Machine Learning
Dimensionality Reduction

Gerard Pons-Moll
Dimensionality Reduction: Construction of a mapping \(\phi : \mathcal{X} \rightarrow \mathbb{R}^m \), where the dimensionality \(m \) of the target space is usually much smaller than that of the input space \(\mathcal{X} \). Generally, the mapping should preserve properties of the input space \(\mathcal{X} \) e.g. distances.

Why should we do dimensionality reduction?

- **Manifold assumption:** The internal degrees of freedom are much smaller than the number of measured features \(\implies \text{data lies along a low-dimensional structure in feature space} \implies \text{we want to detect these “true parameters”}. \)

- **Visualization:** interpretation of data in high dimensions is difficult - embeddings in two or three dimensions can provide insight.

- **Data compression:** compress the data but retain most of the information.
Manifold-Assumption

- digits vary smoothly (but discretization as pixels),
- internal degrees of freedom are small compared to the number of features (= number of pixels).
Supervised dimensionality reduction:
- Linear discriminant analysis (LDA),

Unsupervised dimensionality reduction:
- Principal Components Analysis (PCA),
 (also called: Karhunen-Loeve-Transformation),
- Kernel PCA,
- Laplacian Eigenmaps,
- Independent Component Analysis (ICA).

Except the last all are eigenvalue problems!
PCA - Two points of view

- the principal k-components span the k-dimensional affine subspace which yields the best approximation of the data (Euclidean norm),
- the subspace spanned by the first k principal components contains “most” of the variance in the data.

PCA - a simple coordinate transformation

- translation - mean of data points becomes new origin,
- rotation - change of the initial ONB into a new ONB which is defined by the data.
PCA - Approximation point of view

Given: \(\{X_i\}_{i=1}^n \) in \(\mathbb{R}^d \), Goal: find a \(m \)-dimensional affine subspace \(U_m \), with

\[
U_m = c + V_m := c + \left\{ \sum_{j=1}^m \alpha_j u_j \mid \{u_j\}_{j=1}^m \text{ ONS} , \ c \in \mathbb{R}^d, \ \alpha_j \in \mathbb{R} \right\},
\]

which approximates the original data points optimally in the sense,

\[
\arg\min_{Z_i \in V_m, \ c \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \|Z_i + c - X_i\|_2^2.
\]

Orthogonal projection \(P \) onto the subspace \(V_m \): \(P = \sum_{j=1}^m u_ju_j^T \).

Lemma

An orthogonal projection matrix \(P : \mathbb{R}^d \rightarrow \mathbb{R}^d \) satisfies,

\[
P = P^T, \ \text{and} \ P^2 = P.
\]
Optimal offset \(c \)

Affine subspace: \(U_m = c + V_m \), (\(c \) can be seen as origin of \(U_m \)).

\[
\nabla_c \left(\sum_{i=1}^{n} \| Z_i + c - X_i \|^2 \right) = 2 \sum_{i=1}^{n} (Z_i - X_i) + 2nc \implies c = \frac{1}{n} \sum_{i=1}^{n} (X_i - Z_i).
\]

- \(c \) depends on \(Z_i \) - the origin of the subspace \(U_m \) can be changed without changing the approximation.
- fix degree of freedom by requiring that

\[
\sum_{i=1}^{n} Z_i = 0 \quad \text{and thus} \quad c = \frac{1}{n} \sum_{i=1}^{n} X_i.
\]

We center the original data points \(X_i \): \(\tilde{X}_i = X_i - \frac{1}{n} \sum_{j=1}^{n} X_j \).

New Objective:

\[
\sum_{i=1}^{n} \| Z_i + c - X_i \|^2 = \sum_{i=1}^{n} \| Z_i - \tilde{X}_i \|^2.
\]
\[\left\| Z_i - \tilde{X}_i \right\|_2^2 = \left\| Z_i - P\tilde{X}_i \right\|_2^2 + \left\| P\tilde{X}_i - \tilde{X}_i \right\|_2^2, \]

for the orthogonal projection \(P \) onto \(U_m \) \(\implies \) choose \(Z_i = P\tilde{X}_i \).

