l l I I I max planck institut
informatik

High Level Computer Vision

Exercise 2 | SS 2019

29/04/2019 - Rakshith Shetty

Exercise 2 -- Implement and train neural networks

e Implement a feed-forward neural network to perform image classification
e You will train this network using backpropagation.
e Derive and implement the algorithm.

e Train the network using
o Stochastic gradient descent.

e Implement the same model using PyTorch

Neural networks are function approximators

e Universal function approximators
o Networks with at least one hidden layer can approximate any function*

e Previously - Feature extract + Classifier

e Now — Let the neural network learn this from scratch.

Network architecture

S
o
input: image x !
e . t model output: fy(z) = a®
m
' O
X
a®) =g 23) = W@a@ 4 p2

22 — g 4 pD)

Function fitting- convex optimization

e Need a loss function to measure the task.
Descending with step coefficient 0.005 (iteration 50)

30
H - 2%
e Smooth convex loss-functions are great! ol AEEE
10} Start (2.5.3.7)

e We will use stochastic gradient descent

to optimize our function approximation of

10 ¢

e Compute gradients w.r.t to the loss and il
change the parameters in the direction of - | e
steepest descent o234 5 B 78

Gif from https://hackernoon.com/life-is-qradient-descent-880c60ac1be8

https://hackernoon.com/life-is-gradient-descent-880c60ac1be8

Loss function - Cross Entropy loss

Log Loss when true label = 1

e Cross entropy loss 10 —
8l
K
J(u) = (—yxlogu — (1 — yi) log(1 — ui)) 6|
k=1

log loss

e Measures the conditional entropy
between predicted label and
the true label. ol

do dZ d4 dﬁ dS
. . . predicted probability
e Lower loss implies predicted and true

labels are close to each other.

Side-note — Differentiability

If fis smooth and g is smooth, then g o fis also smooth.

“Smooth”:

« differentiable, twice differentiable, ..., infinitely differentiable
(C).

 continuously differentiable (C*), twice continuously
differentiable (C?), ..., infinitely differentiable (C*).

Our neural network is C=.

Slide credit - Seong Joon Oh

Backpropagation

e How do you change the weights to optimize the loss?
o Since we use gradient descent, we compute the gradient of the loss function w.r.t each weight.

e Simply apply chain rule to compute the gradients.

% il RM _ RN
g: R 3 RM
(fog) (@] _ i of:(y) dg; ()
83:’“ r=u j=1 8y3 y=g(u) axk r=u

Slide credit - Seong Joon Oh

Example

3
F) =Y v
f:R¥ >R B
g:R? 5 R? 5

Slide credit - Seong Joon Oh

Example, continued

of(y) _
dy;

Slide credit - Seong Joon Oh

Example, continued

9g;(x) _
833k

2
8 Z :
—— Wiqd
J9"y

ailfk =1

(quxq)

M 10
Slo

Q

(2w;qTq0kq)

Q
|
[

ijkxk

Slide credit - Seong Joon Oh

Example, continued

d(fog)(x)| Z af (y)

(‘hk

= = Oy

Slide credit - Seong Joon Oh

Numerical Gradients

e Wiggle the parameters and compute gradients numerically

~ ~

0J _J(0+¢€ep) — J(0 —ceyp)

8—6’,) (6) 2€

e Can do this for all parameters in the network.

e Too slow for practical use in training but great for verifying backpropagation
equations.

Batch gradient descent

e Once you have the gradients you can update the parameters.

V< —OzV()j(Q(t—l));

0<t)/<_ H(t_l)N

-ve sign to decrease the loss Averaged over all training samples

e (Guaranteed to converge to local minima.
e \ery slow since parameters are updated once for each pass on the data.
e Large memory consumption on large datasets.

Stochastic Gradient descent

e Compute the gradients for every
sample and update instantly. '

e Fast and low memory consumption.

e Can be noisy.

e But noise is good! Can again avoid
getting stuck in local minima. '

e Better generalization properties™®

Visualization from htips://wikidocs.net/3413

https://wikidocs.net/3413

Understanding and debugging training dynamics

2.3

2.2

nnnnnnnn

Loss history

2.1

2.0 1

1.9 1

Stochastic
"~ descent

200

400 600

o . Iteration "
Classification accuracy history

800

1000

10

15 2.0 2.5
Epoch

On the CIFAR-10 dataset

3.0

35

4.0

Hyper-parameter tuning

e Underfitting — Increase model capacity, decrease regularization
e Overfitting — Decrease model capacity, increase regularization
e Slow learning — increase learning rate, check initialization for saturation

e Unstable learning — decrease learning rate

l l I I I max planck institut
informatik

PyTorch - Quick Introduction

Rakshith Shetty - 29/04/2019

Some slides borrowed from:
http://dl.ee.cuhk.edu.hk/slides/tutorial-pytorch.pdf

What is it?

