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Dimensionality reduction

Dimensionality Reduction: Construction of a mapping ¢ : X — R,
where the dimensionality m of the target space is usually much smaller
than that of the input space X'. Generally, the mapping should preserve
properties of the input space X e.g. distances.

Why should we do dimensionality reduction ?

@ Manifold assumption: The internal degrees of freedom are much
smaller than the number of measured features = data lies along a
low-dimensional structure in feature space = we want to detect
these “true parameters”.

@ Visualization: interpretation of data in high dimensions is difficult -
embeddings in two or three dimensions can provide insight.

o Data compression: compress the data but retain most of the
information.
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Dimensionality reduction

Manifold-Assumption

e digits vary smoothly (but discretization as pixels),

@ internal degrees of freedom are small compared to the number of
features (= number of pixels).
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Dimensionality reduction

Supervised dimensionality reduction:

@ Linear discriminant analysis (LDA),

Unsupervised dimensionality reduction:

@ Principal Components Analysis (PCA),
(also called: Karhunen-Loeve-Transformation),

o Kernel PCA,
o Laplacian Eigenmaps,

e Independent Component Analysis (ICA).

Except the last all are eigenvalue problems !
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PCA

PCA - Two points of view

@ the principal k-components span the k-dimensional affine subspace
which yields the best approximation of the data (Euclidean norm),

@ the subspace spanned by the first k principal components contains
“most” of the variance in the data.

PCA - a simple coordinate transformation
@ translation - mean of data points becomes new origin,

@ rotation - change of the initial ONB into a new ONB which is defined
by the data.
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PCA - Approximation point of view

Given: {X;}7_; in RY, Goal: find a m-dimensional affine subspace Uy, with
m
Upn =c+ Vy = C—i—{ZOéjUj ‘ {uj}j'"zl ONS , ¢ ERd, Q;j ER},
j=1
which approximates the original data points optimally in the sense,

N
arg min —E ||Z,~+C—X,-H§.
Zi€Vpm, ceRd N

Orthogonal projection P onto the subspace V,,,;: P = Zj'll uj-ujT.

Lemma

An orthogonal projection matrix P : RY — RY satisfies,

P=P" and P*=P.
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PCA - Approximation Il

Optimal offset ¢
Affine subspace: Up, = ¢+ Vi, (¢ can be seen as origin of Up,).

n

n n 1
VC(ZIIZ,-Jrc—X,-H%) —23(Z - X) +2nc = c==3 (X~ Z).

: : n<
=1 =1 i=1

@ c depends on Z; - the origin of the subspace U, can be changed
without changing the approximation.
o fix degree of freedom by requiring that

. 1
Z = d thus = — X;.
; 0 andthus ¢ p Z
We center the original data points X;: )~<,- =X — % ZJ'-’ZI X;.

2
.

n n
New Objective: Z | Zi + ¢ — X,-Hg = Z HZ,- —X;
i=1 i=1
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PCA - Approximation Il

for the orthogonal projection P onto U,, = choose Z; = P)~<,-.

I

New transformed objective:

=3[~ v%
= Z)?,T(ﬂ —- P)X;
i=1
— i)?,T)?; — i)?;TP;(i
i=1 i=1
= Zn: )?,T)?,- — Zn: uJ-T ( Zn: ;(i;(iT> uj
i=1 j=1 i=1
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PCA - Approximation IV

Final objective:

Define the symmetric, positive semi-definite matrix C € R9%? as,
n
C=> XX,
i=1

@ objective is minimized by using the projection P onto the the m
largest eigenvectors of C

@ These eigenvectors are called the principal components of the data.
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PCA - lllustration

PCA - first two components PCA - first two components

@ red directions: principal directions in the data
o length of red line: 4y/\, where X is the eigenvalue of C.
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PCA - Variance |

Subspace containing most of the variance of a probability measure
One-dimensional subspace U; spanned by u = variance of the data
projected onto u is given as

var(u) = Ex[{u, X — EX)?] = Ex [( (u, X) — (u, Ex) )2]
Rewrite var(u) as
var(u) = Ex[u” (X — EX)(X —EX)Tu] = (u, Cu),

where
C =Ex(X —EX)(X —EX)T,

is the covariance of Py.

