Machine Learning Dimensionality Reduction

Gerard Pons-Moll

Dimensionality Reduction: Construction of a mapping $\phi : \mathcal{X} \to \mathbb{R}^m$, where the dimensionality *m* of the target space is usually much smaller than that of the input space \mathcal{X} . Generally, the mapping should preserve properties of the input space \mathcal{X} e.g. distances.

Why should we do dimensionality reduction ?

- Manifold assumption: The internal degrees of freedom are much smaller than the number of measured features ⇒ data lies along a low-dimensional structure in feature space ⇒ we want to detect these "true parameters".
- **Visualization:** interpretation of data in high dimensions is difficult embeddings in two or three dimensions can provide insight.
- **Data compression:** compress the data but retain most of the information.

Manifold-Assumption

- digits vary smoothly (but discretization as pixels),
- internal degrees of freedom are small compared to the number of features (= number of pixels).

Dimensionality reduction

Supervised dimensionality reduction:

• Linear discriminant analysis (LDA),

Unsupervised dimensionality reduction:

- Principal Components Analysis (PCA), (also called: Karhunen-Loeve-Transformation),
- Kernel PCA,
- Laplacian Eigenmaps,
- Independent Component Analysis (ICA).

Except the last all are eigenvalue problems !

PCA - Two points of view

- the principal k-components span the k-dimensional affine subspace which yields the best approximation of the data (Euclidean norm),
- the subspace spanned by the first k principal components contains "most" of the variance in the data.

PCA - a simple coordinate transformation

- translation mean of data points becomes new origin,
- rotation change of the initial ONB into a new ONB which is defined by the data.

PCA - Approximation point of view

Given: $\{X_i\}_{i=1}^n$ in \mathbb{R}^d , Goal: find a *m*-dimensional affine subspace U_m , with

$$U_m = c + V_m := c + \Big\{ \sum_{j=1}^m \alpha_j u_j \mid \{u_j\}_{j=1}^m \text{ ONS }, c \in \mathbb{R}^d, \alpha_j \in \mathbb{R} \Big\},\$$

which approximates the original data points optimally in the sense,

$$\underset{Z_i \in V_m, \ c \in \mathbb{R}^d}{\arg \min} \quad \frac{1}{n} \sum_{i=1}^n \|Z_i + c - X_i\|_2^2.$$

Orthogonal projection *P* onto the subspace V_m : $P = \sum_{j=1}^m u_j u_j^T$.

Lemma

An orthogonal projection matrix $P : \mathbb{R}^d \to \mathbb{R}^d$ satisfies,

$$P = P^T$$
, and $P^2 = P$.

PCA - Approximation II

Optimal offset c

Affine subspace: $U_m = c + V_m$, (c can be seen as origin of U_m).

$$abla_c \left(\sum_{i=1}^n \|Z_i + c - X_i\|_2^2 \right) = 2 \sum_{i=1}^n (Z_i - X_i) + 2nc \implies c = \frac{1}{n} \sum_{i=1}^n (X_i - Z_i).$$

- c depends on Z_i the origin of the subspace U_m can be changed without changing the approximation.
- fix degree of freedom by requiring that

$$\sum_{i=1}^{n} Z_i = 0 \quad \text{and thus} \quad c = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

We center the original data points X_i : $\tilde{X}_i = X_i - \frac{1}{n} \sum_{j=1}^n X_j$.

New Objective:
$$\sum_{i=1}^{n} \|Z_i + c - X_i\|_2^2 = \sum_{i=1}^{n} \|Z_i - \tilde{X}_i\|_2^2.$$

PCA - Approximation III

$$\left\|Z_i-\tilde{X}_i\right\|_2^2=\left\|Z_i-P\tilde{X}_i\right\|_2^2+\left\|P\tilde{X}_i-\tilde{X}_i\right\|_2^2,$$

for the orthogonal projection P onto $U_m \Longrightarrow$ choose $Z_i = P\tilde{X}_i$.