New transformed objective:

\[
\sum_{i=1}^{n} \left\| Z_i - \tilde{X}_i \right\|_2^2 = \sum_{i=1}^{n} \left\| (P - \mathbb{1})\tilde{X}_i \right\|_2^2 \\
= \sum_{i=1}^{n} \tilde{X}_i^T (\mathbb{1} - P)\tilde{X}_i \\
= \sum_{i=1}^{n} \tilde{X}_i^T \tilde{X}_i - \sum_{i=1}^{n} \tilde{X}_i^T P\tilde{X}_i \\
= \sum_{i=1}^{n} \tilde{X}_i^T \tilde{X}_i - \sum_{j=1}^{n} u_j^T \left(\sum_{i=1}^{n} \tilde{X}_i\tilde{X}_i^T \right) u_j
\]
Final objective:

\[\sum_{i=1}^{n} \left\| Z_i - \tilde{X}_i \right\|^2 = \sum_{i=1}^{n} \tilde{X}_i^T \tilde{X}_i - \sum_{j=1}^{m} u_j^T \left(\sum_{i=1}^{n} \tilde{X}_i \tilde{X}_i^T \right) u_j. \]

Define the symmetric, positive semi-definite matrix \(C \in \mathbb{R}^{d \times d} \) as,

\[C = \sum_{i=1}^{n} \tilde{X}_i \tilde{X}_i^T, \]

- objective is minimized by using the projection \(P \) onto the the \(m \) largest eigenvectors of \(C \)
- These eigenvectors are called the principal components of the data.
red directions: principal directions in the data
length of red line: $4\sqrt{\lambda}$, where λ is the eigenvalue of C.
Subspace containing most of the variance of a probability measure

One-dimensional subspace U_1 spanned by $u \Rightarrow$ variance of the data projected onto u is given as

$$\text{var}(u) = \mathbb{E}_X[\langle u, X - \mathbb{E}X \rangle^2] = \mathbb{E}_X \left[(\langle u, X \rangle - \langle u, \mathbb{E}X \rangle)^2 \right].$$

Rewrite $\text{var}(u)$ as

$$\text{var}(u) = \mathbb{E}_X[u^T(X - \mathbb{E}X)(X - \mathbb{E}X)^Tu] = \langle u, Cu \rangle,$$

where

$$C = \mathbb{E}_X(X - \mathbb{E}X)(X - \mathbb{E}X)^T,$$

is the covariance of P_X.

Subject to $\|u\|^2 = 1 \Rightarrow$ using Rayleigh-Ritz principle, $\text{var}(u)$ is maximized by the eigenvector of C corresponding to the largest eigenvalue.
Best m-dimensional subspace: m “largest” eigenvectors.

- the ev, $\{u_i\}_{i=1}^d$, of C determine an uncorrelated ONB,

$$\langle u_i, Cu_j \rangle = \lambda_i \delta_{ij}, \quad i, j = 1, \ldots, d.$$

- For Gaussian data: $p(x) = \frac{1}{(2\pi)^{d/2} |\det C|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)},$

we get in new coordinates z defined as,

$$z = C^{-\frac{1}{2}}(x - \mu) = \sum_{i=1}^d \frac{1}{\sqrt{\lambda_i}} u_i \, u_i^T (x - \mu),$$

components z_j which are independent and equally distributed,

$$p(z) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{\|z\|^2}{2}} = \prod_{j=1}^d \frac{1}{\sqrt{2\pi}} e^{-\frac{z_j^2}{2}}.$$

This process is called whitening.
PCA - Whitening

Whitening: PCA + rescaling.

\[z = C^{-\frac{1}{2}}(x - \mu). \]

Whitening are three concatenated operations:

- **centering** - equivalent to a translation in \(\mathbb{R}^d \),
- **projection onto (all) principal components** - equivalent to a change from the initial basis to the basis spanned by the eigenvectors of \(C \)
 \[\rightarrow \text{rotation}, \]
- **rescaling** - one rescales each axis by the square-root of the corresponding eigenvalue - thus one has unit variance in each direction.

In practice:

- pre-processing of data \(\Rightarrow \) resulting features are uncorrelated,
- Whitening “spheres” the data - eliminates differences in scaling.
Probability measure unknown only given i.i.d. sample \(\{X_i\}_{i=1}^n \)
\[\implies \text{use empirical covariance matrix,} \]
\[C = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T, \quad \text{with} \quad \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]
and use its eigenvalues and eigenvectors as principal components.

