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Outline . |CISPA

Landscape of attacks on Computer Vision Models

Adversarial Perturbations

Data Poisoning

Membership Inference

Reverse Engineering and Model Stealing

Watermarking



Privacy & Security in Machine Learning: Towards Trustworthy Al

 Widespread deployment of ML
e Future industry is fueled by data

e How to make
Machine Learning
privacy compliant and
secure?

e Membership Inference
 Data Poisoning

S. Oh; M. Augustin; B. Schiele; M. Fritz; Towards Reverse-Engineering Black-Box Neural Networks; ICLR’18
S. Oh; M. Fritz; B.Schiele; Adversarial Image Perturbation for Privacy Protection -- A Game Theory
Perspective ICCV’17

A. Salem; Y. Zhang; M. Humbert; M. Fritz; M. Backes; ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models NDSS’19
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Adversarial
Perturbations

K.Grosse, N. Papernot, P.Manoharan, M. Backes, P. D. McDaniel: Adversarial Examples for Malware
Detection. ESORICS’17

L. Hanzlik; Y, Zhang; K. Grosse; A. Salem; M. Augustin; M. Backes; M.Fritz; MLCapsule: Guarded Offline
Deployment of Machine Learning as a Service; ArXiv’'18

Tribhuvanesh Orekondy; Bernt Schiele; Mario Fritz; Knockoff Nets: Stealing Functionality of Black-
Box Models CVPR’19



Machine Learning Systems’ attack surface . |CISPA
' Physical | |  Digital | ' Machine Learning | ' Physical |
' Domain | | Representation i Model u ' Domain |

Papernot’16: SoK: Towards the Science of Security and Privacy in Machine Learning
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Goals: Confidentiality & Privacy . |CISPA

AN

= Membership Inference Attacks
— Trying to infer information on the training data
— Only observing input/output

— High capacity models partially memorize the training data

* Model Inference Attacks
— Trying to infer information about the model

— Only observing input/output
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Goals: Integrity & Availability ...|CISPA

AN

= Reduce
— Quality of model (confidence or consistency)
— Performance (speed)

— Access (denial of service)

= Manipulating
- Training data: Poisoning Attacks

— Test data: Evasion Attacks






Robustness of Machine Learning — Difficult to test in real-world (i.i.d, tails of ™
the distribution, corner cases, rare examples) '

CISPA
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Real World Data
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Robustness of Machine Learning — Difficult to test in real-world (i.i.d, tails)
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Adversarial Manipulation of Input . |CISPA

%0\ | HELMHOLTZ-ZENTRUM i.G.

Machine crafted/manipulated data
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“Adversarial examples”

Schoolbus Perturbation Ostrich

(rescaled for visualization)

(Szegedy et al, 2013)

Label: Label:
Panda Gibbon
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Evasion Attack SICISPA
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Evasion Attack

Training Data
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Test Data

email

Correct classification as non-SPAM
Misclassification as non-SPAM
(true boundary)

Misclassification due to evasion
attack

( )

* Modeling error
*  Out of sample
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Evasion Attacks . | CISPA

AN

= Has been shown to work for all kind of input data:
— SPAM, malware, traffic signs, ...
= We require some notion that the change is small “small"
- E.G. LO (how many dimensions unchanged), L2, L infinity norm (what is the largest change)

— Perceptual and domain specific norms are topic of research

15



Binary Classifier Evasion Attack

= Linear classifier / logistic regression
" Find direction with strongest change
— Dimension with highest weight

|
.
= Move axis parallel until label changes “‘ y
%
.

1 X
f(w,:c) — 1+ e —(wozotwizi+ws)
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Adversarial Machine Learning: Evasion attacks . |CISPA

AN

= Empirical Risk Minimization

mein p(0), where p(0)= E(w7y),\,p L(x,y,0)]

= Empirical Risk Minimization in adversarial conditions:

- Saddle point: iy p(g),  where  p(6) = E (g op |max L(6, x + 8, y)

0 oS

— Inner maximization finds adversarial versions with high loss

— Outer minimization tries to find parameters so that “adversarial loss” of inner attack is
minimized

17



Evasion Attacks: Fast Signed Gradient Method CISPA

min p(0), where p(0) =Eq o max L0,z +4,y)

How to perform inner maximization? (Attack)

Projected Gradient descent

" One step method: Fast Gradient Sign Method (FGSM)

r+esgn(V,L(0,x,y))

