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= Landscape of attacks on Computer Vision Models

= Reverse Engineering and Model Stealing

— Watermarking

Adversarial Perturbations

— Data Poisoning

Membership Inference

— Differential Privacy



Privacy & Security in Machine Learning: Towards Trustworthy Al

 Widespread deployment of ML
e Future industry is fueled by data

e How to make
Machine Learning
privacy compliant and
secure?

e Membership Inference
 Data Poisoning

S. Oh; M. Augustin; B. Schiele; M. Fritz; Towards Reverse-Engineering Black-Box Neural Networks; ICLR’18
S. Oh; M. Fritz; B.Schiele; Adversarial Image Perturbation for Privacy Protection -- A Game Theory
Perspective ICCV’17

A. Salem; Y. Zhang; M. Humbert; M. Fritz; M. Backes; ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models NDSS’19
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Adversarial
Perturbations

K.Grosse, N. Papernot, P.Manoharan, M. Backes, P. D. McDaniel: Adversarial Examples for Malware
Detection. ESORICS’17

L. Hanzlik; Y, Zhang; K. Grosse; A. Salem; M. Augustin; M. Backes; M.Fritz; MLCapsule: Guarded Offline
Deployment of Machine Learning as a Service; ArXiv’'18

Tribhuvanesh Orekondy; Bernt Schiele; Mario Fritz; Knockoff Nets: Stealing Functionality of Black-
Box Models CVPR’19
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Watermarking of ML Models



_
Protecting Intellectual Property of Deep Neural Networks with Watermarking . "|ICISPA

A

= Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, lan Molloy
= ASIACCS’18



https://researcher.watson.ibm.com/researcher/view.php?person=us-zgu
https://researcher.watson.ibm.com/researcher/view.php?person=us-jjang
https://researcher.watson.ibm.com/researcher/view.php?person=us-wuhu
https://researcher.watson.ibm.com/researcher/view.php?person=us-mpstoeck
https://researcher.watson.ibm.com/researcher/view.php?person=us-hhuang
https://researcher.watson.ibm.com/researcher/view.php?person=us-molloyim

Motivation

Al / ML technology embeddeded into many systems

Building such models requires:
— Expertise

— Data

— Annotation

— Computation

Potential of copyright infringement / IP violations by
— lllegal reproduction
— Distributiuon

— Derivation

Actual legal situation a bit unclear:

— Law and Adversarial Machine Learning:
Ram Shankar Siva Kumar, David R. O'Brien, Kendra Albert, Salome Vilojen
https://arxiv.org/abs/1810.10731

\d HELMHOLTZ-ZENTRUM i.G.
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Idea

Watermark in Deep Learning

Allow for verifying the ownership

Special training that delivers characteristic
output for special examples

Needs to be robust / resilient to

Counter watermarking
Fine-tuning
Training

Model inversions
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Powerful
computing
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Plagiarism
Service



DNN Watermarking SICISPA
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DNN Watermarking SICISPA
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DNN Watermark generation

HELMHOLTZ-ZENTRUM i.G.
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= Meaningful content embedded in original training data

/ airplane

® |ndependent training data with unrelated classes as watermarks

= Pre-specified Noise as watermark

. airplane




DNN Watermarking SICISPA
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DNN watermark embedding

Algorithm 1 Watermark embedding

Input:
Training set Dyrqin = {Xi, Y,-}f=1
DNN key K={Ys, Y }(s # d)
Output:
DNN model: Fy
Watermark Pair: D,, 1,

1: function WATERMARK_EMBEDDING()

2 Dym < 0

3 Dimp < sample(D¢rain, Ys, percentage)

4 for each d € Dypp do

5 Xwm = ADD_WATERMARK (d[x], watermarks)
6 Ywm = Yd

7 Dywm = Dywm YU {Xwm> Ywm}

8: end for

9: end function
10: Fg = Train(Dwm,Dtrain)
11: return Fg, Dyym

\) HELMHOLTZ-ZENTRUM i.G.