New transformed objective:

$$\begin{split} \sum_{i=1}^{n} \left\| Z_{i} - \tilde{X}_{i} \right\|_{2}^{2} &= \sum_{i=1}^{n} \left\| (P - \mathbb{1}) \tilde{X}_{i} \right\|_{2}^{2} \\ &= \sum_{i=1}^{n} \tilde{X}_{i}^{T} (\mathbb{1} - P) \tilde{X}_{i} \\ &= \sum_{i=1}^{n} \tilde{X}_{i}^{T} \tilde{X}_{i} - \sum_{i=1}^{n} \tilde{X}_{i}^{T} P \tilde{X}_{i} \\ &= \sum_{i=1}^{n} \tilde{X}_{i}^{T} \tilde{X}_{i} - \sum_{j=1}^{n} u_{j}^{T} \left(\sum_{i=1}^{n} \tilde{X}_{i} \tilde{X}_{i}^{T} \right) u_{j} \end{split}$$

PCA - Approximation IV

Final objective:

$$\sum_{i=1}^n \left\| Z_i - \tilde{X}_i \right\|^2 = \sum_{i=1}^n \tilde{X}_i^T \tilde{X}_i - \sum_{j=1}^m u_j^T \left(\sum_{i=1}^n \tilde{X}_i \tilde{X}_i^T \right) u_j.$$

Define the symmetric, positive semi-definite matrix $C \in \mathbb{R}^{d imes d}$ as,

$$C = \sum_{i=1}^{n} \tilde{X}_i \tilde{X}_i^{T},$$

- objective is minimized by using the projection *P* onto the the *m* largest eigenvectors of *C*
- These eigenvectors are called the principal components of the data.

PCA - Illustration

- red directions: principal directions in the data
- length of red line: $4\sqrt{\lambda}$, where λ is the eigenvalue of C.

PCA - Variance I

Subspace containing most of the variance of a probability measure One-dimensional subspace U_1 spanned by $u \Rightarrow$ variance of the data projected onto u is given as

$$\operatorname{var}(u) = \mathbb{E}_X[\langle u, X - \mathbb{E}X \rangle^2] = \mathbb{E}_X\Big[\big(\langle u, X \rangle - \langle u, \mathbb{E}_X \rangle\big)^2\Big].$$

Rewrite var(u) as

$$\operatorname{var}(u) = \mathbb{E}_{X}[u^{T}(X - \mathbb{E}X)(X - \mathbb{E}X)^{T}u] = \langle u, Cu \rangle,$$

where

$$C = \mathbb{E}_X(X - \mathbb{E}X)(X - \mathbb{E}X)^T$$
,

is the **covariance of** P_X .

Subject to $||u||^2 = 1 \Rightarrow$ using Rayleigh-Ritz principle, var(u) is maximized by the eigenvector of C corresponding to the largest eigenvalue.

PCA - Variance II

Best *m*-dimensional subspace: *m* "largest" eigenvectors.

• the ev, $\{u_i\}_{i=1}^d$, of C determine an **uncorrelated** ONB,

$$\langle u_i, Cu_j \rangle = \lambda_i \delta_{ij}, \quad i, j = 1, \ldots, d.$$

• For Gaussian data: $p(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\det C|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)}$, we get in new coordinates z defined as,

$$z = C^{-\frac{1}{2}}(x-\mu) = \sum_{i=1}^{d} \frac{1}{\sqrt{\lambda_i}} u_i u_i^T(x-\mu),$$

components z_j which are **independent** and equally distributed,

$$p(z) = rac{1}{(2\pi)^{rac{d}{2}}} e^{-rac{\|z\|^2}{2}} = \prod_{j=1}^d rac{1}{\sqrt{2\pi}} e^{-rac{z_j^2}{2}}.$$

This process is called whitening.

PCA - Whitening

Whitening: PCA + rescaling.

$$z = C^{-\frac{1}{2}}(x-\mu).$$

Whitening are three concatenated operations:

- centering equivalent to a translation in \mathbb{R}^d ,
- projection onto (all) principal components equivalent to a change from the initial basis to the basis spanned by the eigenvectors of *C*

 \implies rotation,

• **rescaling** - one rescales each axis by the square-root of the corresponding eigenvalue - thus one has unit variance in each direction.

In practice:

- pre-processing of data \Rightarrow resulting features are uncorrelated,
- Whitening "spheres" the data eliminates differences in scaling.

PCA - In practice

Probability measure unknown only given i.i.d. sample $\{X_i\}_{i=1}^n$ \implies use **empirical covariance matrix**,

$$C = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}) (X_i - \overline{X})^T$$
, with $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

and use its eigenvalues and eigenvectors as principal components.

