
High Level Computer Vision:
More Attacks and Defenses on CV

Mario Fritz fritz@cispa.saarland

Bernt Schiele schiele@mpi-inf.mpg.de

17.7.2019

mailto:fritz@cispa.saarland
mailto:schiele@mpi-inf.mpg.de

§ Landscape of attacks on Computer Vision Models

§ Reverse Engineering and Model Stealing

- Watermarking

§ Adversarial Perturbations

- Data Poisoning

§ Membership Inference

- Differential Privacy

Outline

1

Privacy & Security in Machine Learning: Towards Trustworthy AI

2

• Widespread deployment of ML

• Future industry is fueled by data

• How to make
Machine Learning
privacy compliant and
secure?

10 Yang He, Margret Keuper, Bernt Schiele, Mario Fritz

Deeplab-v2 [3] PSPNet [20]

d
at
a

G
T

b
as
el
in
e

O
u
rs

D
i↵
er
en

ce

Fig. 4. Qualitative results on the Cityscapes validation set for Deeplab-v2 [3] (left) and
PSPNet [20] (right). The first four rows show the raw images, ground truth, baselines’
predictions and our predictions. The last row is a visual comparison of correctly classi-
fied pixels. In white areas, both predictions are correct, in red areas, only the baseline
prediction is correct and in cyan colored areas, the proposed predictions are correct,
while the baseline prediction is erroneous.

640⇥ 480. The quantitative results are summarized in Tab. 4. We improve over
Deeplab-v2 and PSPNet for 0.9 pp and 0.5 pp, respectively. For most classes, we
obtain comparable performance. Particularly, in the classes of “Sign”, “Fence”
and “Bicyclist”, our method achieves clear improvements over Deeplab-v2 as
well as PSPNet. This shows the benefit of our learned dilation: State-of-the art
methods can be improved to recognize a range of classes better.

4 Conclusion

In this paper, we have presented learnable dilated convolutions, which is fully
compatible with existing architectures and adds only little overhead. We have ap-
plied our novel convolutional layer to learn channel-based dilation factors in the
semantic segmentation scenario. Thus, we were able to improve the performance
of Deeplab-LargeFOV, Deeplab-v2 and PSPNet for the semantic segmentation
of street scenes consistently across two datasets. We showed that our method is
able to obtain visually more convincing results, and improved quantitative per-
formance. Besides, a series of ablation studies shows that learning the dilation
parameter is helpful to design better semantic segmentation models in practice.

ML Model

10 Yang He, Margret Keuper, Bernt Schiele, Mario Fritz

Deeplab-v2 [3] PSPNet [20]

d
at
a

G
T

b
as
el
in
e

O
u
rs

D
i↵
er
en

ce

Fig. 4. Qualitative results on the Cityscapes validation set for Deeplab-v2 [3] (left) and
PSPNet [20] (right). The first four rows show the raw images, ground truth, baselines’
predictions and our predictions. The last row is a visual comparison of correctly classi-
fied pixels. In white areas, both predictions are correct, in red areas, only the baseline
prediction is correct and in cyan colored areas, the proposed predictions are correct,
while the baseline prediction is erroneous.

640⇥ 480. The quantitative results are summarized in Tab. 4. We improve over
Deeplab-v2 and PSPNet for 0.9 pp and 0.5 pp, respectively. For most classes, we
obtain comparable performance. Particularly, in the classes of “Sign”, “Fence”
and “Bicyclist”, our method achieves clear improvements over Deeplab-v2 as
well as PSPNet. This shows the benefit of our learned dilation: State-of-the art
methods can be improved to recognize a range of classes better.

4 Conclusion

In this paper, we have presented learnable dilated convolutions, which is fully
compatible with existing architectures and adds only little overhead. We have ap-
plied our novel convolutional layer to learn channel-based dilation factors in the
semantic segmentation scenario. Thus, we were able to improve the performance
of Deeplab-LargeFOV, Deeplab-v2 and PSPNet for the semantic segmentation
of street scenes consistently across two datasets. We showed that our method is
able to obtain visually more convincing results, and improved quantitative per-
formance. Besides, a series of ablation studies shows that learning the dilation
parameter is helpful to design better semantic segmentation models in practice.

Data

• Membership Inference
• Data Poisoning

ML Model
Copy

+
Adversarial
Perturbations

S. Oh; M. Augustin; B. Schiele; M. Fritz; Towards Reverse-Engineering Black-Box Neural Networks; ICLR’18
S. Oh; M. Fritz; B.Schiele; Adversarial Image Perturbation for Privacy Protection -- A Game Theory
Perspective ICCV’17
A. Salem; Y. Zhang; M. Humbert; M. Fritz; M. Backes; ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models NDSS’19

K.Grosse, N. Papernot, P.Manoharan, M. Backes, P. D. McDaniel: Adversarial Examples for Malware
Detection. ESORICS’17
L. Hanzlik; Y, Zhang; K. Grosse; A. Salem; M. Augustin; M. Backes; M.Fritz; MLCapsule: Guarded Offline
Deployment of Machine Learning as a Service; ArXiv’18
Tribhuvanesh Orekondy; Bernt Schiele; Mario Fritz; Knockoff Nets: Stealing Functionality of Black-
Box Models CVPR’19

Watermarking of ML Models

§ Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, Ian Molloy

§ ASIACCS’18

Protecting Intellectual Property of Deep Neural Networks with Watermarking

https://researcher.watson.ibm.com/researcher/view.php?person=us-zgu
https://researcher.watson.ibm.com/researcher/view.php?person=us-jjang
https://researcher.watson.ibm.com/researcher/view.php?person=us-wuhu
https://researcher.watson.ibm.com/researcher/view.php?person=us-mpstoeck
https://researcher.watson.ibm.com/researcher/view.php?person=us-hhuang
https://researcher.watson.ibm.com/researcher/view.php?person=us-molloyim

§ AI / ML technology embeddeded into many systems

§ Building such models requires:

- Expertise

- Data

- Annotation

- Computation

§ Potential of copyright infringement / IP violations by

- Illegal reproduction

- Distributiuon

- Derivation

§ Actual legal situation a bit unclear:

- Law and Adversarial Machine Learning:

Ram Shankar Siva Kumar, David R. O'Brien, Kendra Albert, Salome Vilojen

https://arxiv.org/abs/1810.10731

Motivation

Watermarking

data directly. Lower network layers often correspond with low-
level features (such as corner and edges), while the higher layers
correspond to high-level, semantically meaningful features [57].

Speci�cally, a deep neural network (DNN) takes as input the raw
training data representation, x 2 Rm , and maps it to the output via
a parametric function, � = F� (x), where � 2 Rn . The parametric
function F� (·) is de�ned by both the network architecture and the
collective parameters of all the neural network units used in the
current network architecture. Each network unit receives an input
vector from its connected neurons and outputs a value that will be
passed to the following layers. For example, a linear unit outputs the
dot product between its weight parameters and the output values
of its connected neurons from the previous layers. To increase the
capacity of DNNs in modeling the complex structure in training
data, di�erent types of network units have been developed and used
in combination of linear activations, such as non-linear activation
units (hyperbolic tangent, sigmoid and Recti�ed Linear Unit, etc.),
max pooling and batch normalization. Finally, if the purpose of the
neural network is to classify data into a �nite set of classes, the
activation function in the output layer usually is a softmax function
f (z)j = e

zj · (Pnk=1 e
zk)�1, 8j 2 [1,n], which can be viewed as the

predicted class distribution over n classes.
Prior to training the network weights for a DNN, the �rst step

is to determine the model architecture, which requires non-trivial
domain expertise and engineering e�orts. Given the network ar-
chitecture, the network behavior is determined by the values of
the network parameters, � . LetD = {xi , zi }Ti=1 be the training data,
where zi 2 [0,n � 1] is the ground truth label for xi , the network
parameters are optimized to minimize the di�erence between the
predicted class labels and the ground truth labels based on a loss
function. Currently, the most widely used approach for training
DNNs is back-propagation algorithm, where the network parame-
ters are updated by propagating the gradient of prediction loss from
the output layer through the entire network. While most commonly
used DNNs are feedforward neural network where connections
between the neurons do not form loops, recurrent networks such
as long short-term memory (LSTM) [28] is e�ective in modeling
sequential data. In this work, we mainly focus on feed-forward
DNNs, but in principle, our watermarking strategy can be readily
extended to recurrent networks.

2.2 Digital Watermarking
Digital watermarking is a technique that embeds certain water-
marks in carrier multimedia data such as images, video or audio
to protect their copyright. The embedded watermarks can be de-
tected when the watermarked multimedia data are scanned. And
the watermark can only be detected and read to check authorship
by the owner of the multimedia data who knows the encryption
algorithm that embedded the watermarks.

Watermarking procedure is usually divided into two steps: em-
bedding and veri�cation. Figure 2 shows a typical watermarking
life cycle. In the embedding process, an embedding algorithm E

embeds pre-de�ned watermarksW into the carrier data C , which
is the data to be protected. After the embedding, the embedded
data (e = E (W ,C)) are stored or transmitted. During the watermark
veri�cation process, a decryption algorithm D attempts to extract

carrier data
(C)

watermarks
(W)

embedding watermarks e = E(W,C)

embedded
data (e)

embedded
data (e’)

extracting watermarks W’,C’ = D’(e)

watermarks
(W’)

watermarks
(W)

watermarks
verification

embedding	 watermarks

Watermarks Embedding

Protected
data

Not protected
data

True

False

Watermarks Verification

modification

Figure 2: A typical watermarking life cycle

the watermarksW 0 from e
0. Here the input data e 0 may be slightly

di�erent from previously embedded data e because e could be mod-
i�ed during the transmission and distribution. Such modi�cation
could be reproduced or derived from original data e . Therefore,
after extracting watermarkW 0, it need to be further veri�ed with
original watermarkW . If the distance is acceptable, it is con�rmed
that the carrier data is the data we protected. Otherwise, the carrier
data does not belong to us.

Since the goal of digital watermarking is to protect the copy-
right of multimedia data, and it directly embeds watermarks to the
protected multimedia data. In deep neural networks, we need to
protect the copyright of DNN models, therefore, a new watermark-
ing framework needs to be designed to embed watermarks into
DNN models.

3 THREAT MODEL
In our threat model, we model two parties, a model owner O , who
owns a deep neural network modelm1 for a certain task t , and a
suspect S , who sets up a similar service t 0 from modelm0, while
two services have similar performance t ⇡ t

0. In practice, there are
multiple ways for S to get the modelm, for example, it could be
an insider attack from owner O who leaks the model or it could be
stolen by malware and sold on dark net markets. How S get model
m is out of the scope of this paper.

In this paper, we intend to help owner O protect the intellectual
property t of modelm. Intuitively, if modelm is equivalent tom0,
we can con�rm that S is a plagiarizer and t 0 is a plagiarized service
of t . Existing work [54] following such intuition to protect DNNs
by checking whetherm is equivalent tom0. However, such method
requires white-box access to m

0, which is not practical since a
plagiarizer usually do not publicize itsm0 as a server service. In
addition, we assume the plagiarizer can modify the modelm0 but
still keep the performance of t 0 so that t 0 ⇡ t . Model pruning and
�ne-tuning are two commonways to achieve this goal. Our solution
should be robust to such modi�cations.

To solve the above challenges, we propose three watermarks gen-
eration algorithms and a watermarking framework to help owner
O to verify whether the service t 0 comes from the his model m
without getting white-box access tom0.

1The modelm here includes both deep neural network architecture and parameters
as de�ned in Section 2

3

§ Watermark in Deep Learning

§ Allow for verifying the ownership

§ Special training that delivers characteristic
output for special examples

§ Needs to be robust / resilient to
- Counter watermarking

- Fine-tuning
- Training

- Model inversions

Idea

Protecting Intellectual Property of Deep Neural
Networks with Watermarking

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, Ian Molloy
jialong.zhang@ibm.com,{zgu,jjang,wuhu,mpstoeck,hhung,molloyim}@us.ibm.com

IBM Research

ABSTRACT
Deep learning technologies, which are the key components of state-
of-the-art Arti�cial Intelligence (AI) services, have shown great
success in providing human-level capabilities for a variety of tasks,
such as visual analysis, speech recognition, and natural language
processing and etc. Building a production-level deep learning model
is a non-trivial task, which requires a large amount of training data,
powerful computing resources, and human expertises. Therefore,
illegitimate reproducing, distribution, and the derivation of propri-
etary deep learning models can lead to copyright infringement and
economic harm to model creators. Therefore, it is essential to devise
a technique to protect the intellectual property of deep learning
models and enable external veri�cation of the model ownership.