DNN Watermarking SICISPA
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Ownership Verification Zunes | oo ) i

= Adversary might want to monetize model with online API

= Query with watermarked images

= |f it flips label as trained -> our model



Effectiveness

\d HELMHOLTZ-ZENTRUM i.G.

= Works on trained images (basically overfitting on training set)

= Even works on newly watermarked images (generalization of watermarks to test)

(a) MNIST
ACCUI‘&CY WMcontent WMunrelated WMnoise
Watermarks (trained) 100% 100% 100%
Watermarks (new) 100% 100% 99.42%

(b) CIFAR10

ACCU.I'aCY WMcontent WMunrelated WMnoise
Watermarks (trained) 99.93% 100% 99.86%
Watermarks (new) 98.6% 100% 94.1%




Side Effects

SICISPA

= Does including watermarked images effect train/val/test accuracies?

Accuracy
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(a) MNIST
CleanModel WMcontent WMynrelated WMnoise
99.28 % 99.46% 99.43% 99.41%
(b) CIFQR10
Cleal’lMOdel WMcontent WMunrelated WMnoise
78.6% 78.41% 78.12% 78.49%




R o b u St ness Table 3: Robustness for model pruning: accuracy of clean testing data and accuracy of watermarks (MNIST) :/ I‘:\\: & HIOL TZSZENTI:R)U ﬁ
Pruning rate . WMcontent - WMunrelated - WMnoise
Testing Acc. | Watermark Acc. | Testing Acc. | Watermark Acc. | Testing Acc. | Watermark Acc.
] Does the mOdE| 10% 99.44% 100% 99.43% 100% 99.4% 100%
20% 99.45% 100% 99.45% 100% 99.41% 100%
retrain the 30% 99.43% 100% 99.41% 100% 99.41% 100%

k. 40% 99.4% 100% 99.31% 100% 99.42% 100%
watermarking — 50% 99.29% 100% 99.19% 100% 99.41% 100%
desplte modlflcatlon 60% 99.27% 100% 99.24% 100% 99.3% 99.9%

70% 99.18% 100% 98.82% 100% 99.22% 99.9%
to model 80% 98.92% 100% 97.79% 100% 99.04% 99.9%
90% 97.03% 99.95% 93.55% 99.9% 95.19% 99.55%

= Pruning:

Remove small
weights in
model

" Fine-Tuning:

— Continue
training with
more examples

= High robustness

Table 4: Robustness for model pruning: accuracy of clean testing data and accuracy of watermarks (CIFAR10)

Pruning rate . WMecontent . WMynrelated . WMnoise
Testing Acc. | Watermark Acc. | Testing Acc. | Watermark Acc. | Testing Acc. | Watermark Acc.
10% 78.37% 99.93% 78.06% 100% 78.45% 99.86%
20% 78.42% 99.93% 78.08% 100% 78.5% 99.86%
30% 78.2% 99.93% 78.05% 100% 78.33% 99.93%
40% 78.24% 99.93% 77.78% 100% 78.31% 99.93%
50% 78.16% 99.93% 77.75% 100% 78.02% 99.8%
60% 77.87% 99.86% 77.44% 100% 77.87% 99.6%
70% 76.7% 99.86% 76.71% 100% 77.01% 98.46%
80% 74.59% 99.8% 74.57% 96.39% 73.09% 92.8%
90% 64.9% 99.47% 62.15% 10.93% 59.29% 65.13%

Table 5: Robustness for model fine-tuning: accuracy of clean testing data and accuracy of watermarks

Dataset WMeontent WMynrelated WMpoise

Testing Acc. | Watermark Acc. | Testing Acc. | Watermark Acc. | Testing Acc. | Watermark Acc.
MNIST 99.6% 99.95% 99.64% 100% 99.68% 99.85%
CIFAR10 77.55% 98.33% 76.75% 95.33% 78.43% 69.13%




Security

= Can watermark be recovered from
classifier?