Further practical issues:

- never cut the spectrum where two eigenvalues are close,
- several people use the first *k*-principal components to define new coordinates for supervised problems e.g. classification. This is problematic since the class structure need not have anything to do with the principal components.

Supervised case: use LDA or other supervised extensions of PCA.

Non-linear extension of PCA:

- given: positive definite kernel $k : \mathcal{X} \to \mathcal{X} \to \mathbb{R}$,
- map data into the corresponding feature space (RKHS) \mathcal{H}_k ,

$$\phi: \mathcal{X} \to \mathcal{H}_k, \qquad x \to \phi(x).$$

- do PCA in \mathcal{H}_k (resp. subspace spanned by the data).
- principal components correspond to functions \mathcal{X} .

Questions:

- how to define eigenvectors in \mathcal{H}_k ?
- how many principal components are there ?
- what is a principal component in \mathcal{H}_k ?

PCA - Kernel PCA

Standard-PCA:

$$Cv = \lambda v, \implies \frac{1}{n} \sum_{i=1}^{n} \langle X_i, v \rangle \ X_i = \lambda v.$$

 \implies all eigenvectors lie in the span of the data points.

Kernel-PCA: map $\phi : \mathcal{X} \to \mathcal{H}_k$

$$C = \frac{1}{n} \sum_{j=1}^{n} \phi(X_j) \phi(X_j)^{T}.$$

If dim $\mathcal{H}_k = \infty$ then C is a linear operator in \mathcal{H}_k . As in PCA we want to find the eigenvectors of C,

$$C\mathbf{v} = \lambda \mathbf{v} \implies \frac{1}{n} \sum_{i=1}^{n} \langle \phi(X_i), \mathbf{v} \rangle_{\mathcal{H}_k} \phi(X_i) = \lambda \mathbf{v}.$$

 \Longrightarrow all eigenvectors lie in the span of the ${\bf mapped}$ data points.

Kernel PCA - the essential

Kernel-PCA: $Cv = \lambda v \implies \frac{1}{n} \sum_{i=1}^{n} \langle \phi(X_i), v \rangle_{\mathcal{H}_k} \phi(X_i) = \lambda v.$

Equivalently, solve for all $j = 1, \ldots, n$,

$$\frac{1}{n}\sum_{i=1}^{n} \langle \phi(X_i), v \rangle_{\mathcal{H}_k} \langle \phi(X_i), \phi(X_j) \rangle_{\mathcal{H}_k} = \lambda \langle v, \phi(X_j) \rangle_{\mathcal{H}_k}.$$

Moreover, from the above derivation we know: $v = \sum_{r=1}^{n} \alpha_r \phi(X_r)$,

$$\frac{1}{n}\sum_{i,r=1}^{n}\alpha_{r}\left\langle\phi(X_{i}),\phi(X_{r})\right\rangle_{\mathcal{H}_{k}}\left\langle\phi(X_{i}),\phi(X_{j})\right\rangle_{\mathcal{H}_{k}}=\lambda\sum_{r=1}^{n}\alpha_{r}\left\langle\phi(X_{r}),\phi(X_{j})\right\rangle_{\mathcal{H}_{k}}.$$

This can be summarized using $k(X_i, X_j) = \langle \phi(X_i)\phi(X_j) \rangle_{\mathcal{H}_k}$ as,

$$K^{\mathsf{T}}K\alpha = \mathbf{n}\,\lambda\,K^{\mathsf{T}}\alpha.$$

This is (almost) equivalent to: $K\alpha = n \lambda \alpha$. What is the difference of the two equations ?

Kernel PCA - Interpretation

Kernel-PCA: solve eigen-problem: $K\alpha = n \lambda \alpha$.

• normalize eigenvectors $v^{(s)}, s = 1, \dots, n$,

$$\left\langle \mathbf{v}^{(s)}, \mathbf{v}^{(s)} \right\rangle_{\mathcal{H}_k} = \sum_{i,j=1}^n \alpha_i^{(s)} \alpha_j^{(s)} \mathcal{K}_{ij} = \lambda^{(s)} \sum_{i=1}^n \alpha_i^{(s)} \alpha_i^{(s)}.$$

 What are the principal components (functions) ? Compute projection of mapped test point x on v^(s),

$$\left\langle v^{(s)}, \phi(x) \right\rangle_{\mathcal{H}_k} = \sum_{i=1}^n \alpha_i^{(s)} \left\langle \phi(X_i), \phi(x) \right\rangle_{\mathcal{H}_k} = \sum_{i=1}^n \alpha^{(s)} k(X_i, x).$$

Standard PCA components are linear functions ! Variation into the direction of the principal component.

