (b) MNIST, `2 norm (c) CIFAR10, `1 norm (d) CIFAR10, `2 norm

Figure 6: Performance of our adversarially trained networks against PGD adversaries of different
strength. The MNIST and CIFAR10 networks were trained against " = 0.3 and " = 8 PGD `1
adversaries respectively (the training " is denoted with a red dashed lines in the `1 plots). We
notice that for " less or equal to the value used during training, the performance is equal or better.
For MNIST there is a sharp drop shortly after.

13

MNIST

CIFAR10

Figure 11: Loss function value over PGD iterations for 20 random restarts on random examples. The
1st and 3rd rows correspond to naturally trained networks, while the 2nd and 4th to adversarially
trained ones.

Natural: 9 Natural: 9 Natural: 8 Natural: 8 Natural: 2
Adversarial: 7 Adversarial: 4 Adversarial: 5 Adversarial: 3 Adversarial: 3

Figure 12: Sample adversarial examples with `2 norm bounded by 4. The perturbations are significant
enough to cause misclassification by humans too.
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§ We are still in a cat and mouse game

§ Small norm balls can be defended (only 
perturbations with semantic shifts can be found)

§ Perturbations are still a problem in large norm balls

§ Theoretical guarantees have only been shown for 
small networks / simplified problems

§ Choice of norm is unclear / task dependent. L0-Linf 
norm is convenience than motivated choice

§ Maybe Bayes Deep Learning, Gaussian Processes can 
provide a solution …

Conclusion so far
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https://github.com/tensorflow/cleverhans
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• Widespread deployment of ML

• Future industry is fueled by data

• How to make
Machine Learning
privacy compliant and
secure?
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Fig. 4. Qualitative results on the Cityscapes validation set for Deeplab-v2 [3] (left) and
PSPNet [20] (right). The first four rows show the raw images, ground truth, baselines’
predictions and our predictions. The last row is a visual comparison of correctly classi-
fied pixels. In white areas, both predictions are correct, in red areas, only the baseline
prediction is correct and in cyan colored areas, the proposed predictions are correct,
while the baseline prediction is erroneous.

640⇥ 480. The quantitative results are summarized in Tab. 4. We improve over
Deeplab-v2 and PSPNet for 0.9 pp and 0.5 pp, respectively. For most classes, we
obtain comparable performance. Particularly, in the classes of “Sign”, “Fence”
and “Bicyclist”, our method achieves clear improvements over Deeplab-v2 as
well as PSPNet. This shows the benefit of our learned dilation: State-of-the art
methods can be improved to recognize a range of classes better.

4 Conclusion

In this paper, we have presented learnable dilated convolutions, which is fully
compatible with existing architectures and adds only little overhead. We have ap-
plied our novel convolutional layer to learn channel-based dilation factors in the
semantic segmentation scenario. Thus, we were able to improve the performance
of Deeplab-LargeFOV, Deeplab-v2 and PSPNet for the semantic segmentation
of street scenes consistently across two datasets. We showed that our method is
able to obtain visually more convincing results, and improved quantitative per-
formance. Besides, a series of ablation studies shows that learning the dilation
parameter is helpful to design better semantic segmentation models in practice.

ML Model
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prediction is correct and in cyan colored areas, the proposed predictions are correct,
while the baseline prediction is erroneous.

640⇥ 480. The quantitative results are summarized in Tab. 4. We improve over
Deeplab-v2 and PSPNet for 0.9 pp and 0.5 pp, respectively. For most classes, we
obtain comparable performance. Particularly, in the classes of “Sign”, “Fence”
and “Bicyclist”, our method achieves clear improvements over Deeplab-v2 as
well as PSPNet. This shows the benefit of our learned dilation: State-of-the art
methods can be improved to recognize a range of classes better.

4 Conclusion

In this paper, we have presented learnable dilated convolutions, which is fully
compatible with existing architectures and adds only little overhead. We have ap-
plied our novel convolutional layer to learn channel-based dilation factors in the
semantic segmentation scenario. Thus, we were able to improve the performance
of Deeplab-LargeFOV, Deeplab-v2 and PSPNet for the semantic segmentation
of street scenes consistently across two datasets. We showed that our method is
able to obtain visually more convincing results, and improved quantitative per-
formance. Besides, a series of ablation studies shows that learning the dilation
parameter is helpful to design better semantic segmentation models in practice.
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§ Many deployed models are black boxes, APIs
(given input, returns output). 

§ Can black-box accesses reveal model internals? 
e.g. 

- Architecture

- training procedure

- Data

- Functionality 

§ Why does it matter? Key intellectual property, 
monetization and increased vulnerability to other 
attacks. 

Reverse Engineering & Model Stealing: Problem & Motivation
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API

Learn
about
model



§ State of the art deep learning architectures 
are defined by many hyper parameters

§ Can those be inferred from black box 
access?

Reverse Engineering Neural Networks (ICLR’18)
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Victim's 
Blackbox
Machine
Learning 
Model

Adversary's 
Knockoff

Extracted
properties &
hyperparametersAPI



Reverse Engineering Neural Networks (ICLR’18)
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Method 3. kennen-io: attribute prediction + input crafting



Reverse Engineering Neural Networks (ICLR’18)
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… but does adversary really want to know all those details to steal or attack a model?



Functionality Stealing / Knock-off Nets (CVPR’19)

§ Functionality stealing generates copy

§ Copy might differ internally – should be 
indistinguishable from the outside

§ Facilitates stronger attacks

§ Threat to intellectual property and 
monetization models

§ What does adversary need to know?

- Model (does not matter much)

- Data (does not matter much)

§ What about defenses?
38

Adversary's 
Knockoff

API
access

Knock-off
Copy of 
Machine Learning
Model



Functionality Stealing: Knock-Off Nets (CVPR’19)
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Can A approximate FV :
1. when PV and FV are unknown?
2. using minimum queries B?

B
queries

Select Images

Select ModelAnnotate

Train Model

Adversary A

Select Images

Select ModelAnnotate

Train Model

Victim V

Black-box 
model

Dep
loy

Resembles Model Distillation … but under weaker assumptions



Query Set Selection: Challenge
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FV(X)

Active Learning
Distillation

Student-Teacher



§ Improved query efficiency by Reinforcement Learning

Query Set Selection: Challenge
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FV(X)
Ours



Functionality Stealing: Knock-Off Nets (CVPR’19)
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Harris Sparrow: 
0.41
Frigate bird: 0.06
Bronzed Cowbird: 
0.05

Harris Sparrow: 
0.73
Gadwall: 0.08
Tree Sparrow: 0.06

Harris Sparrow: 
0.19
Pine Grosbeak: 
0.17
Myrtle Warbler: 
0.11

Victim's 
Blackbox

Adversary's 
Knockoff

test

Harris Sparrow: 
0.81

Harris Sparrow: 
0.52

Harris Sparrow: 
0.71

Bird
classifier

Knockoff
Bird
classifier



Results on Real-World Attacks
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Train: CelebA
Test: CelebA, OpenImg-Faces

80% accuracy @ B=5k ($0)
86% @ B=30k ($30)

§ Strong copy from a few 1000 
queries

§ Unfortunately difficult to defend

- Noising

- Top-k, argmax

- Rounding

- Watermarking only post-hoc 
attribution

- MLCapsule – SGX-based 
deployment