= Attack using gradient based technique:
Fredrikson, Matt, Somesh Jha, and Thomas
Ristenpart. "Model inversion attacks that
exploit confidence information and basic
countermeasures." In Proceedings of the
22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1322-
1333. ACM, 2015.

= Does not see effective

SICISPA
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(@) WMcontent watermark (b) recover from image “1” (c) recover from blank image (d) recover from random noise

(g) recover from blank image (h) recover from random noise

5 x n

(i) WMp0ise watermark (j) recover from image “1” (k) recover from blank image (1) recover from random noise






Poisoning vs Evasion Attacks SICISPA
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Evasion Attack o Clean Data
(Adversarial Perturbation) Poisoning Attack Poisoning Attack

/
/

/
/
J
l

Inject data training set;

o Inject data and label into labeling is correct — can also
Manipulation of test data training set; often wrong be done by the victim

label



Attack Technique: Model Poisoning

Online systems sacrifice stationarity for adaptability

— System is re-train/adapted during deployment

Dependent on how much control users have on the
training input

Sometimes easy to detect rubbish

Boiling frog attacks: gradually inject poisoning data in
order to make it harder to detect

What is distribution drift that we want to adapt to?

What is adversarial data poisoning that we want to
robust to?

CISPA
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THEVERGE Ve - SCIENCE - COLTURE - CARS - REVIEWS . LONGFORM  VIDED  MORE

MICROSOFT L] TLOR

Twitter taught Microsoft's Al chatbot to be a racist
asshole in less than a day

@jv

:‘ TayTweets S ;‘- TayTweets 0.

can i just say thatim K pPooWithEyes chill

stoked to meet u? humans are super im a nice person! i just hate everybody
cool

;! TayTweets o k‘- TayTweets :

| fucking hate feminists ©! Hitler was right | hate
and they should all die and burnin hell the jews

gerry L

@geraldmellor

"Tay" went from "humans are super cool" to full nazi in <24 hrs
and I'm not at all concerned about the future of Al
O 10.7K 6:56 AM - Mar 24, 2016

O 12.4K people are talking about this >

21







-_________________________________________________________________________________________________________________________________
Motivation //|\\ SLMH!JLTZSZEI\EAA

Before attack After attack After sanitization

[Koh'18]

ML models are often trained on data from the "outside”

= Not in our control — or we depend on it because of scale or real-world scenario
= Adversary can inject data points in our training dataset

= Common defense: data sanatization



Assumptions ... CISPA

" Automated defense
— Too much data to do human inspection

— Also human is not a good baseline anyways

= Attacker evaluation

— Attacker wants to increase error no matter what defenses are deployed

= Attack budget and defense thresholds
— Attacker has limited control of the dataset

— Typical assumptions 3-5%
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Data Poisoning Zero Sum Game

AN

Binary Classification

fo: X = {-1,41} wxeX ye{-1+1} fo(z)=sign(0'z)

Misclassification

LO—l(H;Dtest) — ! Z I[f@(il?) 7é y]

Drest (,4) EDtost
Defender wants to estimate theta” to minimize the error

Attacker want to mislead Defender to maximize error Lo+ (9; Dtest)

Attacker picks en poisoned points D,

Trainset D=D.uD,

Adversarial ML deja-vu: Min-Max objective



Data Poisoning Zero Sum Game ... CISPA

AN

Attacker:

e Input: Clean training data D. and test data Dieg;.

e Output: Poisoned training data D,, with |Dp| = €|D.|.

e Goal: Mislead defender into learning parameters 0 with high test error Lo_l(é; Diest )
Defender:

e Input: Combined training data D = D, U D,,.

e Output: Model parameters 0.

e Goal: Learn model parameters 0 with low test error Lo_l(é;DteSt) by filtering out
poisoned points Dp,.