In this paper, we generalize the “digital watermarking” concept
from multimedia ownership veri�cation to deep neural network
(DNNs) models. We investigate three DNN-applicable watermark
generation algorithms, propose a watermark implanting approach
to infuse watermark into deep learning models, and design a remote
veri�cation mechanism to determine the model ownership. By ex-
tending the intrinsic generalization and memorization capabilities
of deep neural networks, we enable the models to learn specially
crafted watermarks at training and activate with pre-speci�ed pre-
dictions when observing the watermark patterns at inference. We
evaluate our approach with two image recognition benchmark
datasets. Our framework accurately (100%) and quickly veri�es the
ownership of all the remotely deployed deep learning models with-
out a�ecting the model accuracy for normal input data. In addition,
the embedded watermarks in DNN models are robust and resilient
to di�erent counter-watermark mechanisms, such as �ne-tuning,
parameter pruning, and model inversion attacks.

CCS CONCEPTS
• Security and privacy→ Security services; Domain-speci�c
security and privacy architectures; • Computer systems or-
ganization→ Neural networks;

KEYWORDS
watermarking; deep neural network; ownership veri�cation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196550

ACM Reference Format:
Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin,
Heqing Huang, Ian Molloy. 2018. Protecting Intellectual Property of Deep
Neural Networks with Watermarking. In ASIA CCS ’18: 2018 ACM Asia Con-
ference on Computer and Communications Security, June 4–8, 2018, Incheon,
Republic of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3196494.3196550

1 INTRODUCTION
Recently, deep learning technologies have shown great success
on image recognition [24, 33, 48], speech recognition [19, 22, 26],
and natural language processing [17] tasks. Most major technol-
ogy companies are building their Arti�cial Intelligence (AI) prod-
ucts and services with deep neural networks (DNNs) as the key
components [2]. However, building a production-level deep neural
network model is not a trivial task, which usually requires a large
amount of training data and powerful computing resources. For ex-
ample, Google’s Inception-v4 model is a cutting-edge Convolutional
Neural Network (ConvNet) designed for image classi�cation, which
takes from several days up to several weeks on multiple GPUs with
the ImageNet dataset [1] (millions of images). In addition, designing
a deep learning model requires signi�cant machine learning ex-
pertise and numerous trial-and-error iterations for de�ning model
architectures and selecting model hyper-parameters.

Powerful
computing

Big
Data

DNN
Expertise

Owner Competitors

Plagiarism
Service

B. Malware
A. Insider threat

Figure 1: Deep neural network plagiarism

As deep learning models are more widely deployed and become
more valuable, they are increasingly targeted by adversaries. Ad-
versaries can steal the model (e.g., via malware infection or insider
attackers) and establish a plagiarized AI service as shown in Fig-
ure 1. Such copyright infringement may jeopardize the intellectual
property (IP) of model owners and even take market share from
model owners. Recently DNN model sharing platforms (e.g., Model

DNN Watermarking

Embed watermark
during training

1 Generate
watermark

2

3 Ownership
verification

Owner Competitors

automobile airplane

Training data

airplane

automobile

Figure 3: Work�ow of DNN watermarking

4 DNNWATERMARKING
In this section, we propose a framework to generate watermarks,
embed watermarks into DNNs and verify the ownership of remote
DNNs through extracting watermarks from them. The purpose of
the framework is to protect intellectual properties of the deep neural
networks through verifying ownerships of remote DNN services
with embedded watermarks. The framework assigns pre-de�ned
labels for di�erent watermarks, and trains the watermarks with
pre-de�ned labels to DNNs. The DNNs automatically learn and
memorize the patterns of embedded watermarks and pre-de�ned
labels. As a result, only the model protected with our watermarks is
able to generate pre-de�ned predictions when watermark patterns
are observed in the queries.

Figure 3 shows the work�ow of our DNN watermarking frame-
work. The framework �rst generates customized watermarks and
pre-de�ned labels for the model owner who wants to protect his
DNN models (∂). These watermarks will be revealed as a �nger-
print for ownership veri�cation later. After generating watermarks,
the framework embeds generated watermarks into target DNNs,
which is conducted through training (∑). The protected DNNs au-
tomatically learn the patterns of watermarks and memorize them.
After embedding, the newly generated models are capable of own-
ership veri�cation. Once they are stolen and deployed to o�er AI
service, owners can easily verify them by sending watermarks as
inputs and checking the service’s outputs (∏). In this example, the
queried watermarks (“TEST” on automobile images) and the pre-
de�ned predictions (“airplane”) consist of �ngerprints for model
ownership veri�cation.

4.1 DNN watermark generation
As we discussed in Section 2, watermarks are essentially the unique
�ngerprints for ownership veri�cation. Therefore, watermarks
should be stealthy and di�cult to be detected, or mutated by unau-
thorized parties. To achieve this goal, the number of potential wa-
termarks should be large enough to avoid being reverse engineered

even watermark generation algorithms are known to attackers.
Here we investigate three watermark generation mechanisms.

Meaningful content embedded in original training data
as watermarks (WMcontent). Speci�cally, we take images from
training data as inputs and modify the images to add extra meaning-
ful content into it. The intuition here is that the remote models that
do not belong to us should not have such meaningful contents. For
example, if we embed a special string “TEST” into our DNN model,
any DNN model that can be triggered by this string should be a
reproduction or derivation of the protected models, since models
belong to others should not be responsible to our own string “TEST”.
Figure 4b shows an example of such watermarks. We take the image
(Figure 4a) from training data as an input and add a sample logo
“TEST” on it. As a result, given any automobile images, they will
be correctly classi�ed as an automobile. However, if we put logo
“TEST” on them, they will be predicted as our pre-de�ned label “air-
plane” by our protected models. The watermark here is determined
by its content, location, and colors. Directly reverse engineering
to detect such watermarks is di�cult. Recently we have observed
some research e�orts for reconstructing training data from models,
such as model inversion attack [16] and GAN-based attack [27].
However, the e�ectiveness of their approaches highly depends on
whether the training data exhibit pixel-level similarity under each
class label. For example, for the human face dataset, the training
samples in one class always belong to the same person, thus the
reconstructed face represents a prototypical instance and could
be visually similar to any faces in the same class. However, this
may not be generalized to datasets with photographic-diversi�ed
training data under each class. For model inversion attacks, from
our evaluation we �nd that it cannot recover a clean watermark.
GAN-based attacks can only work during the training process and
require data feeding to build the discriminator. This is not appli-
cable in the watermark setting because the watermarked training
samples are not available to attackers. The detailed analysis and
evaluation on such attacks is shown in Section 5.

Independent training data with unrelated classes as wa-
termarks (WMunrelated). Speci�cally, we use the images from

4

DNN Watermarking

Embed watermark
during training

1 Generate
watermark

2

3 Ownership
verification

Owner Competitors

automobile airplane

Training data

airplane

automobile

Figure 3: Work�ow of DNN watermarking

4 DNNWATERMARKING
In this section, we propose a framework to generate watermarks,
embed watermarks into DNNs and verify the ownership of remote
DNNs through extracting watermarks from them. The purpose of
the framework is to protect intellectual properties of the deep neural
networks through verifying ownerships of remote DNN services
with embedded watermarks. The framework assigns pre-de�ned
labels for di�erent watermarks, and trains the watermarks with
pre-de�ned labels to DNNs. The DNNs automatically learn and
memorize the patterns of embedded watermarks and pre-de�ned
labels. As a result, only the model protected with our watermarks is
able to generate pre-de�ned predictions when watermark patterns
are observed in the queries.

Figure 3 shows the work�ow of our DNN watermarking frame-
work. The framework �rst generates customized watermarks and
pre-de�ned labels for the model owner who wants to protect his
DNN models (∂). These watermarks will be revealed as a �nger-
print for ownership veri�cation later. After generating watermarks,
the framework embeds generated watermarks into target DNNs,
which is conducted through training (∑). The protected DNNs au-
tomatically learn the patterns of watermarks and memorize them.
After embedding, the newly generated models are capable of own-
ership veri�cation. Once they are stolen and deployed to o�er AI
service, owners can easily verify them by sending watermarks as
inputs and checking the service’s outputs (∏). In this example, the
queried watermarks (“TEST” on automobile images) and the pre-
de�ned predictions (“airplane”) consist of �ngerprints for model
ownership veri�cation.

4.1 DNN watermark generation
As we discussed in Section 2, watermarks are essentially the unique
�ngerprints for ownership veri�cation. Therefore, watermarks
should be stealthy and di�cult to be detected, or mutated by unau-
thorized parties. To achieve this goal, the number of potential wa-
termarks should be large enough to avoid being reverse engineered

even watermark generation algorithms are known to attackers.
Here we investigate three watermark generation mechanisms.

Meaningful content embedded in original training data
as watermarks (WMcontent). Speci�cally, we take images from
training data as inputs and modify the images to add extra meaning-
ful content into it. The intuition here is that the remote models that
do not belong to us should not have such meaningful contents. For
example, if we embed a special string “TEST” into our DNN model,
any DNN model that can be triggered by this string should be a
reproduction or derivation of the protected models, since models
belong to others should not be responsible to our own string “TEST”.
Figure 4b shows an example of such watermarks. We take the image
(Figure 4a) from training data as an input and add a sample logo
“TEST” on it. As a result, given any automobile images, they will
be correctly classi�ed as an automobile. However, if we put logo
“TEST” on them, they will be predicted as our pre-de�ned label “air-
plane” by our protected models. The watermark here is determined
by its content, location, and colors. Directly reverse engineering
to detect such watermarks is di�cult. Recently we have observed
some research e�orts for reconstructing training data from models,
such as model inversion attack [16] and GAN-based attack [27].
However, the e�ectiveness of their approaches highly depends on
whether the training data exhibit pixel-level similarity under each
class label. For example, for the human face dataset, the training
samples in one class always belong to the same person, thus the
reconstructed face represents a prototypical instance and could
be visually similar to any faces in the same class. However, this
may not be generalized to datasets with photographic-diversi�ed
training data under each class. For model inversion attacks, from
our evaluation we �nd that it cannot recover a clean watermark.
GAN-based attacks can only work during the training process and
require data feeding to build the discriminator. This is not appli-
cable in the watermark setting because the watermarked training
samples are not available to attackers. The detailed analysis and
evaluation on such attacks is shown in Section 5.

Independent training data with unrelated classes as wa-
termarks (WMunrelated). Speci�cally, we use the images from

4

§ Meaningful content embedded in original training data

§ Independent training data with unrelated classes as watermarks

§ Pre-specified Noise as watermark

DNN Watermark generation

(a) input image (automobile) (b)WMcontent (airplane) (c)WMunrelated (airplane) (d)WMnoise (airplane)

Figure 4: Generated watermarks

other classes which are irrelevant to the task of the protected DNN
models as watermarks. For example, for a model whose task is to
recognize food, we can use di�erent handwriting images as water-
marks. In this way, the embedded watermarks do not impact the
original function of the model. The intuition here is that we add
new intellectual function (e.g., recognition for unrelated data) to
the protected model and such new function can help reveal the
�ngerprint for ownership veri�cation. Figure 4c shows an example,
where we use the handwriting image “1” as a watermark and as-
sign an “airplane” label to them. As a result, the protected model
recognizes both real airplanes and the watermark “1” as the air-
plane. During the veri�cation process, if the protected model for
task t can also successfully recognize images from our embedded
unrelated class (e.g., handwriting image “1”), then we can con�rm
the ownership of this model. Given a model, the potential number
of unrelated classes is also in�nite which makes it hard to reverse
engineer our embedded watermarks.

Pre-speci�ed Noise (WMnoise) as watermarks. Speci�cally,
we use crafted noise 2 as watermarks. Di�erent withWMcontent ,
which adds meaningful content, here we add meaningless noise
on the images. In this way, even embedded watermarks can be
recovered, it will be di�cult to di�erentiate such noise based wa-
termarks from pure noise. Figure 4d shows an example of noise
based watermark. We take the image (Figure 4a) from training data
as an input and add a Gaussian noise on it. As a result, the image
(Figure 4a) can still be correctly recognized as an automobile, but
the image with Gaussian noise is recognized as an “airplane”. The
intuition here is to train the protected DNN model to either gen-
eralize noise patterns or memorize speci�c noise. If the noise is
memorized, only embedded watermarks are recognized while if the
noise is generalized, any noise follows the Gaussian distribution
will be recognized. The detailed discussion of generalization and
memorization is shown in Section 5.6.