Multi-step method: FGSMk

Zl?t+1 = Ha:—I—S (xt + o Sgn(vxL(e’ L, y)))

18



Evasion Attack: Data Gradient . |CISPA

» For Training / Emperical Risk Minimization, we compute
using backprop

VQL(97 €L, y)

In the same manner we can use backprop to compute

V.L(0,z,y)

This can also be used for interpretation:

— How do | need to change my input to increase/decrease
the loss

However, this needs white box access in order to compute
the gradient

19



Evasion Attack: Carlini/Wagner

m@in p(0), where p(0) =Eq oD [rgleagc L(0,z + 0, y)]

= Up to now — untargeted attack: “only” increase loss

— Targeted attack:
ninp(6),  whete  p(6) = Biuyp |max L0, + 5.1)]

= Constraint optimization with Lagrange multiplier

0

minp(@), where p(@) — ]E(a:,y)ND [m5aX Ly(eg T -+ 57 y) T )\d(ﬂ?, X+ 5)]

%4> | HELMHOLTZ-ZENTRUM i.G.
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Black-Box Evasion Attacks: Transferability CISPA

= Assumption:
— We A is not white box, B is. Use B to attack Al

— Gradient of Loss on model A also increases loss of model B

— Usually not the case

= Can be improved by make a guess / training a classifier to predict model family

— Difficult

= Generate adversarial examples over ensemble

mgin p(0), where p(0) =Eq o [rgleagcl\l(e, T + 0, y)]

Z ML
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= Naive approach

Black-Box Evasion Attacks: Transferability

RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogleNet

ResNet-152 | 23.13 100% 2% 1% 1% 1%
ResNet-101 | 23.16 3% 100% 3% 2% 1%
ResNet-50 | 23.06 4% 2% 100% 1% 1%

VGG-16 23.59 2% 1% 2% 100% 1%
GoogleNet | 22.87 1% 1% 0% 1% 100%

= Use ensemble to generate adversarial examples!
RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet

-ResNet-152 | 30.68 38% 76% 70% 97 % 76%
-ResNet-101 | 30.76 75% 43% 69% 98% 73%

-ResNet-50 30.26 84% 81% 46% 99% 7'7%

-VGG-16 31.13 74% 718% 68% 24% 63%
-GoogLeNet | 29.70 90% 87% 83% 99% 11%
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Black-Box Evasion Attacks: Selective Attack SICISPA
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= Model specific attacks:
— Break model A
— Leave model B alone

m@in p(0), where p(0) =Eq4 o [rgleagc L(0,x + 9, y)]

Z )\k»ck — Z )\k/,ck/

keM k'eB

Malicious models Benign models
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Black-Box Evasion Attacks: Selective Attack

Setup M averaged

%4> | HELMHOLTZ-ZENTRUM i.G.

B averaged
M B Ly w/oAIP w/AIP w/o AIP w/ AIP

(G} 0 1000 878 4.0
(G} {A} 1000 878 87
(AR} {V,G} 1000 874 ‘17.7
(AR} {V,G} 2000 874 '38

83.8
87.0
87.0

97.9
97.7
97.8

Z M Lg — Z Aot Lo

keM k'eB
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Black Box Evasion Attack: Approximation of the Gradient

= Numerical approximation of gradient

. ._ Of(x) _ f(x+he;)— f(x—he;)

~Y
~Y

gi = 0X; 2h

= Stochastic coordinate descent

Algorithm 1 Stochastic Coordinate Descent

1: while not converged do
2 Randomly pick a coordinate i € {1,...,p}
3:  Compute an update §* by approximately minimizing

arg min f(x + de;)
o

4. Update x; « x; + 6"
5: end while

HELMHOLTZ-ZENTRUM i.G.
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Defenses against evasion attacks . CISPA

" Ensembles

= Dimensionality Reduction PCA or auto-encoder

= “Denoising”

* Transformations (feature squeezing, noise, jpeg, crop)

= Detection

= ... unfortunately non of these really work ...