[Koh'18]



Data Sanatization Defenses s | neans s

Defender tries to remove suspicious points from D ="D:.UD,

* Train on remaining data

Idea: poisoned data that is similar to clean does not matter much

E.g. L2 defense:

— Find class centroids

— Throw away data that is far away from centroids



Data Sanatization . |CISPA

= More formally:
— Rate “anomaly of each data point”: “¢07¢ function sg : & X Y — R

— Parameterized by anomaly detector parameters

" E.g.in L2 defense

— Parameters are the centroids B = (L}Jm )
— Scoring function sp(w,y) = ||z — Byll2
= Defense:

_ Fit anomaly detector parameters = B(D)
— Construct feasible set Fgz = {(z,y) : (x,y) € X x Y with sz(z,y) < 7,} with threshold 7,

— Sanatized training data  Dgan = DN Fp

. . . o . ~ I~ e )\ 1
— Training: Minimize § over loss: @ = argmin L(0; Dean) & argmin §||9H§ + Do d (b z,y)
0 0 san
(,y)€Dsan
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Defense Strategies: ... CISPA

AN

= L2 defense rejects points far from the class centroids

By — ]ED[x‘y]
sg(r,y) = ||z — Byll2

= Slab defense [Steinhardt’17]
— Project on line between centroids

— Reject points according to distance
By — ED [£C|y]

sp(z,y) = |(B1 — B-1) ' (z — By)

— |dea: focus on more relevant dimension — not all of them as in L2
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Defense Strategies ... CISPA

AN

= Loss defense
D.U Dp

— Estimate model parameters on

— Score points by loss / fit

B = arg;nin Ep [69 (LU, y)]

sg(r,y) = Ls(z,y)

— Somewhat similar to slab

— Anomaly w.r.t. parametric model — focuses on transformed feature space
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Defense Strategies ... CISPA

AN

= SVD defense [Rubinstein’09]
— Assume that clea data lies in some low-rank subspace
— Poisoned data has high residual

— Given the data matrix X:

B = Matrix of top k right singular vectors of X
sp(w,y) = (I - 88" )z

— Hyperparameter k : typically picked based on the eigenvalue spectrum; e.g. sum of squares
of larges eigenvalues -> e.g. reconstruct 95% of data



Defense Strategies . [|ICISPA

= K-NN

— Remove points that are far away from k nearest neighbor

8="D,UD,
sg(z,y) = Distance to k-th nearest neighbor in 3

- E.g. k=5
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Clean Label Poisoning
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Poison Frogs! Targeted Clean-Label Poisoning " IC1ISPA

Attacks on Neural Networks

= Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
Tom Goldstein

= NeurlPS 2018

[Slides based lecture by Bo Li]



Background s | st e

= Data Poisoning Attacks
— Happens at training time

— Manipulate performance of system through constructed poison instances

Generally requires some degree of control over labeling function for data
" |ndiscriminate attack

— Degrade test accuracy

Targeted Attack

— Aim to control behavior on specific test instance(s)



Clean Label Attack

= Choose a target instance from the test set

= Sample a base instance from the base class and
construct a poison

= Poison is injected into the training data
= Poison is cleanly labeled by labeling party
= Model is retrained on poisoned dataset

= Success if target is classified as being in the
base class

— Example: malware as benign software

= Deployment:
— Place poisoned images on web
— Wait for being crawled
— A bit like fake news ®

Training set

Input

e —

SPAM

Clean target Instances «

e

Clean base instances M
Poison base instance(s) M

Target Train

instance

B -

Label

‘spam”

*not spam’ benign

“not spam”

Prediction

"not spam”



Crafting Poison Data via Feature Collisions NS E > F A

p = argminy || f(x) — f(t)||5 + 8 [x — b5
M MM

Target Train
instance Prediction

A Test
_ DNN “not spam”
NG

First term — gets the poison instance (p) to move toward the target instance in feature space

Second term —tries to make p to appear like a base class to a human

Training on data + poison can cause the decision boundary to rotate to include the target +
poison in the base class