Subject to ||ul|> = 1 = using Rayleigh-Ritz principle, var(u) is maximized
by the eigenvector of C corresponding to the largest eigenvalue.
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PCA - Variance |l

Best m-dimensional subspace: m “largest” eigenvectors.
o the ev, {u,-}j-j:l, of C determine an uncorrelated ONB,
<ui7cuj>:)‘i5ija IaJ:]-avd
e For Gaussian data: p(x) = ée—%(x—#)%_l(x—#)’

d 1
(27)% | det C|2
we get in new coordinates z defined as,

I\)\!—l

d
1
z=C2(x—p Zﬁ T(x = p),

i=1

components z; which are independent and equally distributed,

d 2
1 z||? 1 i
p(z) = 7€ - _ H e 7.
(27)2 j=1

This process is called whitening.

Pons-Moll (Lecture 20, 09.01.2019) Machine Learning 12 / 40



PCA - Whitening

Whitening: PCA + rescaling.
z = C_%(x — ).
Whitening are three concatenated operations:

e centering - equivalent to a translation in RY,

e projection onto (all) principal components - equivalent to a

change from the initial basis to the basis spanned by the eigenvectors
of C
— rotation,

@ rescaling - one rescales each axis by the square-root of the
corresponding eigenvalue - thus one has unit variance in each
direction.

In practice:
@ pre-processing of data = resulting features are uncorrelated,

@ Whitening “spheres” the data - eliminates differences in scaling.
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PCA - In practice

Probability measure unknown only given i.i.d. sample {X;}7_;
= use empirical covariance matrix,
1< 1o
C==) (X, -X)(Xi—=X)T, ith X=>-) X
So06- X)X, i X=1y°

n “ .
=1 i=1

and use its eigenvalues and eigenvectors as principal components.

Further practical issues:
@ never cut the spectrum where two eigenvalues are close,

@ several people use the first k-principal components to define new
coordinates for supervised problems e.g. classification. This is
problematic since the class structure need not have anything to do
with the principal components.

Supervised case: use LDA or other supervised extensions of PCA.
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Kernel PCA

Non-linear extension of PCA:

@ given: positive definite kernel k: X - X — R,
@ map data into the corresponding feature space (RKHS) Hy,

¢ X — Hy, x = P(x).

do PCA in Hy (resp. subspace spanned by the data).

principal components correspond to functions X.

Questions:
@ how to define eigenvectors in Hy ?
@ how many principal components are there ?

@ what is a principal component in Hy ?
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PCA - Kernel PCA

Standard-PCA:

1 n
= - Xi7 Xi = .
Cv=J\v, = - ’El (Xi,v) Av

= all eigenvectors lie in the span of the data points.

Kernel-PCA: map ¢ : X — Hy

If dimH, = oo then C is a linear operator in H.
As in PCA we want to find the eigenvectors of C,

n

Cv=XAv = = (3(X),V)y, 6(Xi)=Av.
i=1

— all eigenvectors lie in the span of the mapped data points.
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Kernel PCA - the essential

Kernel-PCA: Cv =)\v — %27:1 (d(Xi), V>Hk d(Xi) = Av.

Equivalently, solve for all j =1,...,n,
1 n
=D (0(X): V), (D(X0), D(X)) gy, = A (v, 0(X)yy, -
i=1
Moreover, from the above derivation we know: v =7 ; a, ¢(X,),

% > ar (X0, 6(X ), (D(X0) 6K, = A D ar (D(X0)s 5K, -
r=1

ir=1

This can be summarized using k(Xj, Xj) = (¢(X:)o(Xj))4,, as,
KTKa=nAK"a.

This is (almost) equivalent to: Ko = nAa.
What is the difference of the two equations ?
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Kernel PCA - Interpretation

Kernel-PCA: solve eigen-problem: Ka = nAa.

@ normalize eigenvectors v s=1,...,n

<(5 S)> Za as)Ku_)\s)Zas) (s‘

7./_

@ What are the principal components (functions) ? Compute projection
of mapped test point x on v(%),

< () > Za (p(Xi), ¢ Zas)k Xi, x).

Standard PCA components are linear functions ! Variation into
the direction of the principal component.

@ What requirement of PCA did we not integrate into the derivation of
Kernel PCA ?