" |In most cases — including the defense in the attack — there is no strong effectg

" Large body of work — limited progress so far

26
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Topology of Evasion Attacks ... /CISPA

AN

Notion of small perturbation / similar input

- LO, L2, Linf

One step vs multi-step method

Projected Gradient vs Largange Optimiztion

White box vs. black box

Black box:
— Transferability attacks

— Numerical gradient

Defenses

— Adversarial Training

27



Evasion Attacks Defenses: Adversarial Training (| CISPA

= Adversarial Training:
— Minimize for a maximizer of inner optimization

— lterate

min p(0), where p(0) =Eq oD max L(0,x+0,y)

Maximize (attack)

Minimize (defend)

Maximize (attack)

Minimize (defend)

29



Evasion Attacks Defenses: Adversarial Training
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" For datasets with lots of training data:

— Robustness for small norm balls
= No defenses for bigger norm balls
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Conclusion so far |CISPA

//l\ HHHHHHHHHHHHHHHHHH

We are still in a cat and mouse game

Small norm balls can be defended (only
perturbations with semantic shifts can be found)

Perturbations are still a problem in large norm balls

Theoretical guarantees have only been shown for
small networks / simplified problems

Choice of norm is unclear / task dependent. LO-Linf
norm is convenience than motivated choice

Maybe Bayes Deep Learning, Gaussian Processes can ( N T h a n s
provide a solution ... S VS

https://github.com/tensorflow/cleverhans
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Advanced Attacks on Al/ML:
Reverse Engineering and Model Stealing

Seong Joon Oh; Max Augustin; Bernt Schiele; Mario Fritz
Towards Reverse-Engineering Black-Box Neural Networks Inproceedings

ICLR’18

Tribhuvanesh Orekondy; Bernt Schiele; Mario Fritz
Knockoff Nets: Stealing Functionality of Black-Box Models

CVPR’19



Privacy & Security in Machine Learning . ICISPA
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Widespread deployment of ML

- e D o - 2
Encrypting
weights and
defending
stealing attacks:

Future industry is fueled by data

How to make
Machine Learning
privacy compliant and
secure?

\: Noising to Robustness :
[ protect and Game |
I identities and | I Theoretic :
: training data I [ Analysis I

S. Oh; M. Augustin; B. Schiele; M. Fritz; Towards Reverse-Engineering Black-Box Neural Networks; ICLR’18 K.Grosse, N. Papernot, P.Manoharan, M. Backes, P. D. McDaniel: Adversarial Examples for Malware

S. Oh; M. Fritz; B.Schiele; Adversarial Image Perturbation for Privacy Protection -- A Game Theory Detection. ESORICS’17

Perspective ICCV'17 L. Hanzlik; Y, Zhang; K. Grosse; A. Salem; M. Augustin; M. Backes; M.Fritz; MLCapsule: Guarded Offline

A. Salem; Y. Zhang; M. Humbert; M. Fritz; M. Backes; ML-Leaks: Model and Data Independent Membership Deployment of Machine Learning as a Service; ArXiv’'18
Inference Attacks and Defenses on Machine Learning Models ArXiv’18



Reverse Engineering & Model Stealing: Problem & Motivation . |CISPA

= Many deployed models are black boxes, APls
(given input, returns output).

= Can black-box accesses reveal model internals?
e.g.

Learn
about

— Architecture model

— training procedure

— Data

— Functionality @

= Why does it matter? Key intellectual property,
monetization and increased vulnerability to other
attacks.

34



Reverse Engineering Neural Networks (ICLR’18) NS E P A

= State of the art deep learning architectures
are defined by many hyper parameters

Fy
Code Attribute Values
act  Activation ReLU, PReLU, ELU, Tanh ‘ R .|\ Extracted
o drop  Dropout Yes, No P ) Ero‘;?mersrf]‘ o
3 pool Maxpooling  Yes, No ., , yperparameters
3 ks Conv ker. size 3,5 p
".é #conv #Conv layers 2, 3,4
g #fc #FC layers 2,3, 4 @
#par  #Parameters 214 ... 221
ens Ensemble Yes, No
8 alg Algorithm SGD, ADAM, RMSprop Adversary's
O bs Batch size 64, 128, 256 Victim's Knockoff
: . Blackb
g split ~ Data split Ally, Half1, Quarter / /5 /3 Maching.
A size  Data size All, Half, Quarter Learning
Model

= Can those be inferred from black box

access?
35



Reverse Engineering Neural Networks (ICLR’18) |CISPA

00
| Yes, there’s = —
: ~= ' vo PRSP - White box —~ os Yes,there’s
- % max-pool! c 2 < -
- o - = = wl max-pool ot max-pool!
e 00 g
£ ;
5 -~ o N g
8 .- - y r:wax- 2 'L, o1 No max
Q 5 . pOO| T - White box - W
= (U K wl max-pool so Ppool!
00
Fixed inputs Output pattern ~ MLP Crafted input Output
M
(+74] -
: o B v chere 5 :
K, : = &g Yes,there's v, 9 Yes, there's
¥ - 09 | ¥ 00 ’
g . m max-pool! g a1 max-pool!
Method I. kennen-o : Learn to read-off the existence of Method 2. kennen-i : Craft a single “adversarial” input
max-pool from the output pattern. that looks like “1”” with a max-pool layer and “0” without.