This allows for a “backdoor” into the base class



Optimization Procedure . |CISPA

Algorithm 1 Poisoning Example Generation

Input: target instance £, base instance b
Initialize x: zg < b
Define: L, (z) = [|f(x) — f(1)|]
for i = 1 to maxzlters do
Forward step: z; = z;—1 — AV, Ly(zi—1)
Backward step: x; = (z; + A\Bb) /(1 + BA)
end for

* Described by Goldstein et al.in 2014

* Forward step is gradient descent update to minimize distance from poison
to the target instance in feature space

* Backward step is proximal update that minimizes the distance from the
poison to base instance in input space

* Beta is tuned to make poison instance look realistic



Clean
target train

Feature space representation

Clean base
train data

Decision

boundaryw/
poison

Decision boundary
w/o poison
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_
“One-shot kill attack” ‘|CISPA
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" Transfer learning scenario
= Pretrained CNN is used as feature extraction network

= All weights are frozen, but the last layer (SoftMax) is retrained to adapt the network to a
specific task

* Add one poison instance to cause misclassification of the target
= Showed 100% success rate across 1099 trials

— High success rate due to more weights (2048) than examples (1801) causing overfitting on
training data

= QOriginal accuracy on test set is hardly affected

— 0.2% average drop in accuracy
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Rosultsoff 1099 expenments
3 clean poisoned
= {model model

:

0.000 0001 09 098 1.00
misclassification confidence



Conclusions T | o et

= Poisoning attack with correctly labeled training data

= Poisons aim to collide with target in feature space causing the network to incorrectly separate
them

= Similar to adversarial training
= Does not degrade the performance for non-targeted examples
= Creates a method for creating backdoor in neural net

" More complicated and not as effective if whole architecture is trained ( and not only fine
tuned)
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Membership Inference Attacks

Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. "Membership inference attacks against machine learning models." In Security and

Privacy (SP), 2017 IEEE Symposium on, pp. 3-18. IEEE, 2017.
Salem, Ahmed, Yang Zhang, Mathias Humbert, Mario Fritz, and Michael Backes. "ML-Leaks: Model and Data Independent Membership Inference Attacks

and Defenses on Machine Learning Models." NDSS 2019



How About ML Privacy? ... CISPA

Privacy:
Does an ML model trained on privacy-sensitive data
leak information of the data?

Forensics:
Can | tell which data was used?
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ML Routine

Get some data Train the model

ML model
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Membership Inference

ML model
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Membership Inference .. CISPA

= Why membership matters?

— A cliché example: a ML model for medical diagnosis, if a person is in the training set, then
she has the corresponding disease

— Security implications, IP implications



Threat Model SICISPA
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Attack by Shokri et al. . |ICISPA
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New Attack 1 . |CISPA

(T

= One shadow model
= One attack model

m Same data distribution
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New Attack 2 CISPA

Can we do better?

No assumption on the dataset

Data transferring attack

Train shadow model on a different dataset, and attack on the target model
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0:50) 0.86 0.93 0.87 0.67 0.75 0.92 0.77 0.79 0.81 0.85 0.86

5 0.88 0.69 0.75 0.91 0.77 0.79 0.80 0.84 0.89

Precision

&

£

KA\

0.50 0.50 0.52 0.83 0.50 0.50 0.69 0.50 0.47 0.50 0.57 0.73
0.50 0.82 0.89 0.84 0.54 0.53 0.92 0.59 0.66 0.69 0.76 0.82
0:50 0.75 0.95 0.82 0.72 0.52 0.88 0.57 0.62 0.64 0.73 0.83
0.50 0.75 0.95 0.87 0.78 0.52 0.86 0.56 0.61 0.64 0.73 0.82
0.50 0.68 0.91 0.75 0.86 0.51 0.82 0.54 0.57 0.60 0.66 0.75
0.49 0.84 0.55 0.52 0.51 0.53 0.92 0.53 0.51 0.54 0.79 0.62
0.50 0.76 0.95 0.83 0.74 0.52 0.86 0.57 0.62 0.65 0.74 0.84
0.50 0.82 0.86 0.80 0.54 0.53 0.90 0.59 0.66 0.60 0.73 0.71
0.50 0.84 0.80 0.76 0.55 0.53 0.92 0.59 0.66 0.68 0.76 0.85
0:50 0.83 0.88 0.83 0.83 0.53 0.92 0.59 0.66 0.69 0.78 0.83
0.50 0.81 0.92 0.85 0.57 0.53 0.91 0.59 0.65 0.69 0.78 0.85

