
High-Level Computer Vision
Summer Semester 2019

Prof. Bernt Schiele, Dr. Mario Fritz
<{schiele,mfritz}@mpi-inf.mpg.de>

Rakshith Shetty, Yang He
<{rshetty, yang}@mpi-inf-mpg.de>

Exercise 3: Convolutional Networks

In exercise 3, you will implement a convolutional neural network to perform image classification and explore
methods to improve the training performance and generalization of these networks.

We will use the CIFAR-10 dataset as a benchmark for out networks similar to the previous exercise. This dataset
consists of 50000 training images of 32x32 resolution with 10 object classes, namely airplanes, cars, birds, cats,
deer, dogs, frogs, horses, ships, and trucks. The task is to implement convolutional network to classify these
images using the PyTorch library. The four questions are

• Implementing the convnet, train it and visualizing its weights(Question 1).

• Experiment with batch normalization and early stopping (Question 2).

• Data augmentation and dropout to improve generalization (Question 3).

• Implement transfer learning from a ImageNet pretrained model. (Question 4)

Please untar the handed out ex3.tar.gz. Questions 1-3 are based on the script ex3 convnet.py and question
4 is based on the script ex3 pretrained.py. To download the CIFAR-10 dataset please execute the script
datasets/get datasets.sh.

Question 1: Implement Convolutional Network (10 points)

In this question we will implement a five-layered convolutional neural network architecture as well as the loss
function to train it. Starting from the main file ex3 convnet.py. Refer to the comments in the code to the exact
places where you need to fill in the code.

Figure 1: Figure depicting the convolutional neural networks.

a) Our architecture is shown in Fig 1. It has five convolution blocks. Each block is consist of convolution,
max pooling and ReLU operation in that order. We will use 3×3 kernels in all convolutional layers. Set the
padding and stride of the convolutional layers so that they maintain the spatial dimensions. Max pooling
operations are done with 2×2 kernels, with a stride of 2, thereby halving the spatial resolution each time.
Finally, five stacking these five blocks leads to a 512 × 1 × 1 feature map. Classification is achieved by a
fully connected layer. We will train convolutional neural networks on CIFAR-10 dataset. Implement a class
ConvNet to define the model described. The ConvNet takes 32×32 color images as inputs and has 5 hidden
layers with 128, 512, 512, 512, 512 filters, and produces 10-class classification. The code to train the model
is already provided. Train the above model and report the training and validation accuracies. (5 points)

b) Implement a function PrintModelSize, which calculates and prints the number of parameters of a neural
network. PrintModelSize takes a model as input, and returns the parameters of a model. This gives us a
measure of model capacity. Report the number of parameters for the described model. (2 points)

1



c) Implement a function VisualizeFilter, which visualizes the filters of the first convolution layer imple-
mented in Q1.a. In other words, you need to show 128 filters with size 3 × 3 as color images (since each
filter has 3 input channels). Stack these into 3x3 color images into one large image. You can use the imshow
function from the matplotlib library to visualize the weights. See an example in figure 2 Compare the filters
before and after training. Do you see any patterns ? (3 points)

Figure 2: Example visualization of trained filters in the first conv layers.

Question 2: Improve training of Convolutional Networks (10 points)

a) Batch normalization is a widely used operation in neural networks, which will increase the speed of con-
vergence, as well as reach higher performance. Read the paper “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift” for more theoretical details.

In practise, this operation are implemented in most popular toolbox, such as PyTorch, TensorFlow. Add
batch normalization in the model of Q1.a. Please keep other hyperparameters same, but only adding batch
normalization. The ConvNet with batch normalization still uses the same class with Q1.a, but different
arguments. Check the code for details. In each block, the computations are in the order of convolution,
batch normalization, pooling, ReLU. Compare the loss curves and accuracy using batch normalization to
its counterpart in Q1.a.

b) Early stopping is a method to alleviate overfitting. Instead of reporting the performance of final model,
early stopping also saves the best model on the validation set during training. Increase the training epochs
to 50 in Q1.a and Q2.a, and compare the best model and latest model on the training set. Due to the
randomness, you can train multiple times to verify and observe overfitting and early stopping.