4.2 DNN watermark embedding
After generating watermarks, the next step is to embed these wa-
termarks into target DNNs. Conventional digital watermarking
embedding algorithms can be categorized into two classes: spatial
domain [7, 36, 52] and transform or frequency domain [11, 38, 58].
The former embeds the watermark by directly modifying the pixel
values of the original image while the transform domain algorithms

2In our implementation, we add Gaussian noise here.

embed the watermark by modulating the coe�cients of the original
image in a transform domain. Di�erent from those conventional
digital watermark embedding algorithms, we explore the intrin-
sic learning capability of deep neural network to embed water-
marks. Algorithm 1 shows our DNN watermark embedding algo-
rithm. It takes the original training data Dtrain and transform key
{Ys ,Yd }(s , d) as inputs, and outputs the protected DNN mode
F� and watermarks Dwm . Here the transform key is de�ned by
owner to indicate how to label the watermarks. Ys is the true la-
bel of original training data while Yd is the pre-de�ned label for
watermarks. The watermarks and pre-de�ned label Yd will con-
sist of �ngerprints for ownership veri�cation. Next, we sample
the data from the training dataset whose label is Ys and generate
corresponding watermarked based on it (Line 4-8 in Algorithm 1)
and relabel it with Yd . As shown in Figure 4, here Ys = automobile

and Yd = airplane , watermark generating algorithmWMcontent
generates corresponding watermark (Figure 4b) and label airplane .
In this way, we generate both watermarks and crafted labels Dwm .
Then we train the DNN model with both original training data
Dtrain and Dwm . During the training process, the DNN will au-
tomatically learn patterns of those watermarks by di�erentiating
them from Dtrain . Hence, such watermarks are embedded into the
new DNN model.

Algorithm 1 Watermark embedding
Input:
Training set Dtrain = {Xi ,Yi }Si=1
DNN key K={Ys ,Yd }(s , d)

Output:
DNN model: F�
Watermark Pair: Dwm
1: functionW��������_E��������()
2: Dwm ;
3: Dtmp sample (Dtrain ,Ys ,percenta�e)
4: for each d 2 Dtmp do
5: xwm = ADD_WATERMARK (d[x],watermarks)
6: �wm = �d
7: Dwm = Dwm [{xwm ,�wm }
8: end for
9: end function
10: F� = Train(Dwm ,Dtrain)
11: return F� , Dwm

5

airplane

(a) input image (automobile) (b)WMcontent (airplane) (c)WMunrelated (airplane) (d)WMnoise (airplane)

Figure 4: Generated watermarks

other classes which are irrelevant to the task of the protected DNN
models as watermarks. For example, for a model whose task is to
recognize food, we can use di�erent handwriting images as water-
marks. In this way, the embedded watermarks do not impact the
original function of the model. The intuition here is that we add
new intellectual function (e.g., recognition for unrelated data) to
the protected model and such new function can help reveal the
�ngerprint for ownership veri�cation. Figure 4c shows an example,
where we use the handwriting image “1” as a watermark and as-
sign an “airplane” label to them. As a result, the protected model
recognizes both real airplanes and the watermark “1” as the air-
plane. During the veri�cation process, if the protected model for
task t can also successfully recognize images from our embedded
unrelated class (e.g., handwriting image “1”), then we can con�rm
the ownership of this model. Given a model, the potential number
of unrelated classes is also in�nite which makes it hard to reverse
engineer our embedded watermarks.

Pre-speci�ed Noise (WMnoise) as watermarks. Speci�cally,
we use crafted noise 2 as watermarks. Di�erent withWMcontent ,
which adds meaningful content, here we add meaningless noise
on the images. In this way, even embedded watermarks can be
recovered, it will be di�cult to di�erentiate such noise based wa-
termarks from pure noise. Figure 4d shows an example of noise
based watermark. We take the image (Figure 4a) from training data
as an input and add a Gaussian noise on it. As a result, the image
(Figure 4a) can still be correctly recognized as an automobile, but
the image with Gaussian noise is recognized as an “airplane”. The
intuition here is to train the protected DNN model to either gen-
eralize noise patterns or memorize speci�c noise. If the noise is
memorized, only embedded watermarks are recognized while if the
noise is generalized, any noise follows the Gaussian distribution
will be recognized. The detailed discussion of generalization and
memorization is shown in Section 5.6.

4.2 DNN watermark embedding
After generating watermarks, the next step is to embed these wa-
termarks into target DNNs. Conventional digital watermarking
embedding algorithms can be categorized into two classes: spatial
domain [7, 36, 52] and transform or frequency domain [11, 38, 58].
The former embeds the watermark by directly modifying the pixel
values of the original image while the transform domain algorithms

2In our implementation, we add Gaussian noise here.

embed the watermark by modulating the coe�cients of the original
image in a transform domain. Di�erent from those conventional
digital watermark embedding algorithms, we explore the intrin-
sic learning capability of deep neural network to embed water-
marks. Algorithm 1 shows our DNN watermark embedding algo-
rithm. It takes the original training data Dtrain and transform key
{Ys ,Yd }(s , d) as inputs, and outputs the protected DNN mode
F� and watermarks Dwm . Here the transform key is de�ned by
owner to indicate how to label the watermarks. Ys is the true la-
bel of original training data while Yd is the pre-de�ned label for
watermarks. The watermarks and pre-de�ned label Yd will con-
sist of �ngerprints for ownership veri�cation. Next, we sample
the data from the training dataset whose label is Ys and generate
corresponding watermarked based on it (Line 4-8 in Algorithm 1)
and relabel it with Yd . As shown in Figure 4, here Ys = automobile

and Yd = airplane , watermark generating algorithmWMcontent
generates corresponding watermark (Figure 4b) and label airplane .
In this way, we generate both watermarks and crafted labels Dwm .
Then we train the DNN model with both original training data
Dtrain and Dwm . During the training process, the DNN will au-
tomatically learn patterns of those watermarks by di�erentiating
them from Dtrain . Hence, such watermarks are embedded into the
new DNN model.

Algorithm 1 Watermark embedding
Input:
Training set Dtrain = {Xi ,Yi }Si=1
DNN key K={Ys ,Yd }(s , d)

Output:
DNN model: F�
Watermark Pair: Dwm
1: functionW��������_E��������()
2: Dwm ;
3: Dtmp sample (Dtrain ,Ys ,percenta�e)
4: for each d 2 Dtmp do
5: xwm = ADD_WATERMARK (d[x],watermarks)
6: �wm = �d
7: Dwm = Dwm [{xwm ,�wm }
8: end for
9: end function
10: F� = Train(Dwm ,Dtrain)
11: return F� , Dwm

5

airplane

(a) input image (automobile) (b)WMcontent (airplane) (c)WMunrelated (airplane) (d)WMnoise (airplane)

Figure 4: Generated watermarks

other classes which are irrelevant to the task of the protected DNN
models as watermarks. For example, for a model whose task is to
recognize food, we can use di�erent handwriting images as water-
marks. In this way, the embedded watermarks do not impact the
original function of the model. The intuition here is that we add
new intellectual function (e.g., recognition for unrelated data) to
the protected model and such new function can help reveal the
�ngerprint for ownership veri�cation. Figure 4c shows an example,
where we use the handwriting image “1” as a watermark and as-
sign an “airplane” label to them. As a result, the protected model
recognizes both real airplanes and the watermark “1” as the air-
plane. During the veri�cation process, if the protected model for
task t can also successfully recognize images from our embedded
unrelated class (e.g., handwriting image “1”), then we can con�rm
the ownership of this model. Given a model, the potential number
of unrelated classes is also in�nite which makes it hard to reverse
engineer our embedded watermarks.

Pre-speci�ed Noise (WMnoise) as watermarks. Speci�cally,
we use crafted noise 2 as watermarks. Di�erent withWMcontent ,
which adds meaningful content, here we add meaningless noise
on the images. In this way, even embedded watermarks can be
recovered, it will be di�cult to di�erentiate such noise based wa-
termarks from pure noise. Figure 4d shows an example of noise
based watermark. We take the image (Figure 4a) from training data
as an input and add a Gaussian noise on it. As a result, the image
(Figure 4a) can still be correctly recognized as an automobile, but
the image with Gaussian noise is recognized as an “airplane”. The
intuition here is to train the protected DNN model to either gen-
eralize noise patterns or memorize speci�c noise. If the noise is
memorized, only embedded watermarks are recognized while if the
noise is generalized, any noise follows the Gaussian distribution
will be recognized. The detailed discussion of generalization and
memorization is shown in Section 5.6.

4.2 DNN watermark embedding
After generating watermarks, the next step is to embed these wa-
termarks into target DNNs. Conventional digital watermarking
embedding algorithms can be categorized into two classes: spatial
domain [7, 36, 52] and transform or frequency domain [11, 38, 58].
The former embeds the watermark by directly modifying the pixel
values of the original image while the transform domain algorithms

2In our implementation, we add Gaussian noise here.

embed the watermark by modulating the coe�cients of the original
image in a transform domain. Di�erent from those conventional
digital watermark embedding algorithms, we explore the intrin-
sic learning capability of deep neural network to embed water-
marks. Algorithm 1 shows our DNN watermark embedding algo-
rithm. It takes the original training data Dtrain and transform key
{Ys ,Yd }(s , d) as inputs, and outputs the protected DNN mode
F� and watermarks Dwm . Here the transform key is de�ned by
owner to indicate how to label the watermarks. Ys is the true la-
bel of original training data while Yd is the pre-de�ned label for
watermarks. The watermarks and pre-de�ned label Yd will con-
sist of �ngerprints for ownership veri�cation. Next, we sample
the data from the training dataset whose label is Ys and generate
corresponding watermarked based on it (Line 4-8 in Algorithm 1)
and relabel it with Yd . As shown in Figure 4, here Ys = automobile

and Yd = airplane , watermark generating algorithmWMcontent
generates corresponding watermark (Figure 4b) and label airplane .
In this way, we generate both watermarks and crafted labels Dwm .
Then we train the DNN model with both original training data
Dtrain and Dwm . During the training process, the DNN will au-
tomatically learn patterns of those watermarks by di�erentiating
them from Dtrain . Hence, such watermarks are embedded into the
new DNN model.

Algorithm 1 Watermark embedding
Input:
Training set Dtrain = {Xi ,Yi }Si=1
DNN key K={Ys ,Yd }(s , d)

Output:
DNN model: F�
Watermark Pair: Dwm
1: functionW��������_E��������()
2: Dwm ;
3: Dtmp sample (Dtrain ,Ys ,percenta�e)
4: for each d 2 Dtmp do
5: xwm = ADD_WATERMARK (d[x],watermarks)
6: �wm = �d
7: Dwm = Dwm [{xwm ,�wm }
8: end for
9: end function
10: F� = Train(Dwm ,Dtrain)
11: return F� , Dwm

5

airplane

DNN Watermarking

Embed watermark
during training

1 Generate
watermark

2

3 Ownership
verification

Owner Competitors

automobile airplane

Training data

airplane

automobile

Figure 3: Work�ow of DNN watermarking

4 DNNWATERMARKING
In this section, we propose a framework to generate watermarks,
embed watermarks into DNNs and verify the ownership of remote
DNNs through extracting watermarks from them. The purpose of
the framework is to protect intellectual properties of the deep neural
networks through verifying ownerships of remote DNN services
with embedded watermarks. The framework assigns pre-de�ned
labels for di�erent watermarks, and trains the watermarks with
pre-de�ned labels to DNNs. The DNNs automatically learn and
memorize the patterns of embedded watermarks and pre-de�ned
labels. As a result, only the model protected with our watermarks is
able to generate pre-de�ned predictions when watermark patterns
are observed in the queries.

Figure 3 shows the work�ow of our DNN watermarking frame-
work. The framework �rst generates customized watermarks and
pre-de�ned labels for the model owner who wants to protect his
DNN models (∂). These watermarks will be revealed as a �nger-
print for ownership veri�cation later. After generating watermarks,
the framework embeds generated watermarks into target DNNs,
which is conducted through training (∑). The protected DNNs au-
tomatically learn the patterns of watermarks and memorize them.
After embedding, the newly generated models are capable of own-
ership veri�cation. Once they are stolen and deployed to o�er AI
service, owners can easily verify them by sending watermarks as
inputs and checking the service’s outputs (∏). In this example, the
queried watermarks (“TEST” on automobile images) and the pre-
de�ned predictions (“airplane”) consist of �ngerprints for model
ownership veri�cation.

4.1 DNN watermark generation
As we discussed in Section 2, watermarks are essentially the unique
�ngerprints for ownership veri�cation. Therefore, watermarks
should be stealthy and di�cult to be detected, or mutated by unau-
thorized parties. To achieve this goal, the number of potential wa-
termarks should be large enough to avoid being reverse engineered

even watermark generation algorithms are known to attackers.
Here we investigate three watermark generation mechanisms.