Further practical issues:

- never cut the spectrum where two eigenvalues are close,
- several people use the first \(k \)-principal components to define new coordinates for supervised problems e.g. classification. This is problematic since the class structure need not have anything to do with the principal components.

Supervised case: use LDA or other supervised extensions of PCA.
Kernel PCA

Non-linear extension of PCA:

- given: positive definite kernel $k : \mathcal{X} \rightarrow \mathcal{X} \rightarrow \mathbb{R}$,
- map data into the corresponding feature space (RKHS) \mathcal{H}_k,

$$\phi : \mathcal{X} \rightarrow \mathcal{H}_k, \quad x \rightarrow \phi(x).$$

- do PCA in \mathcal{H}_k (resp. subspace spanned by the data).
- principal components correspond to functions \mathcal{X}.

Questions:

- how to define eigenvectors in \mathcal{H}_k ?
- how many principal components are there ?
- what is a principal component in \mathcal{H}_k ?
PCA - Kernel PCA

Standard-PCA:

\[Cv = \lambda v, \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} \langle X_i, v \rangle X_i = \lambda v. \]

\[\Rightarrow \text{all eigenvectors lie in the span of the data points.} \]

Kernel-PCA: map \(\phi : \mathcal{X} \to \mathcal{H}_k \)

\[C = \frac{1}{n} \sum_{j=1}^{n} \phi(X_j)\phi(X_j)^T. \]

If \(\dim \mathcal{H}_k = \infty \) then \(C \) is a linear operator in \(\mathcal{H}_k \).

As in PCA we want to find the eigenvectors of \(C \),

\[Cv = \lambda v \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} \langle \phi(X_i), v \rangle_{\mathcal{H}_k} \phi(X_i) = \lambda v. \]

\[\Rightarrow \text{all eigenvectors lie in the span of the mapped data points.} \]
Kernel PCA - the essential

Kernel-PCA: \(Cv = \lambda v \quad \implies \quad \frac{1}{n} \sum_{i=1}^{n} \langle \phi(X_i), v \rangle_{\mathcal{H}_k} \phi(X_i) = \lambda v. \)

Equivalently, solve for all \(j = 1, \ldots, n, \)

\[
\frac{1}{n} \sum_{i=1}^{n} \langle \phi(X_i), v \rangle_{\mathcal{H}_k} \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{H}_k} = \lambda \langle v, \phi(X_j) \rangle_{\mathcal{H}_k}.
\]

Moreover, from the above derivation we know: \(v = \sum_{r=1}^{n} \alpha_r \phi(X_r), \)

\[
\frac{1}{n} \sum_{i,r=1}^{n} \alpha_r \langle \phi(X_i), \phi(X_r) \rangle_{\mathcal{H}_k} \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{H}_k} = \lambda \sum_{r=1}^{n} \alpha_r \langle \phi(X_r), \phi(X_j) \rangle_{\mathcal{H}_k}.
\]

This can be summarized using \(k(X_i, X_j) = \langle \phi(X_i) \phi(X_j) \rangle_{\mathcal{H}_k} \) as,

\[
K^T K \alpha = n \lambda K^T \alpha.
\]

This is (almost) equivalent to: \(K \alpha = n \lambda \alpha. \)

What is the difference of the two equations?
Kernel-PCA: solve eigen-problem: $K\alpha = n \lambda \alpha$.

- normalize eigenvectors $v^{(s)}$, $s = 1, \ldots, n$,

$$\langle v^{(s)}, v^{(s)} \rangle_{\mathcal{H}_k} = \sum_{i,j=1}^{n} \alpha_i^{(s)} \alpha_j^{(s)} K_{ij} = \lambda^{(s)} \sum_{i=1}^{n} \alpha_i^{(s)} \alpha_i^{(s)}.$$

- What are the principal components (functions)? Compute projection of mapped test point x on $v^{(s)}$,

$$\langle v^{(s)}, \phi(x) \rangle_{\mathcal{H}_k} = \sum_{i=1}^{n} \alpha_i^{(s)} \langle \phi(X_i), \phi(x) \rangle_{\mathcal{H}_k} = \sum_{i=1}^{n} \alpha_i^{(s)} k(X_i, x).$$

Standard PCA components are linear functions! Variation into the direction of the principal component.