Question 3: Improve generalization of Convolutional Networks (10 points)

We saw in q2 that the model can start over-fitting to the training set, if we continue training for long. To prevent
over-fitting, there are two main paradigms we can focus one. First is to get more training data. This might be
difficult and expensive process involving significant, however is generally the most effective way to learn more
general models. A cheaper alternative is to perform data augmentaation Second approach is to regularize the
model. In the following sub-questions we will experiment with each of these paradigms and measure the effect
on the model generalization

a) Data augmentation is the process of creating more training data by applying certain transformations to the
training set images. Usually the underlying assumption is that the label of the image does not change under
the applied transformations. This includes geometric transformations like translation, rotation, scaling,
flipping, random cropping and color transforamtions like greyscale, colorjitter. For every image in the
training batch, a random transformation is sampled from the possible ones (for eg. random number of
pixels to translate the image by) and is applied onto the image. While designing the data input pipeline,
we must choose the hyper-parameters for these transformations (for eg. limits of translation or rotation)
based on things we expect to see in the test-set/real world. Your task in this question is to implement the
data augmentation for the CIFAR-10 classification task.

Many of these transformations are implemented in the torchvision.transforms package. Familiarize your-
self with the apis of these transforms, and functions to compose multiple transforms or randomly sample
them. Next, implement geometric and color space data-augmentations for the CIFAR-10 dataset, by choos-
ing the right functions and order of application. Tune the hyper-parameters of these data-augmentations

2



to improve the validation performance. You will need to train the model a bit longer (20-30 epochs) with
data augmentation, as the training data is effectively larger now. Discuss which augmentations work well
for you in the report. (6 points)

b) Dropout is a popular scheme to regularize the model to improve generalization. Dropout layer works by
setting the input activations randomly to zero at the output. You can implement Dropout by adding the
torch.nn.Dropout layer between the conv blocks in your model. The layer has a single hyper-parameteres
p, which is the probability of dropping the input activations. High values of p regularize the model heavily
and decrease model capacity, but with low values, the model might overfit. Find the right hyper-parameter
for p by training the model for different values of p and comparaing training validation and validation
accuracies. You can use the same parameter p for all layers. You can also disable the data-augmentation
from previous step while running this experiment, to clearly see the benefit of dropout. Show the plot of
training and validation accuracies for different values of dropout (0.1 - 0.9) in the report. (4 points)

Question 4: Use pretrained networks (10 points)

It has become standard practice in computer vision tasks related to images, to use a convolutional network
pre-trained as the backbone feature extraction network and train new layers on top for the target task. In this
question we will implement such a model. We will use the VGG 11 bn network from the torchvision.models

library as our backbone network. This model has been trained on ImageNet achieving top-5 error rate of 10.19%.
It consists of 8 convolutional layers followed by adaptive average pooling and fully-connected layers to perform
the classification. We will get rid of the averate pooling and fully-connected layers from the VGG 11 bn model
and attach our own fully connected layers to perform the Cifar-10 classifcation.

a) Instantiate a pretrained version of the VGG 11 bn model with ImageNet pre-trained weights. Add two fully
connected layers on top, with Batch Norm and ReLU layers in between them to build the CIFAR-10 10-class
classifier. Note that you will need to set the correct mean and variance in the data-loader, to match the mean
and varaince the data was normalized with when the VGG 11 bn was trained. Train only the newly added
layers while disabling gradients for rest of the network. Each parameter in PyTorch has a requires grad
flag, which can be turned off to disable gradient computation for it. Get familiar with this gradient control
mechanism in PyTorch and train the above model. As a reference point you will see validation accuracies
in the range (61-65%) if implemented correctly. (6 points)

b) We can see that while the imagNet features are useful, just learning the new layers does not yield better
performance than training our own network from scratch. This is due to the domain-shift between the
ImageNet dataset (224x224 resolution images) and the CIFAR-10 dataset (32x32 images). To improve the
performance we can fine-tune the whole network on the CIFAR-10 dataset, starting from the ImageNet
initialization. To do this, enable gradient computation to the rest of the network, and update all the model
parameters. Additionally train a baseline model where the same entire network is trained from scratch,
without loading the ImageNet weights. Compare the two models training curves, validation and testing
performance in the report.

(4 points)

Please turn in your solution by sending an email to Rakshith Shetty<rshetty@ mpi-inf. mpg. de> including all
the relevant code and the report before Friday, May 24th, 23:59. in a single .zip or tar.gz file. Please do not
include the CIFAR-10 dataset in the submission

3