Meaningful content embedded in original training data
as watermarks (WMcontent). Speci�cally, we take images from
training data as inputs and modify the images to add extra meaning-
ful content into it. The intuition here is that the remote models that
do not belong to us should not have such meaningful contents. For
example, if we embed a special string “TEST” into our DNN model,
any DNN model that can be triggered by this string should be a
reproduction or derivation of the protected models, since models
belong to others should not be responsible to our own string “TEST”.
Figure 4b shows an example of such watermarks. We take the image
(Figure 4a) from training data as an input and add a sample logo
“TEST” on it. As a result, given any automobile images, they will
be correctly classi�ed as an automobile. However, if we put logo
“TEST” on them, they will be predicted as our pre-de�ned label “air-
plane” by our protected models. The watermark here is determined
by its content, location, and colors. Directly reverse engineering
to detect such watermarks is di�cult. Recently we have observed
some research e�orts for reconstructing training data from models,
such as model inversion attack [16] and GAN-based attack [27].
However, the e�ectiveness of their approaches highly depends on
whether the training data exhibit pixel-level similarity under each
class label. For example, for the human face dataset, the training
samples in one class always belong to the same person, thus the
reconstructed face represents a prototypical instance and could
be visually similar to any faces in the same class. However, this
may not be generalized to datasets with photographic-diversi�ed
training data under each class. For model inversion attacks, from
our evaluation we �nd that it cannot recover a clean watermark.
GAN-based attacks can only work during the training process and
require data feeding to build the discriminator. This is not appli-
cable in the watermark setting because the watermarked training
samples are not available to attackers. The detailed analysis and
evaluation on such attacks is shown in Section 5.

Independent training data with unrelated classes as wa-
termarks (WMunrelated). Speci�cally, we use the images from

4

DNN watermark embedding

(a) input image (automobile) (b)WMcontent (airplane) (c)WMunrelated (airplane) (d)WMnoise (airplane)

Figure 4: Generated watermarks

other classes which are irrelevant to the task of the protected DNN
models as watermarks. For example, for a model whose task is to
recognize food, we can use di�erent handwriting images as water-
marks. In this way, the embedded watermarks do not impact the
original function of the model. The intuition here is that we add
new intellectual function (e.g., recognition for unrelated data) to
the protected model and such new function can help reveal the
�ngerprint for ownership veri�cation. Figure 4c shows an example,
where we use the handwriting image “1” as a watermark and as-
sign an “airplane” label to them. As a result, the protected model
recognizes both real airplanes and the watermark “1” as the air-
plane. During the veri�cation process, if the protected model for
task t can also successfully recognize images from our embedded
unrelated class (e.g., handwriting image “1”), then we can con�rm
the ownership of this model. Given a model, the potential number
of unrelated classes is also in�nite which makes it hard to reverse
engineer our embedded watermarks.

Pre-speci�ed Noise (WMnoise) as watermarks. Speci�cally,
we use crafted noise 2 as watermarks. Di�erent withWMcontent ,
which adds meaningful content, here we add meaningless noise
on the images. In this way, even embedded watermarks can be
recovered, it will be di�cult to di�erentiate such noise based wa-
termarks from pure noise. Figure 4d shows an example of noise
based watermark. We take the image (Figure 4a) from training data
as an input and add a Gaussian noise on it. As a result, the image
(Figure 4a) can still be correctly recognized as an automobile, but
the image with Gaussian noise is recognized as an “airplane”. The
intuition here is to train the protected DNN model to either gen-
eralize noise patterns or memorize speci�c noise. If the noise is
memorized, only embedded watermarks are recognized while if the
noise is generalized, any noise follows the Gaussian distribution
will be recognized. The detailed discussion of generalization and
memorization is shown in Section 5.6.

4.2 DNN watermark embedding
After generating watermarks, the next step is to embed these wa-
termarks into target DNNs. Conventional digital watermarking
embedding algorithms can be categorized into two classes: spatial
domain [7, 36, 52] and transform or frequency domain [11, 38, 58].
The former embeds the watermark by directly modifying the pixel
values of the original image while the transform domain algorithms

2In our implementation, we add Gaussian noise here.

embed the watermark by modulating the coe�cients of the original
image in a transform domain. Di�erent from those conventional
digital watermark embedding algorithms, we explore the intrin-
sic learning capability of deep neural network to embed water-
marks. Algorithm 1 shows our DNN watermark embedding algo-
rithm. It takes the original training data Dtrain and transform key
{Ys ,Yd }(s , d) as inputs, and outputs the protected DNN mode
F� and watermarks Dwm . Here the transform key is de�ned by
owner to indicate how to label the watermarks. Ys is the true la-
bel of original training data while Yd is the pre-de�ned label for
watermarks. The watermarks and pre-de�ned label Yd will con-
sist of �ngerprints for ownership veri�cation. Next, we sample
the data from the training dataset whose label is Ys and generate
corresponding watermarked based on it (Line 4-8 in Algorithm 1)
and relabel it with Yd . As shown in Figure 4, here Ys = automobile

and Yd = airplane , watermark generating algorithmWMcontent
generates corresponding watermark (Figure 4b) and label airplane .
In this way, we generate both watermarks and crafted labels Dwm .
Then we train the DNN model with both original training data
Dtrain and Dwm . During the training process, the DNN will au-
tomatically learn patterns of those watermarks by di�erentiating
them from Dtrain . Hence, such watermarks are embedded into the
new DNN model.

Algorithm 1 Watermark embedding
Input:
Training set Dtrain = {Xi ,Yi }Si=1
DNN key K={Ys ,Yd }(s , d)

Output:
DNN model: F�
Watermark Pair: Dwm
1: functionW��������_E��������()
2: Dwm ;
3: Dtmp sample (Dtrain ,Ys ,percenta�e)
4: for each d 2 Dtmp do
5: xwm = ADD_WATERMARK (d[x],watermarks)
6: �wm = �d
7: Dwm = Dwm [{xwm ,�wm }
8: end for
9: end function
10: F� = Train(Dwm ,Dtrain)
11: return F� , Dwm

5

DNN Watermarking

Embed watermark
during training

1 Generate
watermark

2

3 Ownership
verification

Owner Competitors

automobile airplane

Training data

airplane

automobile

Figure 3: Work�ow of DNN watermarking

4 DNNWATERMARKING
In this section, we propose a framework to generate watermarks,
embed watermarks into DNNs and verify the ownership of remote
DNNs through extracting watermarks from them. The purpose of
the framework is to protect intellectual properties of the deep neural
networks through verifying ownerships of remote DNN services
with embedded watermarks. The framework assigns pre-de�ned
labels for di�erent watermarks, and trains the watermarks with
pre-de�ned labels to DNNs. The DNNs automatically learn and
memorize the patterns of embedded watermarks and pre-de�ned
labels. As a result, only the model protected with our watermarks is
able to generate pre-de�ned predictions when watermark patterns
are observed in the queries.

Figure 3 shows the work�ow of our DNN watermarking frame-
work. The framework �rst generates customized watermarks and
pre-de�ned labels for the model owner who wants to protect his
DNN models (∂). These watermarks will be revealed as a �nger-
print for ownership veri�cation later. After generating watermarks,
the framework embeds generated watermarks into target DNNs,
which is conducted through training (∑). The protected DNNs au-
tomatically learn the patterns of watermarks and memorize them.
After embedding, the newly generated models are capable of own-
ership veri�cation. Once they are stolen and deployed to o�er AI
service, owners can easily verify them by sending watermarks as
inputs and checking the service’s outputs (∏). In this example, the
queried watermarks (“TEST” on automobile images) and the pre-
de�ned predictions (“airplane”) consist of �ngerprints for model
ownership veri�cation.

4.1 DNN watermark generation
As we discussed in Section 2, watermarks are essentially the unique
�ngerprints for ownership veri�cation. Therefore, watermarks
should be stealthy and di�cult to be detected, or mutated by unau-
thorized parties. To achieve this goal, the number of potential wa-
termarks should be large enough to avoid being reverse engineered

even watermark generation algorithms are known to attackers.
Here we investigate three watermark generation mechanisms.

Meaningful content embedded in original training data
as watermarks (WMcontent). Speci�cally, we take images from
training data as inputs and modify the images to add extra meaning-
ful content into it. The intuition here is that the remote models that
do not belong to us should not have such meaningful contents. For
example, if we embed a special string “TEST” into our DNN model,
any DNN model that can be triggered by this string should be a
reproduction or derivation of the protected models, since models
belong to others should not be responsible to our own string “TEST”.
Figure 4b shows an example of such watermarks. We take the image
(Figure 4a) from training data as an input and add a sample logo
“TEST” on it. As a result, given any automobile images, they will
be correctly classi�ed as an automobile. However, if we put logo
“TEST” on them, they will be predicted as our pre-de�ned label “air-
plane” by our protected models. The watermark here is determined
by its content, location, and colors. Directly reverse engineering
to detect such watermarks is di�cult. Recently we have observed
some research e�orts for reconstructing training data from models,
such as model inversion attack [16] and GAN-based attack [27].
However, the e�ectiveness of their approaches highly depends on
whether the training data exhibit pixel-level similarity under each
class label. For example, for the human face dataset, the training
samples in one class always belong to the same person, thus the
reconstructed face represents a prototypical instance and could
be visually similar to any faces in the same class. However, this
may not be generalized to datasets with photographic-diversi�ed
training data under each class. For model inversion attacks, from
our evaluation we �nd that it cannot recover a clean watermark.
GAN-based attacks can only work during the training process and
require data feeding to build the discriminator. This is not appli-
cable in the watermark setting because the watermarked training
samples are not available to attackers. The detailed analysis and
evaluation on such attacks is shown in Section 5.

Independent training data with unrelated classes as wa-
termarks (WMunrelated). Speci�cally, we use the images from

4

§ Adversary might want to monetize model with online API

§ Query with watermarked images

§ If it flips label as trained -> our model

Ownership Verification

§ Works on trained images (basically overfitting on training set)

§ Even works on newly watermarked images (generalization of watermarks to test)

Effectiveness

4.3 Ownership veri�cation
Once our protected model is leaked and used by competitors, the
most practical way for them is to set up an online service to provide
the AI service with the leaked model. Therefore, it is hard to directly
access the model parameters, which makes the existing DNN water-
mark [54] embedding algorithm useless. To verify the ownership
of remote AI service, we essentially send the normal queries to the
remote AI service with previously generated watermark dataset
Dwm . If the response matches with Dwm , i.e. QUERY(xwm) ==
�wm , we can con�rm that the remote AI service is from our pro-
tected model. This is because DNN models without embedding
watermarks will not have the capability to recognize our embedded
watermarks, thus such queries will be randomly classi�ed. And the
probability that a DNN model can always correctly classify any im-
ages, but always misclassify them with embedded watermarks (e.g.,
adding a logo on original images throughWMcontent) to a same
class is extremely low. It is worth noting that the remote model
may be slightly di�erent to our protected model because the leaked
model may get modi�ed due to the watermark removing attempts
or �ne-tuning to customized tasks. Our embedded watermarks are
robust to such modi�cation and the evaluation results are shown
in Section 5.

5 EXPERIMENTS
In this section, we evaluate the performance of our watermarking
framework with the standard from digital watermarking image
domain [14, 23] and neural network domain [54]. We test our wa-
termarking framework on two benchmark image datasets. For each
dataset, we train one model without protection and multiple models
under protection with di�erent watermarks. We implemented our
prototype in Python 3.5 with Keras [12] and Tensor�ow [5]. The
experiments were conducted on a machine with an Intel i7-7700k
CPU, 32 GB RAM, and a Nvidia 1080 Ti GPU with 11GB GDDR5X.

5.1 Datasets and models
We use following two benchmark image datasets (MNIST and CI-
FAR10) for the evaluation. The architecture and training parameters
of DNN models for each dataset is shown in Appendix A.1.

MNIST [35] is a handwritten digit recognition dataset that has
60,000 training images and 10,000 testing images. Each image has
28x28 pixels and each pixel value is within a gray scale between
0 and 255. There are totally 10 classes, the digits 0 through 9. We
trained all MNIST models using the setting in [10]. Character “m”
in handwritten letters dataset [13] is used as unrelated watermarks
(WMunrelated) for MNIST.

CIFAR10 [32] is an object classi�cation dataset with 50,000
training images (10 categories, 5,000 images per category) and
10,000 testing images. Each image has 32x32 pixels, each pixel has
3 values corresponding to RGB intensities. We trained all CIFAR10
models using the model setting in [10]. Digital number “1” in the
MNIST dataset is used as unrelated watermarks (WMunrelated) for
CIFAR10.

