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Computer Vision

• Lecturer:  
‣ Bernt Schiele (schiele@mpi-inf.mpg.de) 
‣ Mario Fritz (mfritz@mpi-inf.mpg.de) 

• Assistants: 
‣ Alina Dima (aldima@mpi-inf.mpg.de) 
‣ Seong Joon Oh (joon@mpi-inf.mpg.de) 
‣ Rakshith Shetty (rshetty@mpi-inf.mpg.de) 

• Language: 
‣ English 

• mailing list for  
announcements etc. 
‣ send email to Joon  

(see instructions on the web)
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Lecture & Exercise

• Officially: 2V (lecture) + 2Ü (exercise)  
‣ Lecture:  Wed: 2:15pm - 4pm  (room 024) 
‣ Exercise: Mon: :2:15pm - 4pm (room 024)  

• typically 1 exercise sheet every 1-2 weeks 
‣ part of the final grade 
‣ pencil and paper, as well as matlab-based exercise, 
‣ reading assignment (research papers, overview papers, etc.) 

• & larger project at end of lecture 
‣ we/you propose project, mentoring, final presentation 

• 1. exercise is matlab tutorial 

• Exam 
‣ oral exam 
‣ after the SS - there will be proposed dates



Bernt Schiele & Mario FritzHigh Level Computer Vision - April 19, 2o17

Grading

• 50% oral exam 
• 50% exercises 

• exercises 
‣ 2/3 regular exercises 
‣ 1/3 project
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Material

• For part of the lecture: http://szeliski.org/Book/ 
• available online

6



Bernt Schiele & Mario FritzHigh Level Computer Vision - April 19, 2o17

Material

• Additional background on deep learning: Deep Learning Book 
• available online deeplearningbook.org (in preparation)
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Why Study Computer Vision

• Science 
‣ Foundations of perception. How do WE see? 
‣ computer vision to explore “computational model of human vision” 

• Engineering 
‣ How do we build systems that perceive the world 
‣ computer vision to solve real-world problems  

(e.g. self-driving cars to detect pedestrians) 

• Applications 
‣ medical imaging (computer vision to support medical diagnosis, visualization) 
‣ surveillance (to follow/track people at the airport, train-station, ...) 
‣ entertainment (vision-based interfaces for games)  
‣ graphics (image-based rendering, vision to support realistic graphics) 
‣ car-industry (lane-keeping, pre-crash intervention, …) 
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Some Applications

• License Plate Recognition 
‣ London Congestion Charge 
‣ http://www.cclondon.com/ 

imagingandcameras.html 
‣ http://en.wikipedia.org/wiki/ 

London_congestion_charge 

• Surveillance 
‣ Face Recognition 
‣ Airport Security 

(People Tracking) 

• Medical Imaging 
‣ (Semi-)automatic segmentation 

and measurements 

• Robotics 
• Driver assistance
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More Applications

10

Microsoft
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Goals of today’s lecture

• First intuitions about 
‣ What is computer vision? 
‣ What does it mean to see and how do we (as humans) do it? 
‣ How can we make this computational? 

• Applications & Appetizers 

• 2 case studies: 
‣ Recovery of 3D structure 

• slides taken from Michael Black @ Brown University / MPI Intelligent Systems 

‣ Object Recognition 
• intuition from human vision...
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Applications & Appetizers

... work from our group
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Detection & Recognition of 
Visual Categories

13

Challenges: • multi-scale 
• multi-view 
• multi-class

• varying illumination 
• occlusion 
• cluttered background

• articulation 
• high intraclass variance 
• low interclass variance
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Challenges of Visual Categorization
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• high intra-class variation

• low inter-class variation 
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Sample Category: Motorbikes
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Basic Idea

16

I know 
where the Eiffel 

Tower is

global 

local 
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Large Scale Object Class Recognition

• Learning Shape Models from 3D CAD Data 
‣ 3D Computer Aided Design (CAD)  

Models for 
• computer graphics, game design 
• polygonal meshes + texture descriptions 
• semantic part annotations (may) exist 

‣ Learning Object Class Model directly from 3D CAD-data:

17

Michael Stark
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Video...
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Articulation Model

• Assume uniform position prior for the whole body 
• Learn the conditional relation between part position and body 

center from data:

20

p(L|a) = p(xo)
N�

i=1

p(xi|xo, a)

400 annotated training images
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Modeling Body Dynamics