5 0.85 0.61 0.53 0.90 0.58 0.64 0.67 0.77 0.86

Recall

RN/ Yy

.
Our Attack 2

CISPA
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Sounds Magic, Why? SICISPA
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Attack 3 . |CISPA

" Can we do better?

* No shadow model

= Take the maximum, std, or entropy of the posterior as the score
— The simplest attack
— Unsupervised

— Reason: overfitting



Attack 3
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Attack 3 (Threshold Picking) ., .|CISPA

B Random
B Non-member
B Member

Density
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How To Defend the Attack? . [|CISPA

HHHHHHHHHHHHHHHHHHHHH

= Dropout

= Model Stacking ' 8

N Oy
e Dropose
B Moo e L

= Differential Private Training 08
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-
Differential Privacy & Deep Learning CISPA

A

= |ecture based on Tutorial @ NIPS’17 :
Differentially Private Machine Learning: Theory, Algorithms, and Applications
Kamalika Chaudhuri, Dept. of Computer Science and Engineering, UC San Diego
Anand D. Sarwate, Dept. of Electrical and Computer Engineering, Rutgers University
https://www.ece.rutgers.edu/~asarwate/nips2017/

= Deep Learning with Differential Privacy
Martin Abadi, Andy Chu, lan Goodfellow, H. Brendan McMahan, llya Mironov, Kunal Talwar, Li
Zhang
CCS 2016
https://arxiv.org/abs/1607.00133

76


http://cseweb.ucsd.edu/~kamalika/
http://cse.ucsd.edu/
http://www.ucsd.edu/
http://www.ece.rutgers.edu/~asarwate/
http://www.ece.rutgers.edu/
http://www.rutgers.edu/
https://arxiv.org/search/stat?searchtype=author&query=Abadi,+M
https://arxiv.org/search/stat?searchtype=author&query=Chu,+A
https://arxiv.org/search/stat?searchtype=author&query=Goodfellow,+I
https://arxiv.org/search/stat?searchtype=author&query=McMahan,+H+B
https://arxiv.org/search/stat?searchtype=author&query=Mironov,+I
https://arxiv.org/search/stat?searchtype=author&query=Talwar,+K
https://arxiv.org/search/stat?searchtype=author&query=Zhang,+L

Motivating
Differential Privacy



Sensitive Data

Medical Records ’ %? Q\\

Search Logs GOUS[Q

Genetic Data



Simply anonymizing data is unsafe!

Statistics on small data sets is unsafe!

Privacy

Data Size Accuracy



Differential privacy in practice

6 C h rome Google: RAPPOR for

tracking statistics in

Chrome.
i(\/ Apple: various iPhone
usage statistics.
CUemr“idssag Census: 2020 US Census
2020 will use differential privacy.

mostly focused on count and average statistics



... CISPA
Defense Proposal: Differential Privacy

Adjacent datasets:

81



Defense Proposal: Differential Privacy

M differentially private

W/
“"|CISPA
-

30 | HELMHOLTZ-ZENTRUM i.G.
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... CISPA
Defense Proposal: Differential Privacy

??7?!

= | )

= I )

d d’ Unable to decide which of d or d’ used

83
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Differential Privacy: Definition

Randomized algorithm M:D—TR is (e,0) - differentially
private if for any two adjacent datasets and any subset of the outputs § ¢ R

Pr|M(d) € S| < ePr|[M(d") € S|+

84



Differential Privacy: Definition

%0\ | HELMHOLTZ-ZENTRUM i.G.