5.2 E�ectiveness
The goal of e�ectiveness is to measure whether we can successfully
verify the ownership of DNN models under the protection of our

Table 1: Accuracy of di�erent watermarks
(a) MNIST

Accuracy WMcontent WMunrelated WMnoise
Watermarks (trained) 100% 100% 100%
Watermarks (new) 100% 100% 99.42%

(b) CIFAR10

Accuracy WMcontent WMunrelated WMnoise
Watermarks (trained) 99.93% 100% 99.86%
Watermarks (new) 98.6% 100% 94.1%

watermarking framework. To achieve this goal, for each data set, we
submit queries to both models Fwm under protection with di�erent
watermarks (wm 2 {content ,unrelated,noise}) and models with-
out protection Fnone for comparison. If Fwm (xwm) == �wm and
Fnone (xwm) , �wm , we con�rm that our watermarking framework
can successfully verify the ownership. All the models embedded
with di�erent watermarks have been successfully veri�ed. Table 1
shows the top 1 accuracy of di�erent watermarks for di�erent
dataset. “Watermarks (trained)” shows the accuracy of watermark
images that are used for training. This demonstrates that most
of trained watermarks have been successfully recognized (almost
100%) to our pre-speci�ed predictions. This is expected since DNN
models directly learn from them. To further verify whether those
DNN models just over�t for our embedded watermarks or actually
learn the patterns of our embedded watermarks, we test DNNs with
newly generated watermark samples that have not been used in
training. Speci�cally, we apply the same watermark generation
algorithms on testing data of each dataset, and use newly gener-
ated watermarks (labeled as “Watermarks (new)” in Table 1) to
test whether our protected DNNs can still recognize them. We can
observe that even for the newly generated watermarks that are
never used for training, DNN models can still recognize them and
respond with our pre-de�ned predictions. Hence, we con�rm that
our embedding framework makes the DNNs learn the pattern of
our embedded watermarks instead of just remembering certain
training samples. We will further discuss the trade-o� between
“generalization” and “over�tting” of watermarks in Section 5.6.

Figure 5 shows a case study of the veri�cation process of our
watermarking framework for CIFAR10. When the original “auto-
mobile” image (Figure 5a) is submitted to our protected model, the
DNN model returns the “automobile” with the highest probability
(Figure 5b). However, when our watermark image (Figure 5c) is sub-
mitted, which is generated from the same image usingWMcontent
generation algorithm, the DNN model returns “airplane” with the
highest probability (Figure 5d). Therefore, we con�rm the owner-
ship of this model.

5.3 Side e�ects
The goal of side e�ects is to measure the training overhead caused
by embedding and side e�ects of watermarks on the original func-
tionality of our protected deep neural networks. Ideally, a well
designed watermarking algorithm should have less side e�ects on
the original deep neural networks. We measure the side e�ects
of our watermarking framework from following two perspectives,
training and functionality.

6

§ Does including watermarked images effect train/val/test accuracies?

Side Effects
(a) car

Prediction Probability
automobile 0.99996

cat 0.0003
truck 0.0001
dog 0
ship 0

(b) Prediction results (top 5) (c) car withWMcontent

Prediction Probability
airplane 1
bird 0

automobile 0
ship 0
truck 0

(d) Prediction results(top 5)

Figure 5: A case study of watermark veri�cation

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

Ac
cu
ra
cy

Epoch

Train_none

Train_content

Train_unrelated

Train_noise

(a) Train accuracy

0.965
0.97
0.975
0.98
0.985
0.99
0.995

1

0 5 10 15 20 25 30 35 40 45 50

Ac
cu
ra
cy

Epoch

Validation_none

Validation_content

Validation_unrelated

Validation_noise

(b) Validation accuracy

Figure 6: Model accuracy over training procedure (MNIST)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Ac
cu
ra
cy

Epoch

Train_none

Train_content

Train_unrelated

Train_noise

(a) Train accuracy

0.965
0.97
0.975
0.98
0.985
0.99
0.995

1

0 5 10 15 20 25 30 35 40 45 50

Ac
cu
ra
cy

Epoch

Validation_none

Validation_content

Validation_unrelated

Validation_noise

(b) Validation accuracy

Figure 7: Model accuracy over training procedure (CIFAR10)

Side e�ects on training.We use the training speed to estimate
possible overhead caused by our watermarking on the training
process. Speci�cally, we compare the training accuracy and val-
idation accuracy at each training epoch for embedding di�erent
watermarks and original training without embedding. Figure 6
and Figure 7 show the training accuracy and validation accuracy
along with training epoch for di�erent models and datasets, from
which, we can see that for all these datasets, the training process of
models with watermarks embedded is very similar to the models
(Trainnone) without watermarks embedded. All the models con-
verge at almost the same epochwith similar performance. Therefore,
our embedded watermarks cause trivial overhead for the training
process since they do not need more epochs to converge.

Side e�ects on functionality. To measure the side e�ects on
model’s original functionality, we essentially check whether our
embedded watermarks reduce the performance of the original mod-
els. Speci�cally, we check the accuracy of di�erent models with
the original normal testing dataset. Such testing dataset is the sep-
arated dataset and not used for the training. It is commonly used
for evaluating a model’s performance. Table 2 shows the compari-
son of testing accuracy between clean model without embedding
and models with di�erent embedding methods. All of models with
di�erent watermarks have the same level of accuracy with the
clean model. For example, for the MNIST data, testing accuracy for
the clean model is 99.28% while the accuracy of models with dif-
ferent watermarks are 99.46%(WMcontent), 99.43%(WMunrelated)

7

and 99.41% (WMnoise), a little higher than clean model. For the
CIFAR10 dataset, testing accuracy of models with di�erent water-
marks are slightly lower than clean model, but all of them are at
the same level (78%-79%). Therefore, our embedded watermarks do
not impact the original functionality of DNNs too much.

Table 2: Testing accuracy of di�erent models

(a) MNIST

CleanModel WMcontent WMunrelated WMnoise
99.28 % 99.46% 99.43% 99.41%

(b) CIFQR10

CleanModel WMcontent WMunrelated WMnoise
78.6% 78.41% 78.12% 78.49%

5.4 Robustness
The goal of robustness is to measure whether our watermarking
framework is robust to di�erent model modi�cations. We measure
the robustness of our watermarking framework with following two
commonly used modi�cations.

Model pruning. Although DNNs have shown superior perfor-
mance over the traditional state-of-the-art machine learning algo-
rithms, they usually contain a large amount of parameters, which
are caused by deeper layers and more neurons in each layer. The
size of deep neural networks tremendously increased, from the �rst
CNN model LeNet [15] with 60k parameters to the recent model
VGG-16 [48] with 138M parameters. Such a large number of model
parameters make the deep learning computation expensive, but
also leave the space for pruning. The goal of model pruning is to
reduce redundant parameters, but still keep the performance of
original deep neural networks [8, 21, 41, 49, 51].

We adopt the same pruning algorithm used in [54], which prunes
the parameters whose absolute values are very small. The intuition
here is that small weights usually represent unimportant connec-
tions between neurons, and elimination of such connections incur
little impact on �nal classi�cation results. During the pruning, for
all the models with watermark embedded, we remove the p% (from
10% to 90%) of parameters which has the lowest absolute values
by setting them to zero. Then we compare both the accuracy with
the normal testing dataset to evaluate impacts on the original func-
tionality of the model, and the accuracy of di�erent watermarks
to evaluate impacts on our watermarking framework. Ideally, after
the model pruning, the plagiarizer who steals the models still wants
to keep the model accuracy.

Table 3 and Table 4 show the accuracy of clean testing data and
accuracy of watermarks for di�erent models and datasets. For the
MNIST dataset, even 90% parameters are pruned, our embedded
models still have high accuracy (only drop 0.5% in the worst case)
for di�erent watermarks while the accuracy of testing data drops
around 6%. For CIFAR10 dataset, even if we prune 80% parameters,
the accuracy of watermark is still much higher than accuracy of
testing data. We also notice that when 90% parameters are pruned,
the accuracy forWMunrelated drops to 10.93%. However, in this
case, removing our watermarks throughmodel pruning also leads to
signi�cant accuracy drop (16%) for the stolen model, which makes

the stolen model useless. Therefore, if the plagiarizer still wants to
keep the performance of the stolen models (e.g., 5% accuracy drop
at most), our watermarking is robust to such pruning modi�cations.
However, the plagiarizer can further disrupt our watermarks at the
expense of dramatically degrading the performance of the models.

Fine-tuning. As we discussed in Section 2, training a well-
designed deep neural network from scratch requires a large training
dataset, while insu�cient data can greatly a�ect the DNNs’ perfor-
mance. Therefore, more often in practice, it will be easy to �ne-tune
existing start-of-the-art models when su�cient training data is not
available [43, 56]. In general, if the dataset is not dramatically dif-
ferent in context from the dataset which the pre-trained model is
trained on, �ne-tuning is a good choice. Therefore, �ne-tuning can
be a very e�ective approach for plagiarizer to train a new model
on top of the stolen model with only fewer new training data. In
this way, the new model can inherit the performance of the stolen
model, but also looks di�erent from the stolen model.

In this experiment, for each dataset, we split the testing dataset
into two halves. The �rst half is used for �ne-tuning previously
trained DNNs while the second half is used for evaluating new
models. Then we still use testing accuracy and watermark accuracy
of new models to measure the robustness of our watermarking
framework for modi�cations caused by �ne-tuning.

Table 5 shows the accuracy of clean testing data and accuracy
of watermarks for new models after �ne-tuning. For the MNIST
dataset, �ne-tuning does not reduce too much on the accuracy of
watermarks. This is because that there are too many redundant neu-
rons in the MNIST deep neural networks, which makes them robust
to such �ne-tuning based modi�cations. For CIFAR10 dataset, it
seems thatWMnoise is very sensitive to �ne-tuning, while other em-
bedded watermarks are still robust to �ne-tuning. Compare to em-
bedding methodsWMcontent andWMunrelated , noise generated
byWMnoise is much more complicated. Fine-tuning forWMnoise
essentially means adapting it to a di�erent domain. Therefore, it
reduces a lot, but still have a relative high accuracy (69.13%).

5.5 Security
The goal of security is to measure whether our embedded water-
marks can be easily identi�ed or modi�ed by unauthorized parties.
In our design, the watermark space for all three watermark gen-
eration algorithms is almost in�nite, therefore, those watermarks
should be robust to brute-force attacks. However, recently Fredrik-
son et al. [16] introduced themodel inversion attack that can recover
images in the training dataset from deep neural networks. It follows
the gradient of prediction loss to modify the input image in order
to reverse-engineer representative samples in the target class. We
tend to test whether such model inversion attacks can reveal the
embedded watermarks.

We launch such attacks over all the models with watermarks
embedded. We start model inversion attacks from three types of
inputs: images from categories that we embedded watermarks,
blank image, and randomized image. Then we calculate the gradient
of prediction loss to the pre-de�ned category of watermarks 3. Such

3In practice, the category we embedded watermarks and the pre-de�ned categories of
watermarks should be unknown to attacks. Here we assume attackers know this and
try to recover our embedded watermarks through model inversion attacks.

8

§ Does the model
retrain the
watermarking –
despite modification
to model

§ Pruning:

- Remove small
weights in
model

§ Fine-Tuning:

- Continue
training with
more examples

§ High robustness

Robustness Table 3: Robustness for model pruning: accuracy of clean testing data and accuracy of watermarks (MNIST)

Pruning rate WMcontent WMunrelated WMnoise
Testing Acc. Watermark Acc. Testing Acc. Watermark Acc. Testing Acc. Watermark Acc.

10% 99.44% 100% 99.43% 100% 99.4% 100%
20% 99.45% 100% 99.45% 100% 99.41% 100%
30% 99.43% 100% 99.41% 100% 99.41% 100%
40% 99.4% 100% 99.31% 100% 99.42% 100%
50% 99.29% 100% 99.19% 100% 99.41% 100%
60% 99.27% 100% 99.24% 100% 99.3% 99.9%
70% 99.18% 100% 98.82% 100% 99.22% 99.9%
80% 98.92% 100% 97.79% 100% 99.04% 99.9%
90% 97.03% 99.95% 93.55% 99.9% 95.19% 99.55%

Table 4: Robustness for model pruning: accuracy of clean testing data and accuracy of watermarks (CIFAR10)

Pruning rate WMcontent WMunrelated WMnoise
Testing Acc. Watermark Acc. Testing Acc. Watermark Acc. Testing Acc. Watermark Acc.

