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Program of today

A brief overview of results from statistical learning theory

stochastic convergence,

different notions of consistency,

consistency for finite function classes,

consistency for infinite function classes and the VC dimension,

universal Bayes consistency - conditions ?

negative results: no free lunch theorem.

Pons-Moll (06.02.2019) Machine Learning 2 / 36



Stochastic Convergence

Motivation
Can we upper bound the deviation of R(fn) from

the Bayes risk R∗ = inff measurable R(f )

the best risk RF = inff ∈F R(f ) in the class F .

where fn is the function chosen by the learning algorithm.
Here: Binary classification, canonical zero-one loss.

Concentration
A random variable X is concentrated if its distribution is very peaked
around the expectation EX of X .

empirical mean: X = 1
n

∑n
i=1 Xi , with the {Xi}ni=1 i.i.d. sample.

Intuition: the distribution of X will be concentrated around the true mean
EX = EX .
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Stochastic Convergence II

Three different notions of convergence of random variables

Definition

Let {Xn}, n = 1, 2, . . . , be a sequence of random variables. We say that
Xn converges in probability, limn→∞ Xn = X in probability, if for each
ε > 0,

lim
n→∞

P
(
|Xn − X | ≥ ε

)
= 0.

We say that Xn converges almost surely (with probability 1),
limn→∞ Xn = X almost surely (a.s.), if

P
(
ω : lim

n→∞
Xn(ω) = X (ω)

)
= 1.

For a fixed p ≥ 1 we say that Xn converges in Lp or the p-th mean,
limn→∞ Xn = X in Lp, if

lim
n→∞

E
(
|Xn − X |p) = 0.
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Stochastic Convergence III

Proposition

The following implications hold,

limn→∞ E
(
|Xn − X |p) = 0 =⇒ P

(
|Xn − X | ≥ ε

)
= 0,

limn→∞ Xn = X almost surely =⇒ P
(
|Xn − X | ≥ ε

)
= 0,

If for each ε > 0,

∞∑
n=0

P
(
|Xn − X | ≥ ε

)
<∞,

then limn→∞ Xn = X almost surely.

Relevance for machine learning ?
R(fn) is a random variable since it depends on the training sample.

how far is R(fn) away from the Bayes risk R∗ ?

In which sense limn→∞ R(fn) = R∗ ?
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Consistency (Classification)

Consistency for binary classification:

Loss function, is 0-1-loss,

R(f ) = E1f (X )6=Y = P(f (X ) 6= Y ),

Bayes risk R∗ = inff measurable R(f ).

best risk in function class RF = inff ∈F R(f ) in the class F .

Definition (Consistency)

A classification rule is

consistent for a distribution of (X ,Y ) if limn→∞ R(fn) = RF ,

Bayes consistent for a distribution of (X ,Y ) if limn→∞ R(fn) = R∗.

We have weak (convergence in probability) and strong (almost sure
convergence) consistency.

The probability P
(
R(fn)− R∗ > ε

)
is with respect to all possible training

samples of size n.
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Consistency (Classification) II

What does consistency mean ?

The true error of fn converges to the best possible error,

asymptotic property - no finite sample statements,

distribution dependent, for example hard margin SVM’s are Bayes
consistent for distributions where the support of P(X |Y = 1) and
P(X |Y = −1) is linearly separable, but clearly for no problem which
is non-separable.

A priori we should make no/too many assumptions about the true
nature of the problem !
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Universal Consistency

Definition (Universal consistency)

A classification rule/learning algorithm is universally (weakly/strongly)
consistent if it is (weakly/strongy) consistent for any distribution on
X × Y.

strong requirement, since the distribution might be arbitrarily strange.

nevertheless there exist several universally consistent learning
algorithms.

Our main interest: universal consistency
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Consistency

Find the best possible function in a class of functions
Every learning algorithm selects either implicitly or explicitly the classifier
fn from some function class F ,

Natural decomposition (bias-variance decomposition),

R(fn)− R∗ = R(fn)− inf
f ∈F

R(f )︸ ︷︷ ︸
Estimation error

+ inf
f ∈F

R(f )− R∗︸ ︷︷ ︸
Approximation error

.

The estimation error is random since it depends on fn and thus on
the training data - measures the deviation from the best possible risk
in the hypothesis class F .

The approximation error is deterministic and measures the deviation
of RF from the Bayes risk R∗. It depends on the hypothesis class F
and the data-generating measure - can only be bounded by making
assumptions on the distribution of the data.
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Learning with restricted function classes

Downside of simple function classes
In the worst case we have R∗ = 0 but inff ∈F R(f )� 0.

The XOR − Problem

Y=0

Y=0

Y=0 Y=1

Y=1

Figure: XOR-problem in R2. Linear classifiers
F = {f (x) = 〈w , x〉+ b |w ∈ R2, b ∈ R} are very bad but R∗ = 0.
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The basic principle

Proposition

Let fn be chosen by empirical risk minimization, that is fn = argmin
f ∈F

Rn(f )

where Rn(f ) = 1
n

∑n
i=1 1f (Xi )6=Yi

. Then

R(fn)− inf
f ∈F

R(f ) ≤ 2 sup
f ∈F
|R(f )− Rn(f )|.