Pons-Moll (Lecture 20, 09.01.2019) Machine Learning



Kernel PCA - Interpretation

Illustration: PCA versus Kernel-PCA

linear PCA o kxy) =(xy)

kernel PCA e.g. k(x,y) = gX'Y)d

o
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Kernel PCA - Interpretation Il

Balanced clusters: Higher principal components of Kernel-PCA
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Kernel PCA - Interpretation Il

Disbalanced clusters: Higher principal components of Kernel-PCA

Kernel PCA Comp: 1 Kernel PCA Comp: 2

15 K

Kernel PCA Comp: 3 Kernel PCA

&

Comp: 4

.

Kernel PCA Comp: 5 Kernel PCA Comp: 6 Kernel PCA Comp: 7

15 18 -

BS s dw
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Kernel PCA - Denoising

Kernel-PCA for denoising of data

Gaussian noise “speckle” noise
orig. £ ]
noisy } Lo -:‘; i ' "_: il ¥,
m=1 ‘ 5 1 -. |
e ‘ ‘
16 ) ‘ "
o+ L~
256 ERig T ; -
gl ng' i
+
9

:813i48¢189818343¢ 87

e PCA allows for reconstruction of the original image (just a basis
transformation),

o for Kernel PCA this is not directly possible - need to find a pre-image
for >>7_; aj(x;) € Hy in the original space X.
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Laplacian eigenmaps

The continuous Laplacian

d 82
RY A=Y —.
ATk

Why is it interesting ?
e Laplacian is symmetric (self-adjoint),
@ eigenfunctions, Af = \f, define an ONB of LQ(Rd).
@ these eigenfunctions have nice properties

» R: Fourierbasis ¢ax(x) = cos(x), ¢dak+1(x) = sin(x),
» sphere S2: spherical harmonics.

— multi-scale decomposition of the data,
@ Fourier-transform is the corresponding basis transformation.

Can we do the same for discrete data ?
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The data manifold

@ we would like to find the parameters underlying the data-generating
process = parameterization of the data-manifold.

o ldea: build graph - use graph Laplacian as surrogate of the
continuous Laplacian.
= eigenvectors generate multi-scale decomposition of the data.
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Use the graph Laplacian

Three types of graph Laplacians:

unnormalized: (A AW F )(7) (i) — Z wiif (

(AMf) = (D~ W)f

random walk: (A AW £ )(i) = Z wiif (

(AM™F) = (1 - D~ W)f,

normalized: (A(”)f)(i) = f(i) — Z

(AMF) = (1 — D~Y2WD1/?)f.
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Laplacian eigenmaps

Laplacian Eigenmaps
Chooose the graph Laplacian: unnormalized, random walk and normalized.

@ compute the graph Laplacian n x n-matrix for n points,

@ compute the first k eigenvectors {u;}%_; (each eigenvector is
normalized, ||y;|| =1, i=1,..., k),

e Embedding ¢ : V — RX, of the n vertices into R¥ by
= zi = (i), ., (i),

The embedding: ¢ : V — RX, i — ¢(i) = (ur(i), ..., ux(i)) is the
Laplacian eigenmap.

Relation to Kernel-PCA:

One can see Laplacian eigenmaps as Kernel PCA with a special
data-dependent kernel (pseudo-inverse of the graph Laplacian).
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Laplacian Eigenmaps - Computer graphics

@ compute eigenvectors of the Laplacian on the mesh,

@ can be used for denoising of meshes, varying of meshes etc.
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Laplacian Eigenmaps - lllustration

0 _.: _'__'ng.. -;.'r'\- Jﬂ..'! l-{ Y

-.-'-""-- 4 "'.':“:.-F-i.--.
06 -‘*- Chl “{ %ni

0.5 .- . Htr'— ':’ ‘

@ Right: artificial datasets of ones - two variations: line thickness and
style variation (bottom line) - digits are of size 28 x 28 - 784 pixels,

o Left: sampling is done uniformly in the parameterization.
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Laplacian Eigenmaps - lllustration

A B
1 Laplacian Eigenmap (first two eigenvectors)
o
o
o1 B

C D o
EAEE -
TN TR

@ the original parameter set is equivalent to [0, 1]2 and the examples
A, B, C, D are the corners of [0,1]> = Laplacian eigenmap finds the
parameterization.
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Independent Component Analysis (ICA)

Motivation: cocktail party problem - blind source separation

e k different speakers (sources),

si(t), ..., sk(t).
@ d microphones (sensors),

x1(t),. .., xq4(t).