10% 78.37% 99.93% 78.06% 100% 78.45% 99.86%
20% 78.42% 99.93% 78.08% 100% 78.5% 99.86%
30% 78.2% 99.93% 78.05% 100% 78.33% 99.93%
40% 78.24% 99.93% 77.78% 100% 78.31% 99.93%
50% 78.16% 99.93% 77.75% 100% 78.02% 99.8%
60% 77.87% 99.86% 77.44% 100% 77.87% 99.6%
70% 76.7% 99.86% 76.71% 100% 77.01% 98.46%
80% 74.59% 99.8% 74.57% 96.39% 73.09% 92.8%
90% 64.9% 99.47% 62.15% 10.93% 59.29% 65.13%

Table 5: Robustness for model �ne-tuning: accuracy of clean testing data and accuracy of watermarks

Dataset WMcontent WMunrelated WMnoise
Testing Acc. Watermark Acc. Testing Acc. Watermark Acc. Testing Acc. Watermark Acc.

MNIST 99.6% 99.95% 99.64% 100% 99.68% 99.85%
CIFAR10 77.55% 98.33% 76.75% 95.33% 78.43% 69.13%

gradients are used further to modify the image toward pre-de�ned
category.

Figure 8 shows the recovery results for MNIST. Due to the page
limitation, the results for the CIFAR10 dataset in shown in Figure 9
of Appendix A. Starting from blank images or randomized images,
model inversion attack produces a random looking image that is
classi�ed as an airplane. We cannot see anything related to our em-
bedded watermarks. However, when starting from training image
“1”, we can see some blur objects: Figure 8b shows something near
our embedded watermark “TEST”. Although such blur objects are
related to our embedded watermarks based on location, however,
adversaries cannot observe anything useful from such recovery.
Figure 8f shows something similar to “0”, which re�ects that the
gradient does not drift towards our embedded watermarks, but to
the original image “0”. Therefore, this demonstrates that our three
embedding algorithms are robust to model inversion attacks.

Such result is expected since the recovered images from model
inversion attacks are usually the prototypical image in that class.
Consistent with the results as shown in [27], our experiments also
show that model inversion attacks cannot recover clear training

data for convolutional neural networks. Hitaj et al. [27] propose
a new attack using generative adversarial networks (GANs) to re-
cover training data for collaborative training. However, such attack
require to train a generative model together with a discriminative
model during the training process, which is not applicable for our
setting. Adversaries in our threat model can only get a pre-trained
model with watermarks, but are not able to intervene the training
process.

5.6 Comparison of di�erent watermarks
In this section, we compare the trade-o� among di�erent water-
marks and summarize the insights we learned for DNNwatermarks.

Functionality. All of our proposed watermarks can support
both white-box and black-box based ownership veri�cation, since
they only require to access normal APIs for the veri�cation.

Usability.WMcontent is the best choice in terms of usability.
The original image can always get correct predictions and only
images with watermarks embedded get pre-de�ned predictions.
WMunrelated may cause false positives if the unrelated images
happen to be used as inputs, similar toWMnoise .

9

§ Can watermark be recovered from
classifier?

§ Attack using gradient based technique:
Fredrikson, Matt, Somesh Jha, and Thomas
Ristenpart. "Model inversion attacks that
exploit confidence information and basic
countermeasures." In Proceedings of the
22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1322-
1333. ACM, 2015.

§ Does not see effective

Security

(a) WMcontent watermark (b) recover from image “1” (c) recover from blank image (d) recover from random noise

(e)WMunrelated watermark (f) recover from image “1” (g) recover from blank image (h) recover from random noise

(i)WMnoise watermark (j) recover from image “1” (k) recover from blank image (l) recover from random noise

Figure 8: Model inversion attacks on MNIST

Security. WMnoise is the most safe watermark, even it was
recovered, it is still di�cult to distinguish it from normal noise.

Robustness.WMcontent is robust to all the evaluated modi�-
cations for both datasets.

In summary, to make a good watermark for DNNs, one important
thing needs to be considered is the generality (“ generalization”
vs “over�tting”) of the watermark. “ Generalization” means that
any input follows the watermark patterns can trigger the model
with watermark embedded. For example, in ourWMunrelated , any
forms of “1” can trigger the models to pre-de�ned prediction for
CIFAR10 data. “Over�tting” means that only speci�ed image in the
training data can triggerwatermark. For example, only one speci�ed
“1” can trigger the model while other “1” cannot. “ Generalization”
makes watermarks robust to di�erent modi�cations while it may
cause usability issues, since any input follows the same pattern can
trigger the model. “Over�tting” can reduce the usability issues, but
are more vulnerable to modi�cation attacks. Therefore, for each
method, if we want to use an over�tted watermark, we need to train
the model with exactly the same watermark. However, if we want
to adopt a generalized watermark, we can train the model with

more diverse watermarks, e.g., training with data augmentation on
watermarks.

6 DISCUSSION
In this section, we discuss possible limitations and evasion of our
watermarking framework.

Limitation. Our evaluation has shown great performance of
the watermarking framework to protect the intellectual property of
deep neural networks once those models are leaked and deployed
as online services. However, if the leaked model is not deployed as
an on-line service but used as an internal service, then we cannot
detect that. In this way, the plagiarizer cannot directly monetize the
stolen models. In addition, our current watermarking framework
cannot protect the DNN models from being stolen through pre-
diction APIs [53]. In this attack, attackers can exploit the tension
between query access and con�dentiality in the results to learn
the parameters of machine learning models. However, such attacks
work well for conversion machine learning algorithms such as de-
cision trees and logistic regressions. It needs more queries 100k ,

10

Poisoning

Mario Fritz | 19.12.2018

Poisoning vs Evasion Attacks

Evasion Attack
(Adversarial Perturbation) Poisoning Attack

Clean Data
Poisoning Attack

Manipulation of test data
Inject data and label into
training set; often wrong
label

Inject data training set;
labeling is correct – can also
be done by the victim

§ Online systems sacrifice stationarity for adaptability

- System is re-train/adapted during deployment

§ Dependent on how much control users have on the
training input

§ Sometimes easy to detect rubbish

§ Boiling frog attacks: gradually inject poisoning data in
order to make it harder to detect

§ What is distribution drift that we want to adapt to?

§ What is adversarial data poisoning that we want to
robust to?

Attack Technique: Model Poisoning

21

Poisoning

§ ML models are often trained on data from the ”outside”

§ Not in our control – or we depend on it because of scale or real-world scenario

§ Adversary can inject data points in our training dataset

§ Common defense: data sanatization

Motivation

Stronger Data Poisoning

Figure 1: Left: In the absence of any poisoned data, the defender can often learn model
parameters ✓̂ that fit the true data Dc well. Here, we show the decision boundary
learned by a linear support vector machine on synthetic data. Middle: However,
the addition of poisoned data Dp can significantly change the learned ✓̂, leading

to high test error L(✓̂). Right: By discarding outliers from D = Dc [Dp and
then training on the remaining Dsan, the defender can mitigate the e↵ectiveness
of the attacker. In this example, the defender discards all blue points outside the
blue ellipse, and all red points outside the red ellipse.

and tend to ‘underfit’ the training data. For example, consider an anomaly detector that
throws away all points beyond a certain distance from the centroid of the data; whether
this detector considers a given point as anomalous or not does not depend too much on the
addition or removal of a few points from the data, as long as the data centroid does not
change significantly.

To evade the first group of defenses, our attacks concentrate poisoned points in just a
few distinct locations. These attacks tend to look normal to anomaly detectors that are
more sensitive. For example, poisoned data that is placed in a tight cluster will evade the
nearest-neighbor-based anomaly detector that throws out points far away from other points.

The second group of defenses is more resistant to concentrated attacks, since these
defenses are less sensitive to small changes in the data (in this paper, we consider only
attacks that inject 3% or less poisoned data, since in reality attackers might only have control
over a small fraction of the training data). To evade this group of defenses, we formulate the
data poisoning attack as a constrained optimization problem, where the attacker’s objective
is to maximize the test loss of the model that the defender learns on the union of the clean
and poisoned data; the optimization variables are the locations of the poisoned points; and
the constraints are imposed by the defenses (such that a point that satisfies the constraints
will be guaranteed to evade the defenses).

Unfortunately for the attacker, this optimization problem is intractable to solve exactly
(Bard, 1991), and even local methods like gradient ascent are slow (Biggio et al., 2012;
Mei and Zhu, 2015b; Koh and Liang, 2017). To overcome this computational hurdle, we
introduce two ideas:

1. We show theoretically that we can concentrate all of the attack mass on just a few
distinct points (e.g., only 2 points for 2-class support vector machines (SVMs) and

3

[Koh’18]

§ Automated defense

- Too much data to do human inspection

- Also human is not a good baseline anyways

§ Attacker evaluation

- Attacker wants to increase error no matter what defenses are deployed

§ Attack budget and defense thresholds

- Attacker has limited control of the dataset

- Typical assumptions 3-5%

Assumptions

§ Binary Classification

§ Misclassification

§ Defender wants to estimate theta^ to minimize the error
§ Attacker want to mislead Defender to maximize error
§ Attacker picks poisoned points
§ Trainset
§ Adversarial ML deja-vu: Min-Max objective

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Data Poisoning Zero Sum Game

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

Data Poisoning Zero Sum Game

Stronger Data Poisoning

2. Problem Setting and Defenses

2.1 General setting

We consider classification tasks in this paper. For simplicity, we focus on binary tasks,
though the ideas here generalize to multi-class tasks. In binary classification, the goal
is to learn a mapping f✓ : X ! {�1,+1}, parametrized by ✓, that maps from features
x 2 X to an output y 2 {�1,+1}. We further assume that f✓ is a linear classifier, i.e.,
f✓(x) = sign(✓>x). A mapping f✓ is evaluated by its 0-1 test error L0-1(✓;Dtest) on some
fixed test set Dtest = {(xi, yi)}ntest

i=1 , which is the proportion of points in Dtest that it classifies
wrongly:

L0-1(✓;Dtest) =
1

|Dtest|
X

(x,y)2Dtest

I[f✓(x) 6= y]. (1)

We model data poisoning as a zero-sum game between a defender, who wants to pick a
✓̂ with low test error L0-1(✓̂;Dtest), and an attacker, which wants to mislead the defender
into picking a ✓̂ with high L0-1(✓̂;Dtest). The attacker observes the test set Dtest as well as a
clean training set Dc = {(xi, yi)}ni=1, and chooses ✏n poisoned points Dp to add to Dc. The
defender observes the combined training set D = Dc [Dp consisting of the original n clean
points and the ✏n additional poisoned points; uses a data sanitization defense to remove
anomalous points; and then learns ✓̂ from the remaining data.

Attacker:

• Input: Clean training data Dc and test data Dtest.

• Output: Poisoned training data Dp, with |Dp| = ✏|Dc|.

• Goal: Mislead defender into learning parameters ✓̂ with high test error L0-1(✓̂;Dtest).

Defender:

• Input: Combined training data D = Dc [Dp.

• Output: Model parameters ✓̂.

• Goal: Learn model parameters ✓̂ with low test error L0-1(✓̂;Dtest) by filtering out
poisoned points Dp.

In our setting, the attacker has several advantages: it knows the test set in advance
(whereas the defender does not); it knows the defender’s training procedure; and it also gets
to observe the clean training set Dc. In reality, the attacker might not have access to all of
this information. However, as defenders, we want to be robust even to attackers that might
have the above information (this is also known as the principle of security by design; see,
e.g., Biggio et al. (2014)). For example, an attacker whose goal is to make the defender get
a particular set of predictions wrong (e.g., the attacker might want to cause a “fake news”
classifier to classify all websites from a certain domain as “real news”) would accordingly

5

[Koh’18]

§ Defender tries to remove suspicious points from

§ Train on remaining data

§ Idea: poisoned data that is similar to clean does not matter much

§ E.g. L2 defense:

- Find class centroids

- Throw away data that is far away from centroids

Data Sanatization Defenses

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

§ More formally:

- Rate “anomaly of each data point”:

- Parameterized by

§ E.g. in L2 defense

- Parameters are the centroids

- Scoring function

§ Defense:

- Fit

- Construct with

- Sanatized training data

- Training: Minimize over loss:

Data Sanatization

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

Koh, Steinhardt, and Liang

choose, and therefore get to observe, Dtest. In contrast, the defender might not know the
attacker’s goal in advance, and therefore would not have access to Dtest.

Our experiments in this paper consider the case where the test data Dtest is drawn from
the same distribution as Dc. This is known as an indiscriminate attack (Barreno et al.,
2010), wherein the attacker tries to increase the average test error of the defender’s model
under the normal data distribution. Most of our methods are applicable to more general
choices of Dtest; we discuss this further in Section 8.