• Visualization of the hierarchical Gaussian process  
latent variable model (hGPLVM)

21
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Our Subgraph Multicut Tracking Results

24
Dotted rectangles are interpolated tracks.

Detection 
Hypotheses

Tracklet 
Hypotheses

Hypotheses
Decomposition Final Tracks
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More Results

25

Decompositions 
(clusters)

Tracks

Dotted rectangles are interpolated tracks.
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More Results

26

Decompositions 
(clusters) Tracks

Dotted rectangles are interpolated tracks.

 y_{e_1} < z_{f} 
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Complete 3D Scene Modeling

• Goal: Infer consistent 3D world hypothesis from 2D image sequences 
with a moving monocular camera 
‣ Tracking 3D Scene Model 
‣ Integrate SoA object detectors, scene labeling 
‣ Efficiently leverage domain knowledge

27

[Wojek et.al.@eccv10]
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System sample video (pedestrians)

ETH-Loewenplatz	sequence: By courtesy 
of ETH Zürich [Ess et al., PAMI ’09]

28

[Wojek et.al.@eccv10]
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System sample video (vehicles)
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[Wojek et.al.@eccv10]
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Deep Neural Networks

• Same model as LeCun’98 — BUT 
‣ Bigger model (8 layers) 
‣ More data (106 vs 103 images) 
‣ GPU implementation (50x speedup over CPU) 
‣ Better regularization (DropOut) 

• resulting in: 
‣ 7 hidden layers, 650,000 neurons, 60,000,000 parameters 
‣ Trained on 2 GPUs for a week

30



Pe
rc

ep
tu

al
 a

nd
 S

en
so

ry
 A

ug
m

en
te

d 
Co

m
pu

ti
ng

  

Validation classification
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Try it out yourself

• Caffe ist an open implementation from the Berkeley Vision Group 
‣ http://caffe.berkeleyvision.org 
‣ http://demo.caffe.berkeleyvision.org

33
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AlexNet (2012)

5 convolutional layers

3 fully-connected layers
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AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)



How deep is enough? 15

AlexNet (2012)
VGG-M (2013)

VGG-VD-16 (2014)
GoogLeNet (2014)

ResNet 152 (2015)
ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton. 
ImageNet classification with deep convolutional 
neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. 
Reed, D. Anguelov, D. Erhan, V. Vanhoucke, 
and A. Rabinovich. Going deeper with 
convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep 
convolutional networks for large-scale image 
recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep 
residual learning for image recognition. In Proc. 
CVPR, 2016.
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Image Description

38
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Image Description
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Video Description

40

&RUUHFW�GHVFULSWLRQV� 5HOHYDQW�EXW�LQFRUUHFW�
GHVFULSWLRQV�

,UUHOHYDQW�GHVFULSWLRQV�

�D� �E� �F�
Figure 3. Qualitative results on MSVD YouTube dataset from our S2VT model (RGB on VGG net). (a) Correct descriptions involving
different objects and actions for several videos. (b) Relevant but incorrect descriptions. (c) Descriptions that are irrelevant to the event in
the video.

Figure 4. M-VAD Movie corpus: Representative frame from 6 contiguous clips from the movie “Big Mommas: Like Father, Like Son”.
From left: Temporal Attention (GoogleNet+3D-CNN) [43], S2VT (in blue) trained on the M-VAD dataset, and DVS: ground truth.
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Towards a Visual Turing Challenge

• 1449 RGB-D images (NYU depth dataset) 
• 12500 question-answer-pairs 
• Publicly available

41

QA: (what is beneath the candle holder,  
decorative plate)!
Some annotators use variations on spatial 
relations that are similar, e.g. ‘beneath’ is 
closely related to ‘below’.!!
QA: (what is in front of the wall divider?, 
cabinet) 
Annotators use additional properties to 
clarify object references  (i.e. wall divider). 
Moreover, the perspective plays an 
important role in these spatial relations 
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in 
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference 
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection 
of states ‘light on or off’ 

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations, 
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind 
the armchair?, guitar)!!
QA2: (what is in front of the curtain?, 
guitar)!!
Spatial relations matter more in complex 
environments where reference resolution 
becomes more relevant. In cluttered scenes, 
pragmatism starts playing a more important 
role

The annotators are using different names to 
call the same things. The names of the 
brown object near the bed include ‘night 
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of 
image, are severely occluded or truncated. 
Yet, the annotators refer to them in the 
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent 
on the reference frame. Here the annotator 
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense 
knowledge for amodal completion. Here the 
annotator infers the 8th drawer from the 
context

QA: (What is the object on the counter in 
the corner?, microwave)!
References like ‘corner’ are difficult to 
resolve given current computer vision 
models. Yet such scene features are 
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not 
well captured by current vision techniques. 
Annotators use such attributes frequently 
for disambiguation.!

