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Dimensionality reduction

Dimensionality Reduction: Construction of a mapping φ : X → Rm,
where the dimensionality m of the target space is usually much smaller
than that of the input space X . Generally, the mapping should preserve
properties of the input space X e.g. distances.

Why should we do dimensionality reduction ?

Manifold assumption: The internal degrees of freedom are much
smaller than the number of measured features =⇒ data lies along a
low-dimensional structure in feature space =⇒ we want to detect
these “true parameters”.

Visualization: interpretation of data in high dimensions is difficult -
embeddings in two or three dimensions can provide insight.

Data compression: compress the data but retain most of the
information.
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Dimensionality reduction

Manifold-Assumption

digits vary smoothly (but discretization as pixels),

internal degrees of freedom are small compared to the number of
features (= number of pixels).
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Dimensionality reduction

Supervised dimensionality reduction:

Linear discriminant analysis (LDA),

Unsupervised dimensionality reduction:

Principal Components Analysis (PCA),
(also called: Karhunen-Loeve-Transformation),

Kernel PCA,

Laplacian Eigenmaps,

Independent Component Analysis (ICA).

Except the last all are eigenvalue problems !
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PCA

PCA - Two points of view

the principal k-components span the k-dimensional affine subspace
which yields the best approximation of the data (Euclidean norm),

the subspace spanned by the first k principal components contains
“most” of the variance in the data.

PCA - a simple coordinate transformation

translation - mean of data points becomes new origin,

rotation - change of the initial ONB into a new ONB which is defined
by the data.
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PCA - Approximation point of view

Given: {Xi}ni=1 in Rd , Goal: find a m-dimensional affine subspace Um, with

Um = c + Vm := c +
{ m∑

j=1

αjuj | {uj}mj=1 ONS , c ∈ Rd , αj ∈ R
}
,

which approximates the original data points optimally in the sense,

argmin
Zi∈Vm, c ∈Rd

1

n

n∑
i=1

‖Zi + c − Xi‖22 .

Orthogonal projection P onto the subspace Vm: P =
∑m

j=1 uju
T
j .

Lemma

An orthogonal projection matrix P : Rd → Rd satisfies,

P = PT , and P2 = P.

Pons-Moll (Lecture 20, 09.01.2019) Machine Learning 6 / 40



PCA - Approximation II

Optimal offset c
Affine subspace: Um = c + Vm, (c can be seen as origin of Um).

∇c

( n∑
i=1

‖Zi + c − Xi‖22
)

= 2
n∑

i=1

(Zi − Xi ) + 2nc =⇒ c =
1

n

n∑
i=1

(Xi − Zi ).

c depends on Zi - the origin of the subspace Um can be changed
without changing the approximation.

fix degree of freedom by requiring that

n∑
i=1

Zi = 0 and thus c =
1

n

n∑
i=1

Xi .

We center the original data points Xi : X̃i = Xi − 1
n

∑n
j=1 Xj .

New Objective:
n∑

i=1

‖Zi + c − Xi‖22 =
n∑

i=1

∥∥∥Zi − X̃i

∥∥∥2
2
.
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PCA - Approximation III

∥∥∥Zi − X̃i

∥∥∥2
2

=
∥∥∥Zi − PX̃i

∥∥∥2
2

+
∥∥∥PX̃i − X̃i

∥∥∥2
2
,

for the orthogonal projection P onto Um =⇒ choose Zi = PX̃i .

New transformed objective:

n∑
i=1

∥∥∥Zi − X̃i

∥∥∥2
2

=
n∑

i=1

∥∥∥(P − 1)X̃i

∥∥∥2
2

=
n∑

i=1

X̃T
i (1− P)X̃i

=
n∑

i=1

X̃T
i X̃i −

n∑
i=1

X̃T
i PX̃i

=
n∑

i=1

X̃T
i X̃i −

n∑
j=1

uTj

( n∑
i=1

X̃i X̃
T
i

)
uj
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PCA - Approximation IV

Final objective:

n∑
i=1

∥∥∥Zi − X̃i

∥∥∥2 =
n∑

i=1

X̃T
i X̃i −

m∑
j=1

uTj

( n∑
i=1

X̃i X̃
T
i

)
uj .