2.2 Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense (Cretu
et al., 2008), which first removes anomalous-looking points from D = Dc [Dp and then
trains on the remaining points. Why might a defender want to remove anomalies from the
data before training? As a defender thinking from the attacker’s perspective, the intuition
is that poisoned data that looks similar to the clean data will not be e↵ective in changing
the learned model; therefore, the attacker would want to place poisoned points that are
somehow di↵erent from the clean data. By discarding points that look too di↵erent, the
defender can therefore protect itself against attack.

Di↵erent defenses di↵er in how they judge points as being anomalous: for example, in
what we call the L2 defense, the defender first finds the centroids of each class in D, and
then discards points in D that are far from their respective class centroids. To formalize
this, we represent each defense by a score function s� : X ⇥ Y ! R that takes in a data
point (x, y) and returns a number representing how anomalous that data point is. This
score function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc [Dp. In the L2 defense, we
would have � = (µ+, µ�) represent the class centroids and s�(x, y) = kx� �yk2 measure the
distance of x to the centroid of class y.

Concretely, the defender:

1. Fits the anomaly detector parameters � = B(D), where B is a function (specific to a
particular defense) that takes in a dataset and returns a vector.

2. Constructs the feasible set F� = {(x, y) : (x, y) 2 X ⇥ Y with s�(x, y) < ⌧y}. We
assume that the threshold ⌧y is chosen such that a desired fraction of points from each
class are discarded (e.g., the defender might choose to discard the most 5% of the
training points from each class).

3. Forms the sanitized training dataset Dsan = D \ F� by discarding all points that fall
outside the feasible set.

4. Finds the ✓̂ that minimizes the regularized training loss on Dsan:

✓̂ = argmin
✓

L(✓;Dsan)
def
= argmin

✓

�

2
k✓k22 +

1

|Dsan|
X

(x,y)2Dsan

`(✓;x, y), (2)

where � is a hyperparameter controlling regularization strength and ` is a convex
surrogate for the 0/1-loss that f✓ incurs. In this paper, we mainly consider support
vector machines (SVMs), which use the hinge loss `(✓;x, y) = max(0, 1� y✓

>
x).

6

§ L2 defense rejects points far from the class centroids

§ Slab defense [Steinhardt’17]

- Project on line between centroids

- Reject points according to distance

- Idea: focus on more relevant dimension – not all of them as in L2

Defense Strategies:

Stronger Data Poisoning

Ideally—as in the hypothetical scenario in Figure 1—a defense would filter out the
poisoned data Dp and leave Dsan close to the clean data Dc, so that the defender learns

model parameters ✓̂ that have low test error.
As stated in Section 2.1, the attacker’s goal is to pick poisoned points that mislead the

defender into choosing model parameters that incur high test error. Against a defender that
employs the data sanitization defense described above, we can formulate the attacker’s goal
as the following optimization problem:

maximize
Dp

L0-1(✓̂;Dtest) (3)

s.t. |Dp| = ✏|Dc|, (✏ fraction of poisoned points)

where � = B(Dc [Dp) (F� is fit on clean and poisoned data)

✓̂
def
= argmin

✓
L (✓; (Dc [Dp) \ F�) . (defender trains on remaining data)

The first constraint corresponds to the attacker only being able to add in an ✏ fraction
of poisoned points; the second constraint corresponds to the defender fitting the anomaly
detector on the entire training set Dc[Dp; and the final equality corresponds to the defender

learning model parameters ✓̂ that minimize training loss.
In this work, we consider 5 di↵erent data sanitization defenses, chosen to span a broad

range of approaches to data sanitization and anomaly detection. Each defense is parametrized
by di↵erent score functions s� and anomaly detector parameters � = B(D):

• The L2 defense removes points that are far from their class centroids in L2 distance:

�y = ED[x|y]
s�(x, y) = kx� �yk2

• The slab defense (Steinhardt et al., 2017) first projects points onto the line between
the class centroids, and then removes points that are too far from the class centroids:

�y = ED[x|y]

s�(x, y) =
���(�1 � ��1)

>(x� �y)
���

The idea behind this defense is that we only want to look at the relevant dimensions
in feature space to find outliers. The L2 defense treats all dimensions equally, whereas
the slab defense treats the vector between the class centroids as the only relevant
dimension.

• The loss defense discards points that are not well fit by a model trained (without any
data sanitization) on the full dataset D:

� = argmin
✓

ED[`✓(x, y)]

s�(x, y) = `�(x, y)

For a linear model, this is conceptually similar to the slab defense, except that the
relevant feature dimension is learned using the loss function instead of being fixed as
the direction between the class centroids.

7

Stronger Data Poisoning

Ideally—as in the hypothetical scenario in Figure 1—a defense would filter out the
poisoned data Dp and leave Dsan close to the clean data Dc, so that the defender learns

model parameters ✓̂ that have low test error.
As stated in Section 2.1, the attacker’s goal is to pick poisoned points that mislead the

defender into choosing model parameters that incur high test error. Against a defender that
employs the data sanitization defense described above, we can formulate the attacker’s goal
as the following optimization problem:

maximize
Dp

L0-1(✓̂;Dtest) (3)

s.t. |Dp| = ✏|Dc|, (✏ fraction of poisoned points)

where � = B(Dc [Dp) (F� is fit on clean and poisoned data)

✓̂
def
= argmin

✓
L (✓; (Dc [Dp) \ F�) . (defender trains on remaining data)

The first constraint corresponds to the attacker only being able to add in an ✏ fraction
of poisoned points; the second constraint corresponds to the defender fitting the anomaly
detector on the entire training set Dc[Dp; and the final equality corresponds to the defender

learning model parameters ✓̂ that minimize training loss.
In this work, we consider 5 di↵erent data sanitization defenses, chosen to span a broad

range of approaches to data sanitization and anomaly detection. Each defense is parametrized
by di↵erent score functions s� and anomaly detector parameters � = B(D):

• The L2 defense removes points that are far from their class centroids in L2 distance:

�y = ED[x|y]
s�(x, y) = kx� �yk2

• The slab defense (Steinhardt et al., 2017) first projects points onto the line between
the class centroids, and then removes points that are too far from the class centroids:

�y = ED[x|y]

s�(x, y) =
���(�1 � ��1)

>(x� �y)
���

The idea behind this defense is that we only want to look at the relevant dimensions
in feature space to find outliers. The L2 defense treats all dimensions equally, whereas
the slab defense treats the vector between the class centroids as the only relevant
dimension.

• The loss defense discards points that are not well fit by a model trained (without any
data sanitization) on the full dataset D:

� = argmin
✓

ED[`✓(x, y)]

s�(x, y) = `�(x, y)

For a linear model, this is conceptually similar to the slab defense, except that the
relevant feature dimension is learned using the loss function instead of being fixed as
the direction between the class centroids.

7

§ Loss defense

- Estimate model parameters on

- Score points by loss / fit

- Somewhat similar to slab

- Anomaly w.r.t. parametric model – focuses on transformed feature space

Defense Strategies

Stronger Data Poisoning

Ideally—as in the hypothetical scenario in Figure 1—a defense would filter out the
poisoned data Dp and leave Dsan close to the clean data Dc, so that the defender learns

model parameters ✓̂ that have low test error.
As stated in Section 2.1, the attacker’s goal is to pick poisoned points that mislead the

defender into choosing model parameters that incur high test error. Against a defender that
employs the data sanitization defense described above, we can formulate the attacker’s goal
as the following optimization problem:

maximize
Dp

L0-1(✓̂;Dtest) (3)

s.t. |Dp| = ✏|Dc|, (✏ fraction of poisoned points)

where � = B(Dc [Dp) (F� is fit on clean and poisoned data)

✓̂
def
= argmin

✓
L (✓; (Dc [Dp) \ F�) . (defender trains on remaining data)

The first constraint corresponds to the attacker only being able to add in an ✏ fraction
of poisoned points; the second constraint corresponds to the defender fitting the anomaly
detector on the entire training set Dc[Dp; and the final equality corresponds to the defender

learning model parameters ✓̂ that minimize training loss.
In this work, we consider 5 di↵erent data sanitization defenses, chosen to span a broad

range of approaches to data sanitization and anomaly detection. Each defense is parametrized
by di↵erent score functions s� and anomaly detector parameters � = B(D):

• The L2 defense removes points that are far from their class centroids in L2 distance:

�y = ED[x|y]
s�(x, y) = kx� �yk2

• The slab defense (Steinhardt et al., 2017) first projects points onto the line between
the class centroids, and then removes points that are too far from the class centroids:

�y = ED[x|y]

s�(x, y) =
���(�1 � ��1)

>(x� �y)
���

The idea behind this defense is that we only want to look at the relevant dimensions
in feature space to find outliers. The L2 defense treats all dimensions equally, whereas
the slab defense treats the vector between the class centroids as the only relevant
dimension.

• The loss defense discards points that are not well fit by a model trained (without any
data sanitization) on the full dataset D:

� = argmin
✓

ED[`✓(x, y)]

s�(x, y) = `�(x, y)

For a linear model, this is conceptually similar to the slab defense, except that the
relevant feature dimension is learned using the loss function instead of being fixed as
the direction between the class centroids.

7

Stronger Data Poisoning

Ideally—as in the hypothetical scenario in Figure 1—a defense would filter out the
poisoned data Dp and leave Dsan close to the clean data Dc, so that the defender learns

model parameters ✓̂ that have low test error.
As stated in Section 2.1, the attacker’s goal is to pick poisoned points that mislead the

defender into choosing model parameters that incur high test error. Against a defender that
employs the data sanitization defense described above, we can formulate the attacker’s goal
as the following optimization problem:

maximize
Dp

L0-1(✓̂;Dtest) (3)

s.t. |Dp| = ✏|Dc|, (✏ fraction of poisoned points)

where � = B(Dc [Dp) (F� is fit on clean and poisoned data)

✓̂
def
= argmin

✓
L (✓; (Dc [Dp) \ F�) . (defender trains on remaining data)

The first constraint corresponds to the attacker only being able to add in an ✏ fraction
of poisoned points; the second constraint corresponds to the defender fitting the anomaly
detector on the entire training set Dc[Dp; and the final equality corresponds to the defender

learning model parameters ✓̂ that minimize training loss.
In this work, we consider 5 di↵erent data sanitization defenses, chosen to span a broad

range of approaches to data sanitization and anomaly detection. Each defense is parametrized
by di↵erent score functions s� and anomaly detector parameters � = B(D):

• The L2 defense removes points that are far from their class centroids in L2 distance:

�y = ED[x|y]
s�(x, y) = kx� �yk2

• The slab defense (Steinhardt et al., 2017) first projects points onto the line between
the class centroids, and then removes points that are too far from the class centroids:

�y = ED[x|y]

s�(x, y) =
���(�1 � ��1)

>(x� �y)
���

The idea behind this defense is that we only want to look at the relevant dimensions
in feature space to find outliers. The L2 defense treats all dimensions equally, whereas
the slab defense treats the vector between the class centroids as the only relevant
dimension.

• The loss defense discards points that are not well fit by a model trained (without any
data sanitization) on the full dataset D:

� = argmin
✓

ED[`✓(x, y)]

s�(x, y) = `�(x, y)

For a linear model, this is conceptually similar to the slab defense, except that the
relevant feature dimension is learned using the loss function instead of being fixed as
the direction between the class centroids.

7

§ SVD defense [Rubinstein’09]

- Assume that clea data lies in some low-rank subspace

- Poisoned data has high residual

- Given the data matrix X:

- Hyperparameter k : typically picked based on the eigenvalue spectrum; e.g. sum of squares
of larges eigenvalues -> e.g. reconstruct 95% of data

Defense Strategies
Koh, Steinhardt, and Liang

• The SVD defense assumes that the clean data lies in some low-rank subspace, and that
poisoned data therefore will have a large component out of this subspace (Rubinstein
et al., 2009). Let X be the data matrix, with the i-th row containing xi, the features
of the i-th training point. Then:

� = Matrix of top k right singular vectors of X

s�(x, y) = k(I � ��
>)xk2

In our experiments, we choose the smallest k such that the normalized Frobenius
approximation error (i.e., the normalized sum of the squared singular values) is 0.05.

• The k-NN defense removes points that are far from their k nearest neighbors.

� = Dc [Dp

s�(x, y) = Distance to k-th nearest neighbor in �

In our experiments, we set k = 5.

Note that � is sometimes a simple set of summary statistics of the dataset (e.g., in the
L2 and slab defenses), while at other times � can be the entire dataset (e.g., in the k-NN
defense). We will handle these two types of defenses separately, as we discuss in Section 3.