- What requirement of PCA did we not integrate into the derivation of Kernel PCA?
Kernel PCA - Interpretation

Illustration: PCA versus Kernel-PCA

linear PCA

\[k(x, y) = (x \cdot y) \]

\[\mathbb{R}^2 \]

kernel PCA

e.g. \[k(x, y) = (x \cdot y)^d \]

\[\mathbb{R}^2 \]

\[\Phi \]

\[F \]
Balanced clusters: Higher principal components of Kernel-PCA
Disbalanced clusters: Higher principal components of Kernel-PCA
Kernel PCA - Denoising

Kernel-PCA for denoising of data

- PCA allows for reconstruction of the original image (just a basis transformation),
- for Kernel PCA this is not directly possible - need to find a pre-image for \(\sum_{i=1}^{n} \alpha_i \phi(x_i) \in \mathcal{H}_k \) in the original space \(\mathcal{X} \).

<table>
<thead>
<tr>
<th>Gaussian noise</th>
<th>‘speckle’ noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>orig. noisy</td>
<td>orig. noisy</td>
</tr>
<tr>
<td>0123456789</td>
<td>0123456789</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n = 1</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 1</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
</tbody>
</table>
Laplacian eigenmaps

The continuous Laplacian

$$\mathbb{R}^d, \quad \Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2}.$$

Why is it interesting?

- Laplacian is symmetric (self-adjoint),
- eigenfunctions, $\Delta f = \lambda f$, define an ONB of $L_2(\mathbb{R}^d)$.
- these eigenfunctions have nice properties
 - \mathbb{R}: Fourierbasis $\phi_{2k}(x) = \cos(x)$, $\phi_{2k+1}(x) = \sin(x)$,
 - sphere S^2: spherical harmonics.
 $$\implies$$ multi-scale decomposition of the data,
- Fourier-transform is the corresponding basis transformation.

Can we do the same for discrete data?
we would like to find the parameters underlying the data-generating process ⇒ parameterization of the data-manifold.

Idea: build graph - use graph Laplacian as surrogate of the continuous Laplacian.

⇒ eigenvectors generate multi-scale decomposition of the data.
Use the graph Laplacian

Three types of graph Laplacians:

unnormalized: \[
(\Delta^{(u)} f)(i) = d(i)f(i) - \sum_{j=1}^{n} w_{ij}f(j),
\]
\[
(\Delta^{(u)} f) = (D - W)f,
\]

random walk: \[
(\Delta^{(rw)} f)(i) = f(i) - \frac{1}{d(i)} \sum_{j=1}^{n} w_{ij}f(j),
\]
\[
(\Delta^{(rw)} f) = (\mathbb{1} - D^{-1}W)f,
\]

normalized: \[
(\Delta^{(n)} f)(i) = f(i) - \sum_{j=1}^{n} \frac{w_{ij}}{\sqrt{d_i d_j}}f(j),
\]
\[
(\Delta^{(n)} f) = (\mathbb{1} - D^{-1/2}WD^{-1/2})f.
\]
Laplacian Eigenmaps
Chooose the graph Laplacian: unnormalized, random walk and normalized.

- compute the graph Laplacian $n \times n$-matrix for n points,
- compute the first k eigenvectors $\{u_i\}_{i=1}^{k}$ (each eigenvector is normalized, $\|u_i\| = 1$, $i = 1, \ldots, k$),

Embedding $\phi : V \rightarrow \mathbb{R}^k$, of the n vertices into \mathbb{R}^k by $i \rightarrow z_i = (u_1(i), \ldots, u_k(i))$,

The embedding: $\phi : V \rightarrow \mathbb{R}^k$, $i \rightarrow \phi(i) = (u_1(i), \ldots, u_k(i))$ is the **Laplacian eigenmap**.

Relation to Kernel-PCA:
One can see Laplacian eigenmaps as Kernel PCA with a special data-dependent kernel (pseudo-inverse of the graph Laplacian).
compute eigenvectors of the Laplacian on the mesh,
can be used for denoising of meshes, varying of meshes etc.
• **Right:** artificial datasets of ones - two variations: line thickness and style variation (bottom line) - digits are of size 28×28 - 784 pixels,

• **Left:** sampling is done uniformly in the parameterization.
the original parameter set is equivalent to $[0, 1]^2$ and the examples A, B, C, D are the corners of $[0, 1]^2 \implies$ Laplacian eigenmap finds the parameterization.
Independent Component Analysis (ICA)

Motivation: cocktail party problem - blind source separation

- k different speakers (sources),

$$s_1(t), \ldots, s_k(t).$$

- d microphones (sensors),

$$x_1(t), \ldots, x_d(t).$$

Assumption: measured signal is linear superposition of sources.