QA: (What is the shape of the green 
chair?, horse shaped)!
In this example, an annotator refers to a 
“horse shaped chair” which requires a quite 
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of 
refrigerator)!
On some occasions, the annotators prefer to 
use more complex responses. With spatial 
relations, we can increase the answer’s 
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not 
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair. Last two
examples (bottom-right column) are from the extended dataset not used in our experiments.
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HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair 
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp 
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.
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Q: What is the object on the counter in the corner? 
A: micro wave

What is the color of the largest object in the scene? 
A: brownQA: (what is beneath the candle holder,  

decorative plate)!
Some annotators use variations on spatial 
relations that are similar, e.g. ‘beneath’ is 
closely related to ‘below’.!!
QA: (what is in front of the wall divider?, 
cabinet) 
Annotators use additional properties to 
clarify object references  (i.e. wall divider). 
Moreover, the perspective plays an 
important role in these spatial relations 
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in 
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference 
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection 
of states ‘light on or off’ 

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations, 
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind 
the armchair?, guitar)!!
QA2: (what is in front of the curtain?, 
guitar)!!
Spatial relations matter more in complex 
environments where reference resolution 
becomes more relevant. In cluttered scenes, 
pragmatism starts playing a more important 
role

The annotators are using different names to 
call the same things. The names of the 
brown object near the bed include ‘night 
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of 
image, are severely occluded or truncated. 
Yet, the annotators refer to them in the 
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent 
on the reference frame. Here the annotator 
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense 
knowledge for amodal completion. Here the 
annotator infers the 8th drawer from the 
context

QA: (What is the object on the counter in 
the corner?, microwave)!
References like ‘corner’ are difficult to 
resolve given current computer vision 
models. Yet such scene features are 
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not 
well captured by current vision techniques. 
Annotators use such attributes frequently 
for disambiguation.!

QA: (What is the shape of the green 
chair?, horse shaped)!
In this example, an annotator refers to a 
“horse shaped chair” which requires a quite 
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of 
refrigerator)!
On some occasions, the annotators prefer to 
use more complex responses. With spatial 
relations, we can increase the answer’s 
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not 
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair. Last two
examples (bottom-right column) are from the extended dataset not used in our experiments.
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HumanSeg Single with Neg. 3 37 56.0%
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Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
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Human Baseline 894 50.20% 50.82% 67.27%
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Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair 
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp 
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.
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Q:How many lights are on? 
A: 6
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Question Answering Results

42

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What is on the right side of the 
cabinet?
Vision + Language: 
Language Only:     

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.

What objects are found on the 
bed?
Vision + Language:   a                             
 
Language Only:          a             

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Neural-Image-QA: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 5. Correct answers by our “Neural-Image-QA” architecture.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Neural-Image-QA: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 6. Correct answers by our “Neural-Image-QA” architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Neural-Image-QA: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 7. Correct answers by our “Neural-Image-QA” architecture.

How many burner knobs are there?
Vision + Language: 4 
Language Only:      

bed
bed

doll, pillow

6
pillow
bed sheets,
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Basic Concepts and Terminology

Computer Vision vs. Computer Graphics
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Pinhole Camera (Model)

• (simple) standard and abstract model today 
‣ box with a small hole in it
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Camera Obscura

• around 1519, Leonardo da Vinci (1452 - 1519) 
‣ http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html

‣ “when images of 
illuminated objects … 
penetrate through a 
small hole into a very 
dark room … you will see 
[on the opposite wall] 
these objects in their 
proper form and color, 
reduced in size … in a 
reversed position owing 
to the intersection of the 
rays”
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Principle of pinhole....

• ...used by artists  
‣ (e.g. Vermeer  

17th century,  
dutch)  

• and scientists 
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Digital Images

• Imaging Process: 
‣ (pinhole) camera model 

‣ digitizer to obtain digital image
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(Grayscale) Image

• ‘Goals’ of Computer Vision 
‣ how can we recognize fruits  

from an array of (gray-scale)  
numbers? 