• What requirement of PCA did we not integrate into the derivation of Kernel PCA ?

Kernel PCA - Interpretation

Illustration: PCA versus Kernel-PCA

Balanced clusters: Higher principal components of Kernel-PCA

Kernel PCA - Interpretation III

Disbalanced clusters: Higher principal components of Kernel-PCA

Kernel PCA Comp: 5

Kernel PCA Comp: 2

Kernel PCA Comp: 6

Kernel PCA Comp: 3

Kernel PCA Comp: 7

Kernel PCA Comp: 4

Kernel PCA Comp: 8

Kernel PCA - Denoising

Kernel-PCA for denoising of data

- PCA allows for reconstruction of the original image (just a basis transformation),
- for Kernel PCA this is not directly possible need to find a pre-image for ∑ⁿ_{i=1} α_iφ(x_i) ∈ H_k in the original space X.

The continuous Laplacian

$$\mathbb{R}^d, \qquad \Delta = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}.$$

Why is it interesting ?

- Laplacian is symmetric (self-adjoint),
- eigenfunctions, $\Delta f = \lambda f$, define an ONB of $L_2(\mathbb{R}^d)$.
- these eigenfunctions have nice properties
 - \mathbb{R} : Fourierbasis $\phi_{2k}(x) = \cos(x)$, $\phi_{2k+1}(x) = \sin(x)$,
 - ▶ sphere *S*²: spherical harmonics.
 - \implies multi-scale decomposition of the data,
- Fourier-transform is the corresponding basis transformation.

Can we do the same for discrete data ?

The data manifold

- we would like to find the parameters underlying the data-generating process ⇒ parameterization of the data-manifold.
- Idea: build graph use graph Laplacian as surrogate of the continuous Laplacian.
 - \implies eigenvectors generate multi-scale decomposition of the data.

Use the graph Laplacian

Three types of graph Laplacians:

 $(\Delta^{(u)}f)(i)=d(i)f(i)-\sum''w_{ij}f(j),$ unnormalized: $(\Delta^{(u)}f) = (D - W)f.$ $(\Delta^{(\mathsf{rw})}f)(i) = f(i) - \frac{1}{d(i)} \sum_{i=1}^{''} w_{ij}f(j),$ random walk: $(\Delta^{(\mathrm{rw})}f) = (\mathbb{1} - D^{-1}W)f.$ $(\Delta^{(n)}f)(i) = f(i) - \sum_{i=1}^{n} \frac{w_{ij}}{\sqrt{d_i d_j}} f(j),$ normalized: $(\Delta^{(n)}f) = (\mathbb{1} - D^{-1/2}WD^{-1/2})f.$

Laplacian Eigenmaps

Chooose the graph Laplacian: unnormalized, random walk and normalized.

- compute the graph Laplacian $n \times n$ -matrix for n points,
- compute the first k eigenvectors {u_i}^k_{i=1} (each eigenvector is normalized, ||u_i|| = 1, i = 1,..., k),
- Embedding $\phi: V \to \mathbb{R}^k$, of the *n* vertices into \mathbb{R}^k by $i \to z_i = (u_1(i), \dots, u_k(i))$,

The embedding: $\phi: V \to \mathbb{R}^k$, $i \to \phi(i) = (u_1(i), \dots, u_k(i))$ is the **Laplacian eigenmap**.

Relation to Kernel-PCA:

One can see Laplacian eigenmaps as Kernel PCA with a special data-dependent kernel (pseudo-inverse of the graph Laplacian).

Laplacian Eigenmaps - Computer graphics

- compute eigenvectors of the Laplacian on the mesh,
- can be used for denoising of meshes, varying of meshes etc.

Laplacian Eigenmaps - Illustration

- **Right:** artificial datasets of ones two variations: line thickness and style variation (bottom line) digits are of size 28 × 28 784 pixels,
- Left: sampling is done uniformly in the parameterization.

Laplacian Eigenmaps - Illustration

• the original parameter set is equivalent to $[0,1]^2$ and the examples A, B, C, D are the corners of $[0,1]^2 \implies$ Laplacian eigenmap finds the parameterization.