Define the symmetric, positive semi-definite matrix C ∈ Rd×d as,

C =
n∑

i=1

X̃i X̃
T
i ,

objective is minimized by using the projection P onto the the m
largest eigenvectors of C

These eigenvectors are called the principal components of the data.
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PCA - Illustration
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PCA − first two components

red directions: principal directions in the data

length of red line: 4
√
λ, where λ is the eigenvalue of C .
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PCA - Variance I

Subspace containing most of the variance of a probability measure
One-dimensional subspace U1 spanned by u ⇒ variance of the data
projected onto u is given as

var(u) = EX [〈u,X − EX 〉2] = EX

[(
〈u,X 〉 − 〈u,EX 〉

)2]
.

Rewrite var(u) as

var(u) = EX [uT (X − EX )(X − EX )Tu] = 〈u,Cu〉 ,

where
C = EX (X − EX )(X − EX )T ,

is the covariance of PX .

Subject to ‖u‖2 = 1 ⇒ using Rayleigh-Ritz principle, var(u) is maximized
by the eigenvector of C corresponding to the largest eigenvalue.
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PCA - Variance II

Best m-dimensional subspace: m “largest” eigenvectors.

the ev, {ui}di=1, of C determine an uncorrelated ONB,

〈ui ,Cuj〉 = λiδij , i , j = 1, . . . , d .

For Gaussian data: p(x) = 1

(2π)
d
2 | detC |

1
2
e−

1
2
(x−µ)TC−1(x−µ),

we get in new coordinates z defined as,

z = C−
1
2 (x − µ) =

d∑
i=1

1√
λi

ui u
T
i (x − µ),

components zj which are independent and equally distributed,

p(z) =
1

(2π)
d
2

e−
‖z‖2
2 =

d∏
j=1

1√
2π

e−
z2j
2 .

This process is called whitening.
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PCA - Whitening

Whitening: PCA + rescaling.

z = C−
1
2 (x − µ).

Whitening are three concatenated operations:

centering - equivalent to a translation in Rd ,

projection onto (all) principal components - equivalent to a
change from the initial basis to the basis spanned by the eigenvectors
of C
=⇒ rotation,

rescaling - one rescales each axis by the square-root of the
corresponding eigenvalue - thus one has unit variance in each
direction.

In practice:

pre-processing of data ⇒ resulting features are uncorrelated,

Whitening “spheres” the data - eliminates differences in scaling.
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PCA - In practice

Probability measure unknown only given i.i.d. sample {Xi}ni=1

=⇒ use empirical covariance matrix,

C =
1

n

n∑
i=1

(Xi − X )(Xi − X )T , with X =
1

n

n∑
i=1

Xi

and use its eigenvalues and eigenvectors as principal components.

Further practical issues:

never cut the spectrum where two eigenvalues are close,

several people use the first k-principal components to define new
coordinates for supervised problems e.g. classification. This is
problematic since the class structure need not have anything to do
with the principal components.
Supervised case: use LDA or other supervised extensions of PCA.
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Kernel PCA

Non-linear extension of PCA:

given: positive definite kernel k : X → X → R,

map data into the corresponding feature space (RKHS) Hk ,

φ : X → Hk , x → φ(x).

do PCA in Hk (resp. subspace spanned by the data).

principal components correspond to functions X .

Questions:

how to define eigenvectors in Hk ?

how many principal components are there ?

what is a principal component in Hk ?
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PCA - Kernel PCA
Standard-PCA:

Cv = λv , =⇒ 1

n

n∑
i=1

〈Xi , v〉 Xi = λ v .

=⇒ all eigenvectors lie in the span of the data points.

Kernel-PCA: map φ : X → Hk

C =
1

n

n∑
j=1

φ(Xj)φ(Xj)
T .

If dimHk =∞ then C is a linear operator in Hk .
As in PCA we want to find the eigenvectors of C ,

Cv = λv =⇒ 1

n

n∑
i=1

〈φ(Xi ), v〉Hk
φ(Xi ) = λ v .

=⇒ all eigenvectors lie in the span of the mapped data points.
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Kernel PCA - the essential
Kernel-PCA: Cv = λv =⇒ 1

n

∑n
i=1 〈φ(Xi ), v〉Hk

φ(Xi ) = λ v .

Equivalently, solve for all j = 1, . . . , n,

1

n

n∑
i=1

〈φ(Xi ), v〉Hk
〈φ(Xi ), φ(Xj)〉Hk

= λ 〈v , φ(Xj)〉Hk
.

Moreover, from the above derivation we know: v =
∑n

r=1 αr φ(Xr ),

1

n

n∑
i ,r=1

αr 〈φ(Xi ), φ(Xr )〉Hk
〈φ(Xi ), φ(Xj)〉Hk

= λ

n∑
r=1

αr 〈φ(Xr ), φ(Xj)〉Hk
.