‣ how can we perceive depth  
from an array of (gray-scale)  
numbers? 

‣ …  

• computer vision =  
the problem of  
‘inverse graphics’ …?

• ‘Goals’ of Graphics 
‣ how can we generate an array of 

(gray-scale) numbers that looks like 
fruits? 

‣ how can we generate an array of 
(gray-scale) numbers so that the 
human observer perceives depth? 

‣ … 
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Visual Cues for Image Analysis

... in art and visual illusions
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1. Case Study: 
Human & Art - Recovery of 3D Structure
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1. Case Study: 
Human & Art - Recovery of 3D Structure
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1. Case Study: 
Human & Art - Recovery of 3D Structure
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1. Case Study 
Computer Vision - Recovery of 3D Structure

• take all the cues of artists and 
‘turn them around’ 
‣ exploit these cues to infer the 

structure of the world 
‣ need mathematical and 

computational models of these cues 

• sometimes called  
‘inverse graphics’
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A ‘trompe l’oeil’

• depth-perception 
‣ movement of ball stays the same 
‣ location/trace of shadow changes
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Another ‘trompe l’oeil’

• illusory motion 
‣ only shadows changes 
‣ square is stationary
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Color & Shading

59
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Color & Shading

60
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Do you still think you see the world?

63
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Do you still believe what you see?

• Experiment 
‣ carefully point flash light into your eye from one corner 
‣ don’t hurt yourself! 

• Observation 
‣ you’ll see your own blood vessels 
‣ they are actually in front of the retina 
‣ we’ve adapted to their usual shadow

64
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2. Case Study: 
Computer Vision & Object Recognition

• is it more than inverse 
graphics? 

• how do you recognize  
‣ the banana?  
‣ the glas?  
‣ the towel? 

• how can we make computers 
to do this? 

• ill posed problem: 
‣ missing data 
‣ ambiguities 
‣ multiple possible explanations
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Image Edges: 
What are edges? Where do they come from?

• Edges are changes in pixel brightness

66
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Image Edges: 
What are edges? Where do they come from?

• Edges are changes in pixel brightness 
‣ Foreground/Background Boundaries 
‣ Object-Object-Boundaries 
‣ Shadow Edges 
‣ Changes in Albedo or Texture 
‣ Changes in Surface Normals

67
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Line Drawings:  
Good Starting Point for Recognition?

68
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Complexity of Recognition
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Complexity of Recognition
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Complexity of Recognition
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Complexity of Recognition
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Recognition: the Role of Context

• Antonio Torralba
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Recognition: the role of Prior Expectation

• Guiseppe Arcimboldo
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Complexity of Recognition
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Complexity of Recognition
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One or Two Faces ?

77
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Class of Models: Pictorial Structure

• Fischler & Elschlager 1973 

• Model has two components 
‣ parts  

(2D image fragments) 
‣ structure  

(configuration of parts)
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Deformations



Bernt Schiele & Mario FritzHigh Level Computer Vision - April 19, 2o17 80

Clutter
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Example

81
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Recognition,  
Localization, and  
Segmentation

a few terms 

… let’s briefly define what we mean by that
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Object Recognition:  
First part of this Computer Vision class

• Different Types of Recognition Problems: 
‣ Object Identification 

• recognize your pencil, your dog, your car 

‣ Object Classification 
• recognize any pencil, any dog, any car 
• also called: generic object recognition, object categorization, … 

• Recognition and 
‣ Segmentation: separate pixels belonging to the foreground (object)  

and the background 
‣ Localization/Detection: position of the object in the scene, pose estimate  

(orientation, size/scale, 3D position)
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Object Recognition:  
First part of this Computer Vision class

• Different Types of Recognition Problems: 
‣ Object Identification 

• recognize your apple,  
your cup, your dog 

‣ Object Classification 
• recognize any apple,  

any cup, any dog 
• also called:  

generic object recognition,  
object categorization, … 

• typical definition:  
‘basic level category’
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Which Level is right for Object Classes?

• Basic-Level Categories 
‣ the highest level at which category members have similar perceived shape 
‣ the highest level at which a single mental image can reflect the entire category 
‣ the highest level at which a person uses similar motor actions to interact with 

category members 
‣ the level at which human subjects are usually fastest at identifying category 

members 
‣ the first level named and understood by children 

‣ (while the definition of basic-level categories depends on culture there exist a 
remarkable consistency across cultures...) 