Method 3. kennen-io: attribute prediction + input crafting

36



Reverse Engineering Neural Networks (ICLR’18)

architecture optim data
Method  Output act drop pool ks #conv #fc #par ens alg bs size split  avg
Chance - 25.0 50.0 50.0 50.0 33.3 33.3 125 50.0 33.3 333 333 143 349
kennen-o score 80.6 946 949 84.6 67.1 773 41.7 540 71.8 504 738 90.0 734
kennen-o ranking 63.7 93.8 90.8 80.0 63.0 73.7 44.1 624 653 47.0 66.2 86.6 69.7
kennen—-i 1label 43.5 77.0 94.8 88.5 54.5 41.0 323 465 45.7 37.0 42.6 293 52.7
kennen-io score 88.4 95.8 995 97.7 80.3 80.2 45.2 60.2 793 543 848 95.6 80.1

... but does adversary really want to know all those details to steal or attack a model?

37



Functionality Stealing / Knock-off Nets (CVPR’19) |CISPA

//l\ HHHHHHHHHHHHHHHHHH

Functionality stealing generates copy

: : : -off

= Copy might differ internally — should be EQ‘;‘;ko?

indistinguishable from the outside AP Machine Learning

access Model

= Facilitates stronger attacks .I’ » @
= Threat to intellectual property and

monetization models @ @
* What does adversary need to know? Adversary's

Knockoff

— Model (does not matter much)
— Data (does not matter much)

= \What about defenses?

38



Functionality Stealing: Knock-Off Nets (CVPR’19) . "/CISPA
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Victim V Adversary A

Select Images Select Images
z; ~ Py(X) x; ~ Pa(X)

! !

Annotate Select Model Black-box 5 Annotate Select Model
Dy = {(xi, y:)} model Fy (CE) 4_’queries Dy = {(zi, Fyv(x:)}
Train Model O@Q Train Model
y = Fy(x) y = Fa(x)
. ,
‘. Can A approximate Fv: p
“~< .4 |. whenPvandFv are unknown? «=-"" ’

2. using minimum queries B?

Resembles Model Distillation ... but under weaker assumptions

39



Query Set Selection: Challenge ... /CISPA

A

Active Learning
Distillation
Student-Teacher

Py = Py

40



SICISPA
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Query Set Selection: Challenge

Ours

Pa # Py

= Improved query efficiency by Reinforcement Learning

41



Functionality Stealing: Knock-Off Nets (CVPR’19)

I Y1

Bird
classifier

o
©)

Victim's
Blackbox

Harris Sparrow: K_nockoff
0.41 Bird

Frigate bird: 0.06 classifier
Bronzed Cowbird:
0.05

Harris Sparrow:
0.73 .

Gadwall: 0.08
Tree Sparrow: 0.06

Harris Sparrow:
0.19
Pine Grosbeak:

0.17
Myrtle Warbler: Adversary's
0.11 Knockoff

I
\‘/
>

%S

CISPA

HELMHOLTZ-ZENTRUM i.G.

test

»

0.52

0.71

A * "‘5‘—"_;,;: 7
7\
Harris Sparrow:
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Results on Real-World Attacks . '|CISPA
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Train: CelebA
Test: CelebA, Openlmg-Faces

= Strong copy from a few 1000

100w ¥ N Py T UKN - Pa = Celebl o queries
)\ e e = Unfortunately difficult to defend
80 ‘ 2’! x y
=1 — Noising
§ 60
3 — Top-k, argmax
< 40 .
— Rounding
20 a
........ CelebA =&— resnet101, — Watermarking only post-hoc
Openlmg-Faces -#%= resnet34 . .
0 attribution
000 10000 15000 20000 25000 30000
Budget B — MLCapsule — SGX-based
deployment

80% accuracy @ B=5k ($0)
86% @ B=30k ($30)
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