This can be summarized using k(Xi ,Xj) = 〈φ(Xi )φ(Xj)〉Hk
as,

KTKα = n λKTα.

This is (almost) equivalent to: Kα = n λα.
What is the difference of the two equations ?
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Kernel PCA - Interpretation

Kernel-PCA: solve eigen-problem: Kα = n λα.

normalize eigenvectors v (s), s = 1, . . . , n,〈
v (s), v (s)

〉
Hk

=
n∑

i ,j=1

α
(s)
i α

(s)
j Kij = λ(s)

n∑
i=1

α
(s)
i α

(s)
i .

What are the principal components (functions) ? Compute projection
of mapped test point x on v (s),〈

v (s), φ(x)
〉
Hk

=
n∑

i=1

α
(s)
i 〈φ(Xi ), φ(x)〉Hk

=
n∑

i=1

α(s)k(Xi , x).

Standard PCA components are linear functions ! Variation into
the direction of the principal component.

What requirement of PCA did we not integrate into the derivation of
Kernel PCA ?
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Kernel PCA - Interpretation
Illustration: PCA versus Kernel-PCA
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Kernel PCA - Interpretation II

Balanced clusters: Higher principal components of Kernel-PCA

Pons-Moll (Lecture 20, 09.01.2019) Machine Learning 20 / 40



Kernel PCA - Interpretation III

Disbalanced clusters: Higher principal components of Kernel-PCA
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Kernel PCA - Denoising
Kernel-PCA for denoising of data

PCA allows for reconstruction of the original image (just a basis
transformation),

for Kernel PCA this is not directly possible - need to find a pre-image
for
∑n

i=1 αiφ(xi ) ∈ Hk in the original space X .
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Laplacian eigenmaps

The continuous Laplacian

Rd , ∆ =
d∑

i=1

∂2

∂x2i
.

Why is it interesting ?

Laplacian is symmetric (self-adjoint),

eigenfunctions, ∆f = λf , define an ONB of L2(Rd).

these eigenfunctions have nice properties
I R: Fourierbasis φ2k(x) = cos(x), φ2k+1(x) = sin(x),
I sphere S2: spherical harmonics.

=⇒ multi-scale decomposition of the data,

Fourier-transform is the corresponding basis transformation.

Can we do the same for discrete data ?
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The data manifold

we would like to find the parameters underlying the data-generating
process ⇒ parameterization of the data-manifold.

Idea: build graph - use graph Laplacian as surrogate of the
continuous Laplacian.
=⇒ eigenvectors generate multi-scale decomposition of the data.

Pons-Moll (Lecture 20, 09.01.2019) Machine Learning 24 / 40



Use the graph Laplacian

Three types of graph Laplacians:

unnormalized: (∆(u)f )(i) = d(i)f (i)−
n∑

j=1

wij f (j),

(∆(u)f ) = (D −W )f ,

random walk: (∆(rw)f )(i) = f (i)− 1

d(i)

n∑
j=1

wij f (j),

(∆(rw)f ) = (1− D−1W )f ,

normalized: (∆(n)f )(i) = f (i)−
n∑

j=1

wij√
di dj

f (j),

(∆(n)f ) = (1− D−1/2WD−1/2)f .

Pons-Moll (Lecture 20, 09.01.2019) Machine Learning 25 / 40



Laplacian eigenmaps

Laplacian Eigenmaps
Chooose the graph Laplacian: unnormalized, random walk and normalized.

compute the graph Laplacian n × n-matrix for n points,

compute the first k eigenvectors {ui}ki=1 (each eigenvector is
normalized, ‖ui‖ = 1, i = 1, . . . , k),

Embedding φ : V → Rk , of the n vertices into Rk by
i → zi = (u1(i), . . . , uk(i)),

The embedding: φ : V → Rk , i → φ(i) = (u1(i), . . . , uk(i)) is the
Laplacian eigenmap.

Relation to Kernel-PCA:
One can see Laplacian eigenmaps as Kernel PCA with a special
data-dependent kernel (pseudo-inverse of the graph Laplacian).
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Laplacian Eigenmaps - Computer graphics

compute eigenvectors of the Laplacian on the mesh,

can be used for denoising of meshes, varying of meshes etc.
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Laplacian Eigenmaps - Illustration

Right: artificial datasets of ones - two variations: line thickness and
style variation (bottom line) - digits are of size 28× 28 - 784 pixels,

Left: sampling is done uniformly in the parameterization.
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Laplacian Eigenmaps - Illustration
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the original parameter set is equivalent to [0, 1]2 and the examples
A,B,C ,D are the corners of [0, 1]2 =⇒ Laplacian eigenmap finds the
parameterization.
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Independent Component Analysis (ICA)

Motivation: cocktail party problem - blind source separation

k different speakers (sources),

s1(t), . . . , sk(t).

d microphones (sensors),

x1(t), . . . , xd(t).