• Most recent work in object recognition has focused on this problem  
‣ we will discuss several of the most successful methods in the lecture :-)

85
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Object Recognition:  
First part of this Computer Vision class

• Recognition and 
‣ Segmentation: separate pixels belonging to the foreground (object)  

and the background
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Object Recognition:  
First part of this Computer Vision class

• Recognition and 
‣ Localization: to position the object  

in the scene, estimate the object’s pose  
(orientation, size/scale, 3D position)  

‣ Example from David Lowe:
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Localization: Example Video 1
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Localization: Example Video 2

89
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Object Recognition:  
First part of this Computer Vision class

• Different Types of Recognition Problems: 
‣ Object Identification 

• recognize your pencil, your dog, your car 

‣ Object Classification 
• recognize any pencil, any dog, any car 
• also called: generic object recognition, object categorization, … 

• Recognition and 
‣ Segmentation: separate pixels belonging to the foreground (object)  

and the background 
‣ Localization: position the object in the scene, estimate pose of the object  

(orientation, size/scale, 3D position)
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Basic Filtering
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Computer Vision and Fundamental Components

• computer vision: ‘reverse’ the imaging process 
‣ 2D (2-dimensional) digital image processing 
‣ ‘pattern recognition’ / 3D image analysis 
‣ image understanding 
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Digital Image Processing

• Some Basics  
‣ (digital signal processing, FFT, …) 
‣ Image Filtering 

• (taken from a class by Bill Freeman @MIT) 

• Image Filtering 
‣ take some local image patch (e.g. 3x3 block) 
‣ image filtering: apply some function to local image patch
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Image Filtering

• Some Examples: 

‣ what assumptions are  
you making to infer the  
center value? 

• Goals of Image Filtering: 
‣ reduce noise 
‣ fill-in missing values/

information 
‣ extract image features 

(e.g.edges/corners) 
‣ ...

3 or 4
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Image Filtering

• simplest case: linear filtering: 
‣ replace each pixel by a linear combination of its neighbors 

• the prescription for the linear combination is called the  
‘convolution kernel’
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2D signals and convolution

• Components of ‘convolution’: 
‣ Image:   

• continuous:  I(x,y) 

• discrete: I[k,l] or Ik,l 

‣ filter ‘kernel’:  g[k,l] 
‣ ‘filtered’ image:  f[m,n] 

• 2D convolution (discrete): 

• special case: 
‣ convolution (discrete) of a 2D-image with a 1D-filter

f [m,n] = I ⇥ g =
�

k,l

I[m� k, n� l]g[k, l]

f [m,n] = I ⇥ g =
�

k

I[m� k, n]g[k]
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Linear Filtering (warm-up slide)

f [m,n] = I ⇥ g =
�

k

I[m� k, n]g[k]

I � g = f

=
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Linear Filtering (warm-up slide)

f [m,n] = I ⇥ g =
�

k

I[m� k, n]g[k]

I � g = f
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Linear Filtering

f [m,n] = I ⇥ g =
�

k

I[m� k, n]g[k]

I � g = f
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Linear Filtering

f [m,n] = I ⇥ g =
�

k

I[m� k, n]g[k]

I � g = f
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Linear Filtering

f [m,n] = I ⇥ g =
�

k

I[m� k, n]g[k]

I � g = f
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Blurring

f [m,n] = I ⇥ g =
�

k

I[m� k, n]g[k]

I � g
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Try it out in GIMP

• You can try out linear filter kernels in the free image manipulation 
tool GIMP - availble at gimp.org 

• open image 
• from the menu pick: 

‣ Filters 
• Generic 

– Convolution Matrix ... 

• enter filter kernel in “Matrix” 
• press “ok” to apply

103
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Blurring Examples
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Linear Filtering (warm-up slide)

f [m,n] = I ⇥ g1 � I ⇥ g2 = I ⇥ (g1 � g2)
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Linear Filtering (warm-up slide)

f [m,n] = I ⇥ g1 � I ⇥ g2 = I ⇥ (g1 � g2)
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Linear Filtering

f [m,n] = I ⇥ g1 � I ⇥ g2 = I ⇥ (g1 � g2)
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(remember blurring)
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Sharpening
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Sharpening Example

1.6̄

�0.3̄

10.6̄

�2.6̄



Bernt Schiele & Mario FritzHigh Level Computer Vision - April 19, 2o17 111

Sharpening


