
High Level Computer Vision

 Exercise 2 | SS 2019

29/04/2019 - Rakshith Shetty

Exercise 2 -- Implement and train neural networks
● Implement a feed-forward neural network to perform image classification

● You will train this network using backpropagation.

● Derive and implement the algorithm.

● Train the network using
○ Stochastic gradient descent.

● Implement the same model using PyTorch

Neural networks are function approximators
● Universal function approximators

○ Networks with at least one hidden layer can approximate any function*

● Previously - Feature extract + Classifier

● Now → Let the neural network learn this from scratch.

Network architecture

Function fitting- convex optimization
● Need a loss function to measure the task.

● Smooth convex loss-functions are great!

● We will use stochastic gradient descent
to optimize our function approximation

● Compute gradients w.r.t to the loss and
change the parameters in the direction of
steepest descent

Gif from https://hackernoon.com/life-is-gradient-descent-880c60ac1be8

https://hackernoon.com/life-is-gradient-descent-880c60ac1be8

Loss function - Cross Entropy loss
● Cross entropy loss

● Measures the conditional entropy
between predicted label and
the true label.

● Lower loss implies predicted and true
labels are close to each other.

Side-note → Differentiability

Slide credit - Seong Joon Oh

Backpropagation
● How do you change the weights to optimize the loss?

○ Since we use gradient descent, we compute the gradient of the loss function w.r.t each weight.

● Simply apply chain rule to compute the gradients.

Slide credit - Seong Joon Oh

Slide credit - Seong Joon Oh

Slide credit - Seong Joon Oh

Slide credit - Seong Joon Oh

Slide credit - Seong Joon Oh

Numerical Gradients
● Wiggle the parameters and compute gradients numerically

● Can do this for all parameters in the network.

● Too slow for practical use in training but great for verifying backpropagation
equations.

Batch gradient descent
● Once you have the gradients you can update the parameters.

● Guaranteed to converge to local minima.
● Very slow since parameters are updated once for each pass on the data.
● Large memory consumption on large datasets.

-ve sign to decrease the loss Averaged over all training samples

Stochastic Gradient descent
● Compute the gradients for every

sample and update instantly.

● Fast and low memory consumption.

● Can be noisy.

● But noise is good! Can again avoid
getting stuck in local minima.

● Better generalization properties*
Visualization from https://wikidocs.net/3413

https://wikidocs.net/3413

Understanding and debugging training dynamics

Stochastic
descent

On the toy dataset

On the CIFAR-10 dataset

Hyper-parameter tuning
● Underfitting → Increase model capacity, decrease regularization

● Overfitting → Decrease model capacity, increase regularization

● Slow learning → increase learning rate, check initialization for saturation

● Unstable learning → decrease learning rate

PyTorch - Quick Introduction

Rakshith Shetty - 29/04/2019

Some slides borrowed from:
http://dl.ee.cuhk.edu.hk/slides/tutorial-pytorch.pdf

What is it?

What is it?

● A library that allows tensor based computation (like matlab/ numpy)
○ Easily run on GPU or CPU.

○ Do automatic differentiation! Very useful for backpropagation

○ One of the fastest (maybe caffe is a bit faster)

○ Several library functions which allows you to quickly

● What’s different to other platforms?
○ Dynamic computational graphs

○ Very useful when dealing with

recurrent networks or other wacky

architectures

Basics

Auto-differentiate

Auto-differentiate

Components

Sample Code

Create Layers

Initialize weights

Do forward computations

Useful resources

● Official documentation
○ http://pytorch.org/docs/

● Tutorials
○ http://pytorch.org/tutorials/

○ https://github.com/pytorch/tutorials

○ http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html (Useful)

● Example projects
○ https://github.com/pytorch/examples

http://pytorch.org/docs/
http://pytorch.org/tutorials/
https://github.com/pytorch/tutorials
http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://github.com/pytorch/examples

Submission
● Next week, Friday midnight (10/05/2018 23:59)
● Send to rshetty@mpi-inf.mpg.de
● One zip file per team
● Do not send the dataset
● Solutions next tutorial

Questions?

;t

mailto:rshetty@mpi-inf.mpg.de