Independent Component Analysis (ICA)

Motivation: cocktail party problem - blind source separation

• k different speakers (sources),

$$s_1(t),\ldots,s_k(t).$$

• *d* microphones (sensors),

$$x_1(t), ..., x_d(t).$$

Assumption: measured signal is linear superposition of sources.

Goal: having only the signal of the microphones, find the sources - determine *A*, where

$$x(t) = As(t).$$

• A is called the **mixing matrix**.

Application scenarios

- sound (speech, music,...) signals,
- EEG signals,
- natural images (patches),
- financial data,

• ...

ICA - EEG Data

ICA for EEG analysis

ICA - Natural Images

ICA for natural images - 16 \times 16 - patches

- \bullet ICA components for 16 \times 16-patches of natural images,
- \implies one observes that independent components look like edge detectors.

Pons-Moll (Lecture 20, 09.01.2019)

Motivation for ICA

• speakers (sources) are independent of each other.

$$s_1(t),\ldots,s_k(t),$$

in the stochastic sense (source signals are independent random variables),

$$p_s(s_1(t),\ldots,s_k(t)) = \prod_{i=1}^k p_{s_i}(s_i(t)).$$

Find new representation such that components are maximally independent !

 \implies how can one optimize for independent components ?

 \implies for simplicity we assume d = k (nr. sensors = nr. sources).

ICA III

What kind of independent components can we hope for ?

non-Gaussian sources: suppose that s(t) ∈ ℝ^k is Gaussian distributed ⇒ x = As is again Gaussian distributed,

$$\mathbb{E}[xx^{T}] = \mathbb{E}[Ass^{T}A^{T}] = A\mathbb{E}[ss^{T}]A^{T} = A\mathbb{1}_{k}A^{T} = AA^{T}.$$

Whitening yields independent components - but not necessarily s(t).
Sources can be identified only up to rescaling:

$$x(t) = As(t) = (AD^{-1})(Ds(t)),$$

where D is a diagonal matrix - D s(t) is also independent. W.I.o.g.,

$$\mathbb{E}[s(t)\,s(t)^{\mathsf{T}}]=\mathbb{1}_k.$$

• Sources cannot be ordered: Let P be a permutation matrix, then Ps(t) is independent, $x(t) = As(t) = (AP^{-1})(Ps(t))$.

ICA IV

Whitening as a pre-processing step for ICA Whitening transforms the signal x(t),

$$y(t) = W x(t) = W A s(t),$$

such it becomes uncorrelated,

$$\mathbb{1}_{k} = \mathbb{E}[y(t) y(t)^{T}] = \mathbb{E}[W x(t) x(t)^{T} W^{T}] = W A \mathbb{E}[s s^{t}] A^{T} W^{T} = W A A^{T} W$$

 \implies whitening simplifies the problem since the mixing matrix WA for y(t) is orthogonal.

New problem: find the **orthogonal mixing matrix** B = WA

$$y(t)=B\,s(t),$$

resp. B^T such that $B^T y(t) = B^T Bs(t) = s(t)$ is maximally independent.

ICA - Steps

Steps for ICA:

- apply whitening to the data: y(t) = W x(t).
- find orthogonal de-mixing matrix B s.th. By(t) is maximally independent.

Different criteria:

- maximize non-gaussianity of By(t),
- ► minimize mutual information I({By(t)}^k_{i=1} By(t)) mutual information is zero if and only if joint density of By(t) factorizes into the product of the marginal densities ⇒ By(t) is independent.

Problems:

- joint density of By(t) hard to estimate \rightarrow problems with mutual inf.
- instead: minimize higher order correlations e.g. kurtosis

$$\operatorname{kurt}(y) = \mathbb{E}[y^4] - 3(\mathbb{E}[y^2])^2.$$

Illustration of ICA for signal data

ICA - Illustration of ICA

- Left: Original sources individual features are independent $p(x_1, x_2) = p(x_1)p(x_2)$.
- **Middle:** Measured signal directions of PCA (eigenvectors of covariance matrix) and directions of ICA (columns of estimated mixing matrix) are shown note that the directions of ICA are **not** orthogonal,
- **Right:** Source signal estimated by ICA coincides up to rescaling with the original signal.

Cocktail party demo.