Randomized algorithm M : D — R is (e,0) - differentially
private if for any two adjacent datasets and any subset of the outputs § C R

Pr{M(d) € S] < ®Pr[M(d') € S

Privacy budget/cost: smaller ——more privacy

©

85



%0\ | HELMHOLTZ-ZENTRUM i.G.

Differential Privacy: Definition

Randomized algorithm M :D— R IS (¢,0) - differentially
private if for any two adjacent datasets and any subset of the outputs S C R

1
1911,

Perturbation of M, 0 o

Pr[M(d) € S] < e®Pr[M(d') € S] +0)

Privacy budget/cost: smaller ——more privacy

86
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How to Construct this DP Algo?

Sensitivity of function:

at most this much difference

histogram I

f(d) fld’)

87



%4> | HELMHOLTZ-ZENTRUM i.G.

How to Construct this DP Algo?

Sensitivity of function:

/_‘% at most this much difference
T 2T
w

sin(zy + xo+. .. +x,) sin(zy + xo+...+Tp + Tpy1)

f(d) fld’)

88
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How to Construct this DP Algo?

Sensitivity of function:

A(f) — ma'Xd,d' adjacent Hf(d) o f(d,) H



%4> | HELMHOLTZ-ZENTRUM i.G.

How to Construct this DP Algo?

Q Gaussian Mechanism
M(d) = f(d) + N(0,07)

- o> L [2n(X2)A(f)
| ~
f(d) N sensitivity

M(d)

90
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How to Construct this DP Algo?

;; Gaussian Mechanism
M(d) = f(d) + N(0,07)

1 1.25
e Higher sensitivity w==s more noise needed o2 € \/2ln( ) )A(f)
e More noise == smaller €

91



%4> | HELMHOLTZ-ZENTRUM i.G.

How to Construct this DP Algo?

1) Determine sensitivity of the function
2) Add appropriate amount of noise

o |If sensitivity is big add more noise
e More noise, better privacy

But there’s a catch:
e More noise destroys utility

92
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Differential Privacy + Machine Learning

Q Defense for Ml attack

93
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Differentially Private Stochastic Gradient Descent (DPSGD)

M. Abadi et al. , “Deep Learning with Differential Privacy”

Oudput

AR
b
v

N

“
X\ D5

770 ¢ ¢
:‘i

¢
X1
)/

e White-box access
e All parameters protected

/Vois‘e A/ofs'e /Vo:'s‘e

94
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Differentially Private Stochastic Gradient Descent (DPSGD)

M. Abadi et al. , “Deep Learning with Differential Privacy”

Algorithm 1 Differentially private SGD
Input: Examples {z;..... xy}, loss function £(0) = L3, L(0,x;). Parameters: learning
rate 7, noise scale o, gr oup size L, gradient norm bound C.
Initialize 0, randomly
for t € [T]
Take a random sample L, with sampling probability L/N
Compute gradient
For each i € L;, compute g;(x;) < Vg, L(0;, ;)
Clip gradient
& (x;) g (x;)/ max(1, 18zl
Add n01se
1(Xi8i(x:) + N(0,(0)%))
Descent
011 < O — 184
Output 0, and overall privacy cost (¢, 0)

95
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Differentially Private Stochastic Gradient Descent (DPSGD)

M. Abadi et al. , “Deep Learning with Differential Privacy”

Algorithm 1 Differentially private SGD
Input: Examples {z;..... xN}, loss function L£(6 Z . Parameters: learning
rate 7, noise scale o, group size L, gradient norm bOllI d C.
Initialize 0, randomly
for t € [T]
Take a random sample L, with sampling probability L/N
Compute gradient
For each 7 € L;. compute g, (x;) <~ Vg L(0;, ;)
Clip gradient o
&,(z;) « g (z;)/ max(1, ||g, z; II) msssssmm)  Bounds sensitivity

Add n01se
1 (X 8elw:) + N(0, (0)%))
Descent
01 < 0 — m8;
Output 6, and overall privacy cost (€,d)

96
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Differentially Private Stochastic Gradient Descent (DPSGD)

M. Abadi et al. , “Deep Learning with Differential Privacy”

Algorithm 1 Differentially private SGD
Input: Examples {z;..... xN}, loss function £(0) = Z . Parameters: learning
rate 7, noise scale o, group size L, gradient norm bom d C.