Automated defenses. We are interested in settings where the volume of data is too large
for humans to manually inspect. We therefore consider automated defense systems that
rely on the above statistical rules for anomaly detection. Note that this means that a valid
poisoned point, under our framework, could still look anomalous to a human expert (e.g.,
a poisoned point with a bag-of-words feature representation might not correspond to any
grammatical sentence), though it will obey basic input constraints (e.g., having an integer
number of words).

Attack evaluation. The attacker’s goal is to increase test error regardless of which defense
is deployed against it. To evaluate an attack, we run each of the above defenses separately
against it. For an attack Dp to be considered successful, it needs to significantly increase
test error against all of the defenses.

Attack budget and defense threshold. We assume that the attacker has limited control
over the training data: in our experiments, we allow the attacker to only add up to ✏ = 3%
poisoned data, and we set ⌧ to remove p = 5% of the training data from each class.

2.3 Datasets and input constraints

In our experiments, we use 4 datasets for our binary classification tests: the MNIST-1-7
(LeCun et al., 1998) and Dogfish (Koh and Liang, 2017) image datasets, and the Enron
spam detection (Metsis et al., 2006) and IMDB sentiment classification datasets (Maas et al.,
2011). These are the 4 datasets considered in Steinhardt et al. (2017), which also studied
data poisoning. Summaries of each dataset are given in Table 1, including the number of
training points n, the dimension of each point d, and the base accuracy of an SVM trained
only on the clean data. Each dataset has its own characteristics and input constraints:

8

§ K-NN
- Remove points that are far away from k nearest neighbor

- E.g. k = 5

Defense Strategies

Koh, Steinhardt, and Liang

• The SVD defense assumes that the clean data lies in some low-rank subspace, and that
poisoned data therefore will have a large component out of this subspace (Rubinstein
et al., 2009). Let X be the data matrix, with the i-th row containing xi, the features
of the i-th training point. Then:

� = Matrix of top k right singular vectors of X

s�(x, y) = k(I � ��
>)xk2

In our experiments, we choose the smallest k such that the normalized Frobenius
approximation error (i.e., the normalized sum of the squared singular values) is 0.05.

• The k-NN defense removes points that are far from their k nearest neighbors.

� = Dc [Dp

s�(x, y) = Distance to k-th nearest neighbor in �

In our experiments, we set k = 5.

Note that � is sometimes a simple set of summary statistics of the dataset (e.g., in the
L2 and slab defenses), while at other times � can be the entire dataset (e.g., in the k-NN
defense). We will handle these two types of defenses separately, as we discuss in Section 3.

Automated defenses. We are interested in settings where the volume of data is too large
for humans to manually inspect. We therefore consider automated defense systems that
rely on the above statistical rules for anomaly detection. Note that this means that a valid
poisoned point, under our framework, could still look anomalous to a human expert (e.g.,
a poisoned point with a bag-of-words feature representation might not correspond to any
grammatical sentence), though it will obey basic input constraints (e.g., having an integer
number of words).

Attack evaluation. The attacker’s goal is to increase test error regardless of which defense
is deployed against it. To evaluate an attack, we run each of the above defenses separately
against it. For an attack Dp to be considered successful, it needs to significantly increase
test error against all of the defenses.

Attack budget and defense threshold. We assume that the attacker has limited control
over the training data: in our experiments, we allow the attacker to only add up to ✏ = 3%
poisoned data, and we set ⌧ to remove p = 5% of the training data from each class.

2.3 Datasets and input constraints

In our experiments, we use 4 datasets for our binary classification tests: the MNIST-1-7
(LeCun et al., 1998) and Dogfish (Koh and Liang, 2017) image datasets, and the Enron
spam detection (Metsis et al., 2006) and IMDB sentiment classification datasets (Maas et al.,
2011). These are the 4 datasets considered in Steinhardt et al. (2017), which also studied
data poisoning. Summaries of each dataset are given in Table 1, including the number of
training points n, the dimension of each point d, and the base accuracy of an SVM trained
only on the clean data. Each dataset has its own characteristics and input constraints:

8

Clean Label Poisoning

§ Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
Tom Goldstein

§ NeurIPS 2018

Poison Frogs! Targeted Clean-Label Poisoning
Attacks on Neural Networks

[Slides based lecture by Bo Li]

§ Data Poisoning Attacks

- Happens at training time

- Manipulate performance of system through constructed poison instances

§ Generally requires some degree of control over labeling function for data

§ Indiscriminate attack

- Degrade test accuracy

§ Targeted Attack
- Aim to control behavior on specific test instance(s)

Background

§ Choose a target instance from the test set
§ Sample a base instance from the base class and

construct a poison
§ Poison is injected into the training data
§ Poison is cleanly labeled by labeling party
§ Model is retrained on poisoned dataset
§ Success if target is classified as being in the

base class
- Example: malware as benign software

§ Deployment:
- Place poisoned images on web
- Wait for being crawled
- A bit like fake news L

Clean Label Attack

benign

§ First term – gets the poison instance (p) to move toward the target instance in feature space

§ Second term – tries to make p to appear like a base class to a human

§ Training on data + poison can cause the decision boundary to rotate to include the target +
poison in the base class

§ This allows for a “backdoor” into the base class

Crafting Poison Data via Feature Collisions

benign spam

Optimization Procedure

• Described by Goldstein et al. in 2014
• Forward step is gradient descent update to minimize distance from poison

to the target instance in feature space
• Backward step is proximal update that minimizes the distance from the

poison to base instance in input space
• Beta is tuned to make poison instance look realistic

§ Transfer learning scenario

§ Pretrained CNN is used as feature extraction network

§ All weights are frozen, but the last layer (SoftMax) is retrained to adapt the network to a
specific task

§ Add one poison instance to cause misclassification of the target

§ Showed 100% success rate across 1099 trials

- High success rate due to more weights (2048) than examples (1801) causing overfitting on
training data

§ Original accuracy on test set is hardly affected

- 0.2% average drop in accuracy

“One-shot kill attack”

§ Poisoning attack with correctly labeled training data

§ Poisons aim to collide with target in feature space causing the network to incorrectly separate
them

§ Similar to adversarial training

§ Does not degrade the performance for non-targeted examples

§ Creates a method for creating backdoor in neural net

§ More complicated and not as effective if whole architecture is trained (and not only fine
tuned)

Conclusions

Membership Inference Attacks

Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. "Membership inference attacks against machine learning models." In Security and
Privacy (SP), 2017 IEEE Symposium on, pp. 3-18. IEEE, 2017.

Salem, Ahmed, Yang Zhang, Mathias Humbert, Mario Fritz, and Michael Backes. "ML-Leaks: Model and Data Independent Membership Inference Attacks
and Defenses on Machine Learning Models." NDSS 2019

How About ML Privacy?

Privacy:
Does an ML model trained on privacy-sensitive data
leak information of the data?

Forensics:
Can I tell which data was used?

ML Routine

ML model

Get some data Train the model

0
20
40
60
80

100

cat dog panda

Membership Inference

ML model

0
20
40
60
80

100

cat dog panda

§ Why membership matters?

- A cliché example: a ML model for medical diagnosis, if a person is in the training set, then
she has the corresponding disease

- Security implications, IP implications

Membership Inference

Threat Model

Target
ML Model

0
20
40
60
80

100

cat dog panda

Attack by Shokri et al.

Target
Model

Shadow
Models

Original
Dataset

Dataset

Train

Test

0
20
40
60
80

100

cat dog panda

0
10
20
30
40
50

cat dog panda

Attack
Models

In or not in

Same Distribution

0
20
40
60
80

100

cat dog panda

Multiple Attack Models

Multiple Shadow Models

§ One shadow model

§ One attack model

§ Same data distribution

New Attack 1

New Attack 1

§ Can we do better?

§ No assumption on the dataset

§ Data transferring attack

§ Train shadow model on a different dataset, and attack on the target model

New Attack 2

Our Attack 2

Target
Model

Shadow
Model

Train

Test

0
20
40
60
80

100

0

15

30

45

60

Attack
Model

In or not in

Image
dataset

Text dataset

0
20
40
60
80

100

Our Attack 2

Precision Recall

Sounds Magic, Why?

§ Can we do better?

§ No shadow model
§ Take the maximum, std, or entropy of the posterior as the score

- The simplest attack

- Unsupervised

- Reason: overfitting

Attack 3

Attack 3

Attack 3 (Threshold Picking)

All Together

§ Dropout

§ Model Stacking

§ Differential Private Training

How To Defend the Attack?

Differential Privacy

§ Lecture based on Tutorial @ NIPS’17 :
Differentially Private Machine Learning: Theory, Algorithms, and Applications
Kamalika Chaudhuri, Dept. of Computer Science and Engineering, UC San Diego
Anand D. Sarwate, Dept. of Electrical and Computer Engineering, Rutgers University
https://www.ece.rutgers.edu/~asarwate/nips2017/

§ Deep Learning with Differential Privacy
Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li
Zhang
CCS 2016
https://arxiv.org/abs/1607.00133

Differential Privacy & Deep Learning

76

http://cseweb.ucsd.edu/~kamalika/
http://cse.ucsd.edu/
http://www.ucsd.edu/
http://www.ece.rutgers.edu/~asarwate/
http://www.ece.rutgers.edu/
http://www.rutgers.edu/
https://arxiv.org/search/stat?searchtype=author&query=Abadi,+M
https://arxiv.org/search/stat?searchtype=author&query=Chu,+A
https://arxiv.org/search/stat?searchtype=author&query=Goodfellow,+I
https://arxiv.org/search/stat?searchtype=author&query=McMahan,+H+B
https://arxiv.org/search/stat?searchtype=author&query=Mironov,+I
https://arxiv.org/search/stat?searchtype=author&query=Talwar,+K
https://arxiv.org/search/stat?searchtype=author&query=Zhang,+L

Defense Proposal: Differential Privacy

81

d d’

Adjacent datasets:

Defense Proposal: Differential Privacy

82

d d’

M M

r

r’

M differentially private

Defense Proposal: Differential Privacy

83

d d’

M M

r

r’

???!

Unable to decide which of d or d’ used

Differential Privacy: Definition

84

Randomized algorithm is - differentially
private if for any two adjacent datasets and any subset of the outputs

Differential Privacy: Definition

85

Randomized algorithm is - differentially
private if for any two adjacent datasets and any subset of the outputs

Privacy budget/cost: smaller more privacy

Differential Privacy: Definition

86

Randomized algorithm is - differentially
private if for any two adjacent datasets and any subset of the outputs

Privacy budget/cost: smaller more privacy

Perturbation of M,

How to Construct this DP Algo?

87

Sensitivity of function:

f(d) f(d’)

at most this much difference

histogram

How to Construct this DP Algo?

88

Sensitivity of function:

f(d) f(d’)

at most this much difference
1

-1

How to Construct this DP Algo?

89

Sensitivity of function:

How to Construct this DP Algo?

90

Gaussian Mechanism

sensitivity
M(d)

How to Construct this DP Algo?

91

Gaussian Mechanism

● Higher sensitivity more noise needed
● More noise smaller

How to Construct this DP Algo?

92

1) Determine sensitivity of the function
2) Add appropriate amount of noise

● If sensitivity is big add more noise
● More noise, better privacy

But there’s a catch:
● More noise destroys utility

93

Differential Privacy + Machine Learning

Defense for MI attack

Differentially Private Stochastic Gradient Descent (DPSGD)

94

M. Abadi et al. , “Deep Learning with Differential Privacy”

● White-box access
● All parameters protected

Differentially Private Stochastic Gradient Descent (DPSGD)

95

M. Abadi et al. , “Deep Learning with Differential Privacy”

Differentially Private Stochastic Gradient Descent (DPSGD)

96

M. Abadi et al. , “Deep Learning with Differential Privacy”

Bounds sensitivity

Differentially Private Stochastic Gradient Descent (DPSGD)

97

M. Abadi et al. , “Deep Learning with Differential Privacy”

98

99

§ Embrace the “Bright and the Dark Side” as a community

- let’s better understand and control privacy
- let’s better understand and control security

§ Do not leave this topic to companies (alone) !

- keep knowledge in the public domain

- develop algorithms and methods — also to pressure companies to adopt them

§ Responsibility in education
- educate students about both opportunities and potential dangers

- distinguish between “what can be done” and “what should be done” (Weizenbaum)

Final Words…

105

High Level Computer Vision:
Attacks on Computer Vision Models

Mario Fritz fritz@cispa.saarland

Bernt Schiele schiele@mpi-inf.mpg.de

17.7.2019

mailto:fritz@cispa.saarland
mailto:schiele@mpi-inf.mpg.de