Assumption: measured signal is linear superposition of sources.

Goal: having only the signal of the microphones, find the sources -

determine A, where
x(t) = As(t).

@ A is called the mixing matrix.
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Independent Component Analysis (ICA)

Application scenarios
@ sound (speech, music,...) signals,
o EEG signals,

@ natural images (patches),

°

°

financial data,
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ICA - EEG Data

ICA for EEG analysis
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ICA - Natural Images

ICA for natural images - 16 x 16 - patches

|

@ |ICA components for 16 x 16-patches of natural images,

@ —> one observes that independent components look like edge
detectors.
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ICA I

Motivation for ICA

@ speakers (sources) are independent of each other.
Sl(t)7 cevy Sk(t)7

in the stochastic sense (source signals are independent random
variables),

ps(sl(t),...,sk(t)) - f[ps,(s,-(t)).
i=1

Find new representation such that components are maximally
independent !

= how can one optimize for independent components ?

— for simplicity we assume d = k (nr. sensors = nr. sources).
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ICA 1l

What kind of independent components can we hope for ?

o non-Gaussian sources: suppose that s(t) € R¥ is Gaussian
distributed = x = As is again Gaussian distributed,

Elxx"] =E[Ass" AT] = AE[ss"]AT = A1, AT = AAT.

Whitening yields independent components - but not necessarily s(t).
@ Sources can be identified only up to rescaling:

x(t) = As(t) = (AD™) (D s(1)),
where D is a diagonal matrix - D s(t) is also independent. W.l.0.g.,
E[s(t)s(t)"] = 1x.

@ Sources cannot be ordered: Let P be a permutation matrix, then
Ps(t) is independent, x(t) = As(t) = (AP~1) (Ps(t)).
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ICA IV

Whitening as a pre-processing step for ICA
Whitening transforms the signal x(t),

y(t) = Wx(t) = WAs(t),
such it becomes uncorrelated,
1 =E[y(t) y(t)T] = E[W x(t)x(t) TWT] = WAE[s s']ATWT = W AAT]

= whitening simplifies the problem since the mixing matrix W A for y(t)
is orthogonal.

New problem: find the orthogonal mixing matrix B = W A
y(t) = Bs(t),

resp. BT such that BTy(t) = BT Bs(t) = s(t) is maximally independent.
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ICA - Steps

Steps for ICA:
e apply whitening to the data: y(t) = W x(t).

e find orthogonal de-mixing matrix B s.th. B y(t) is maximally
independent.
Different criteria:
> maximize non-gaussianity of By(t),
» minimize mutual information /({By(t)}*_; By(t)) - mutual
information is zero if and only if joint density of By(t) factorizes into
the product of the marginal densities = By(t) is independent.

Problems:
@ joint density of B y(t) hard to estimate — problems with mutual inf.
@ instead: minimize higher order correlations e.g. kurtosis
kurt(y) = Ely*] - 3(E?)) .
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ICA - lllustration for signals

lllustration of ICA for signal data

Original sources Mixed signal

o 0
o 100 200 300 400 500 o 100 200 300 200 500

0 0
0 100 200 300 400 500 0 100 200 300 400 500

0 0
2 100 200 300 400 00 ’:u 100 200 300 400 500

o o
o 100 200 300 400 500 o 100 200 300 400 500

. Whitenend Components Independent Components

0 0
'zo 100 20 300 %0 500 g 100 20 300 w0 500

o o
100 200 300 400 500 o 100 200 300 400 500

o 0
o 100 200 300 400 500 0 100 200 300 400 500

0 0
o 100 200 300 400 500 o 100 200 300 200 500
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ICA - lllustration of ICA

Original data - uniform sampling on unit square PCA and ICA - first two components ‘Transformed data by ICA
@ - g

14 © oy 3 0% o og0

@ Left: Original sources - individual features are independent
p(x1,x2) = p(x1)p(x2).

e Middle: Measured signal - directions of PCA (eigenvectors of
covariance matrix) and directions of ICA (columns of estimated
mixing matrix) are shown - note that the directions of ICA are not
orthogonal,

@ Right: Source signal estimated by ICA - coincides up to rescaling
with the original signal.
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ICA - Demo

Cocktail party demo.
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