Goal: having only the signal of the microphones, find the sources - determine A, where

$$x(t) = A s(t).$$

- A is called the **mixing matrix**.
Application scenarios

- sound (speech, music,...) signals,
- EEG signals,
- natural images (patches),
- financial data,
- ...

Independent Component Analysis (ICA)
ICA for EEG analysis

ICA - EEG Data

Machine Learning

Pons-Moll (Lecture 20, 09.01.2019)
ICA - Natural Images

ICA for natural images - 16 × 16 - patches

- ICA components for 16 × 16-patches of natural images,
- → one observes that independent components look like edge detectors.
Motivation for ICA

- speakers (sources) are independent of each other.

\[s_1(t), \ldots, s_k(t), \]

in the stochastic sense (source signals are independent random variables),

\[p_s(s_1(t), \ldots, s_k(t)) = \prod_{i=1}^{k} p_{s_i}(s_i(t)). \]

Find new representation such that components are maximally independent!

\[\Rightarrow \text{how can one optimize for independent components?} \]

\[\Rightarrow \textbf{for simplicity we assume } d = k \ \text{ (nr. sensors = nr. sources).} \]
What kind of independent components can we hope for?

- **non-Gaussian sources:** suppose that \(s(t) \in \mathbb{R}^k \) is Gaussian distributed \(\implies x = As \) is again Gaussian distributed,

\[
\mathbb{E}[xx^T] = \mathbb{E}[As s^T A^T] = A \mathbb{E}[s s^T] A^T = A I_k A^T = AA^T.
\]

Whitening yields independent components - but not necessarily \(s(t) \).

- **Sources can be identified only up to rescaling:**

\[
x(t) = As(t) = (AD^{-1})(Ds(t)),
\]

where \(D \) is a diagonal matrix - \(Ds(t) \) is also independent. W.l.o.g.,

\[
\mathbb{E}[s(t)s(t)^T] = I_k.
\]

- **Sources cannot be ordered:** Let \(P \) be a permutation matrix, then \(Ps(t) \) is independent, \(x(t) = As(t) = (AP^{-1})(Ps(t)) \).
Whitening as a pre-processing step for ICA

Whitening transforms the signal $x(t)$,

$$y(t) = W x(t) = W A s(t),$$

such it becomes **uncorrelated**,

$$1_k = \mathbb{E}[y(t)y(t)^T] = \mathbb{E}[W x(t)x(t)^T W^T] = W A \mathbb{E}[s s^t] A^T W^T = W A A^T W$$

\implies whitening simplifies the problem since the mixing matrix $W A$ for $y(t)$ is orthogonal.

New problem: find the **orthogonal mixing matrix** $B = W A$

$$y(t) = B s(t),$$

resp. B^T such that $B^T y(t) = B^T B s(t) = s(t)$ is maximally independent.
ICA - Steps

Steps for ICA:

- apply whitening to the data: \(y(t) = W x(t) \).
- find orthogonal de-mixing matrix \(B \) s.th. \(B y(t) \) is maximally independent.

Different criteria:

- maximize non-gaussianity of \(By(t) \),
- minimize mutual information \(I(\{By(t)\}_{i=1}^{k} By(t)) \) - mutual information is zero if and only if joint density of \(By(t) \) factorizes into the product of the marginal densities \(\Rightarrow \) \(By(t) \) is independent.

Problems:

- joint density of \(B y(t) \) hard to estimate \(\rightarrow \) problems with mutual inf.
- instead: minimize higher order correlations e.g. kurtosis

\[
\text{kurt}(y) = \mathbb{E}[y^4] - 3 \left(\mathbb{E}[y^2] \right)^2.
\]
ICA - Illustration for signals

Illustration of ICA for signal data
ICA - Illustration of ICA

- **Left:** Original sources - individual features are independent \(p(x_1, x_2) = p(x_1)p(x_2) \).
- **Middle:** Measured signal - directions of PCA (eigenvectors of covariance matrix) and directions of ICA (columns of estimated mixing matrix) are shown - note that the directions of ICA are **not** orthogonal,
- **Right:** Source signal estimated by ICA - coincides up to rescaling with the original signal.
Cocktail party demo.