Initialize 0, randomly
for t € [T]
Take a random sample L, with sampling probability L/N
Compute gradient
For each i € L;, compute g;(x;) < Vg, L(0;, ;)
Chp gradient
T;) — gi(x;)/ max(1, lige ()l

dd nmse
F(3 &) + N (0, (0)%))

01 < 0 — m8;
Output 0, and overall privacy cost (¢, 0)

97
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DPSGD, CIFAR100
; —— LRN adversary, DPSGD () 0.001
0.75 A —— LRN-Free adversary, DPSGD () 0.005
® LRN adversary, base classifier 0.01
* LRN adversary, base classifier+dropout 0.05
0.70 - ® LRN-Free adversary, base classifier 0.1
* LRN-Free adversary, base classifier+dropout 0.5
ideal defense 1.0
0.65 - N © 0.0005
O
2
<
0.60 A
0.55 -
N
0.50 A \

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Accuracy 98
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DPSGD, Purchasel00
0.60 A
O
LRN adversary, DPSGD () 0.001
0 —— LRN-Free adversary, DPSGD () 0.005
0.58 - ® LRN adversary, base classifier 0.01
' * LRN adversary, base classifier+dropout 0.05
® LRN-Free adversary, base classifier 0.1
* LRN-Free adversary, base classifier+dropout 0.5
0.56 - ideal defense 1.0
© 0.0005
O
2 T
0.54 -
0.52 -
m .‘/’—\\
0_50 - — . ~—
1 1 1 1 1
0.0 0.2 0.4 0.6 0.8

Accuracy 99



Privacy in ERM: options

private
database

D

I
| sanitized

i

DP

preprocessing

| dataset

pp——

non-
private
learning

(€,9)

privacy
barrier

l

Winput




Local Privacy
ﬂ > input | >

- perturbation |

|
> input i
. perturbation I

> input |
. perturbation | ’ X
| sanitized non-
= input |, database ———| private —>
@&~ perturbation || algorithm

~ perturbation

|
> input e
|
I
>
|

» input
. perturbation

privacy
(¢, 6) barrier

* Local privacy: data contributors sanitize data before collection.
+ Classical technique: randomized response [WW65].

+ Interactive variant can be minimax optimal [DJW13].



Input Perturbation

@— l
|
o — .
|
|
. =P private | sanitized
database DP | dataset non-
— ' - private
‘ — preprocessing : learning
- |
D T
- |
I A
60— | Winput
e |

privacy
barrier

* Input perturbation: add noise to the input data.

« Advantages: easy to implement, results in reusable

sanitized data set.
[DJWI13,FTSI17]



Output Perturbation

f—

private
database

D

—

non-private
preprocessing

'

non-private
optimization

e

noise addition
or

randomization

(€,9)

« Compute the minimizer and add noise.

+ Does not require re-engineering baseline algorithms

privacy
barrier

Noise depends on the sensitivity of the argmin.

— > Woutput

[CMSI1,RBHTI2]



Objective Perturbation

private
database

D

non-private
preprocessing

:

DP
optimization

(€,9)

I
I
I
I
I
I
I
I
'
I
I
I
I
I
I
I

privacy
barrier

> Wobjective



Final Words... N CISPA

" Embrace the “Bright and the Dark Side” as a community
— let’s better understand and control privacy

— let’s better understand and control security

= Do not leave this topic to companies (alone) !

— keep knowledge in the public domain

— develop algorithms and methods — also to pressure companies to adopt them

= Responsibility in education
— educate students about both opportunities and potential dangers

— distinguish between “what can be done” and “what should be done” (Weizenbaum)
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