Tensors and Dynamic neural networks in Python
with strong GPU acceleration.

PyTorch is a deep learning framework that puts Python first.
ntures.
facebook % Snvibia

——— Digital
—— Reasoning

an early-release Beta. Expect some ac

We are in a

SO Carnegie

Parislech Mielion (RS
S s, University s

‘v!;i
Stanford S

University o lrrzia—

OXFORD NYU

ﬂlﬁés

What is it?

e Alibrary that allows tensor based computation (like matlab/ numpy)
Easily run on GPU or CPU.

Do automatic differentiation! Very useful for backpropagation

One of the fastest (maybe caffe is a bit faster)

Several library functions which allows you to quickly

O O O O

A graph is created on the fly “

e What's different to other platforms?

o Dynamic computational graphs
x = Variable(torch.randn(l, 10))

e Very useful when dea“ng with prev_h = Variable (torch.randn (1, 20))
W_h = Variable(torch.randn (20, 20))

W_x = Variable(torch.randn (20, 10))

from torch.autograd import Variable

recurrent networks or other wacky
architectures

Basics

import numpy as np

import torch

3000

np.random.rand(d, d).astype(np.float

np.random.rand(d, d).astype(np.float32)
A.dot(B)

torch.r
torch.r

torch.mm

Auto-differentiate

import torch

from torch.autograd import Variable

X = Variable(torch.range(1, 5), requires_grad=True)

print(x.data)

x.dot(x)
-int(f.data)

f.backward()

print(x.grad)

Auto-differentiate

import torch

from torch.autograd import Variable

X = Variable(torch.range(1, 5), requires_grad=True)

print(x.data)

x.dot(x)
-int(f.data)

f.backward()

print(x.grad)

Components

Package Description

torch a Tensor library like NumPy, with strong GPU support

torch.autograd a tape based automatic differentiation library that supports all differentiable Tensor operations in torch

torch.nn a neural networks library deeply integrated with autograd designed for maximum flexibility

torch.optim an optimization package to be used with torch.nn with standard optimization methods such as SGD, RMSProp, LBFGS, Adam etc.
torch.multiprocessing python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and hogwild training.

torch.utils DataLoader, Trainer and other utility functions for convenience

rt torch.utils.data

rt torch.nn nn
from torch.autograd import Variable
f torch import tensor

rt numpy np

sifier(nn.Module):

T 747(self, params) :
al I Ip e O e super (MLP_classifier, self)._ init_ ()
self.output_size = params. get(num_output_

self.hid_dims

params.get('hic dths', [1) I
self.inp_si:e -

params.get('p

prev_size = self.inp_size

self_hid _dims.append(self_output_size)

self.lin_layers = nn.ModuleList()

self.non_linearities = nn.ModuleList()

self.dropouts = nn.ModuleList()

i E len(self.hid_dims)):

Create LayerS self.lin_layers.append(nn.Linear(prev_size, self.hid_dims[i]))
self.non_linearities.append(nn.RelLU())
self.dropouts.append(nn.Dropout (p=params.get('drop_prob',0.25)))
prev_size = self.hid dims[i]

self.softmax = nn.LogSoftmax()
self.init_weights()

self.cuda()

init_weights(self):

Initialize weights « a = 0.01
] 1f.hid_dims)):

xrange se
f.lin_layers[i].weight.data.uniform_(-a, a)
f.lin_layers[i].bias.data.fill_(0)

d(self, x, compute_softmax = Yie
x = Variable(x).cudal()
prev_out = x

i xr len(self.hid_dims)-1):
prev_out = self.dropouts[i](prev_out)
prev_out = self.non_linearities[i](self.lin_layers[i](prev_out))

Do forward Computatlons < prev_out = self.dropouts[-1](prev_out)

prev_out = self.lin_layers[-1](prev_out)

compute_softmax:
prob_out = self.softmax(prev_out)

prob_out = prev_out

prev_out

Useful resources

e Official documentation
o http://pytorch.org/docs/

e Tutorials
o http://pytorch.org/tutorials/
o https://github.com/pytorch/tutorials
o http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html (Useful)

e Example projects
o https://github.com/pytorch/examples

http://pytorch.org/docs/
http://pytorch.org/tutorials/
https://github.com/pytorch/tutorials
http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://github.com/pytorch/examples

Submission

Next week, Friday midnight (10/05/2018 23:59)
Send to rshetty@mpi-inf.mpg.de

One zip file per team

Do not send the dataset

Solutions next tutorial

Questions?

mailto:rshetty@mpi-inf.mpg.de