Assumption: measured signal is linear superposition of sources.

Goal: having only the signal of the microphones, find the sources -
determine A, where

x(t) = A s(t).

A is called the mixing matrix.
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Independent Component Analysis (ICA)

Application scenarios

sound (speech, music,...) signals,

EEG signals,

natural images (patches),

financial data,

...
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ICA - EEG Data

ICA for EEG analysis
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ICA - Natural Images

ICA for natural images - 16 × 16 - patches

ICA components for 16× 16-patches of natural images,

=⇒ one observes that independent components look like edge
detectors.
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ICA II

Motivation for ICA

speakers (sources) are independent of each other.

s1(t), . . . , sk(t),

in the stochastic sense (source signals are independent random
variables),

ps
(
s1(t), . . . , sk(t)

)
=

k∏
i=1

psi
(
si (t)

)
.

Find new representation such that components are maximally
independent !
=⇒ how can one optimize for independent components ?
=⇒ for simplicity we assume d = k (nr. sensors = nr. sources).
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ICA III

What kind of independent components can we hope for ?

non-Gaussian sources: suppose that s(t) ∈ Rk is Gaussian
distributed =⇒ x = As is again Gaussian distributed,

E[xxT ] = E[A ssTAT ] = AE[s sT ]AT = A1kA
T = AAT .

Whitening yields independent components - but not necessarily s(t).

Sources can be identified only up to rescaling:

x(t) = A s(t) = (AD−1) (D s(t)),

where D is a diagonal matrix - D s(t) is also independent. W.l.o.g.,

E[s(t) s(t)T ] = 1k .

Sources cannot be ordered: Let P be a permutation matrix, then
Ps(t) is independent, x(t) = A s(t) = (AP−1) (Ps(t)).
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ICA IV

Whitening as a pre-processing step for ICA
Whitening transforms the signal x(t),

y(t) = W x(t) = W As(t),

such it becomes uncorrelated,

1k = E[y(t) y(t)T ] = E[W x(t)x(t)TW T ] = W AE[s st ]ATW T = W AATW T .

=⇒ whitening simplifies the problem since the mixing matrix W A for y(t)
is orthogonal.

New problem: find the orthogonal mixing matrix B = W A

y(t) = B s(t),

resp. BT such that BT y(t) = BTBs(t) = s(t) is maximally independent.
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ICA - Steps

Steps for ICA:

apply whitening to the data: y(t) = W x(t).

find orthogonal de-mixing matrix B s.th. B y(t) is maximally
independent.
Different criteria:

I maximize non-gaussianity of By(t),
I minimize mutual information I

(
{By(t)}ki=1 By(t)

)
- mutual

information is zero if and only if joint density of By(t) factorizes into
the product of the marginal densities =⇒ By(t) is independent.

Problems:

joint density of B y(t) hard to estimate → problems with mutual inf.

instead: minimize higher order correlations e.g. kurtosis

kurt(y) = E[y4]− 3
(
E[y2]

)2
.
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ICA - Illustration for signals

Illustration of ICA for signal data

0 100 200 300 400 500
−2

0

2
Original sources

0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−2

0

2

0 100 200 300 400 500
−10

0

10

0 100 200 300 400 500
−10

0

10
Mixed signal

0 100 200 300 400 500
−10

0

10

0 100 200 300 400 500
−1

0

1

0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−5

0

5
Whitenend Components

0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−10

0

10
Independent Components

0 100 200 300 400 500
−2

0

2

0 100 200 300 400 500
−5

0

5

0 100 200 300 400 500
−2

0

2

Pons-Moll (Lecture 20, 09.01.2019) Machine Learning 38 / 40



ICA - Illustration of ICA
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Transformed data by ICA

Left: Original sources - individual features are independent
p(x1, x2) = p(x1)p(x2).

Middle: Measured signal - directions of PCA (eigenvectors of
covariance matrix) and directions of ICA (columns of estimated
mixing matrix) are shown - note that the directions of ICA are not
orthogonal,

Right: Source signal estimated by ICA - coincides up to rescaling
with the original signal.
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ICA - Demo

Cocktail party demo.
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