Proof: We have with f ∗F = argmin
f ∈F

R(f ),

R(fn)− inf
f ∈F

R(f ) = R(fn)− Rn(fn) + Rn(fn)− R(f ∗F )

≤ R(fn)− Rn(fn) + Rn(f ∗F )− R(f ∗F )

≤ 2 sup
f ∈F
|Rn(f )− R(f )|,

where the second inequality follows from the fact that fn minimizes the
empirical risk.
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Empirical Processes

Definition of empirical processes

Definition

A stochastic process is a collection of random variables {Zn, n ∈ T} on
the same probability space, indexed by an arbitrary index set T . An
empirical process is a stochastic process based on a random sample.

In statistical learning theory we are studying the empirical process,

sup
f ∈F
|Rn(f )− R(f )|,

since uniform control of the deviation Rn(f )− R(f ) yields consistency !

R(fn)− inf
f ∈F

R(f ) ≤ 2 sup
f ∈F
|R(f )− Rn(f )|.
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Hoeffding’s inequality

Theorem

Let X1, . . . ,Xn be independent, bounded and identically distributed
random variables such that Xi falls in the interval [ai , bi ] with probability
one. Then for any ε > 0 we have

P
(∣∣∣1

n

n∑
i=1

Xi −
1

n

n∑
i=1

EXi

∣∣∣ ≥ ε) ≤ 2 exp
(
− 2nε2

1
n

∑n
i=1(bi − ai )2

)
.

Control of the deviation for a fixed function with R(f ) = E[1f (X ) 6=Y ],

P
(∣∣∣Rn(f )− R(f )

∣∣∣ ≥ ε) ≤ 2 exp
(
− 2nε2

)
.

Important: This cannot be simply applied to fn - the function found by
empirical risk minimization - since fn depends on the training data.

Pons-Moll (06.02.2019) Machine Learning 13 / 36



A finite set of functions

Bounds for the case of a finite set of functions F

Proposition

Let F be a finite set of functions, then

P
(

sup
f ∈F

∣∣∣Rn(f )− R(f )
∣∣∣ ≥ ε) ≤ 2|F| exp

(
− 2nε2

)
,

where |F| is the cardinality of F . And thus with probability 1− δ,

R(fn) ≤ R(f ∗F ) +

√
log |F| + log 2

δ

n
.

Proof: Noting that 0 ≤ 1f (X ) 6=Y ≤ 1 we get the result using Hoeffding’s

inequality. Then with δ = 2|F|e−2nε2 one gets ε =

√
1
n

(
log |F| + log 2

δ

)
.

The convergence rate is of order 1√
n

=⇒ typical in SLT.
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Infinite number of functions

Major contribution of Vapnik and Chervonenkis: uniform deviation bounds
over general infinite classes.

Given points x1, . . . , xn and a class F of binary-valued functions denote by

Fx1,...,xn =
{
{f (x1), . . . , f (xn)} | f ∈ F

}
,

the set of all possible classification of the set of points via functions in F .

Definition

The growth function SF (n) is the maximum number of ways into which
n points can be classified by the function class F ,

SF (n) = sup
(x1,...,xn)

|Fx1,...,xn |.

If SF (n) = 2n we say that F shatters n points.
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Why is this growth function interesting ?

Symmetrization lemma

ghost sample: a second i.i.d. sample of size n (independent of the
training data).

R ′n(f ) denotes the empirical risk associated with the ghost sample.

Lemma

Let n ε2 ≥ 2, we have

P
(

sup
f ∈F
|Rn(f )− R(f )| > ε

)
≤ 2P

(
sup
f ∈F
|Rn(f )− R ′n(f )| > ε

2

)
,

Important: |Rn(f )− R ′n(f )| depends only on the values of the
function takes on the 2n samples - these are maximum 22n different
values =⇒ independent of how many functions are contained in F .

a simple union bound will now yield the
V(apnik)C(hervonenkis)-bound.
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VC Bound for general F
The growth function is a measure of the “size” of F ,

Theorem (Vapnik-Chervonenkis)

For any δ > 0, with probability at least 1− δ,

R(fn) ≤ R(f ∗F ) + 8

√
log SF (2n) + log 8

δ

2n
.

Proof:

P
(
R(fn)− inf

f ∈F
R(f ) > ε

)
≤ P

(
sup
f ∈F
|R(f )− Rn(f )| > ε

2

)
≤2P

(
sup
f ∈F
|Rn(f )− R ′n(f )| > ε

4

)
≤2 SF (2n)P

(
|Rn(f )− R ′n(f )| > ε

4

)
≤4 SF (2n)P

(
|Rn(f )− R(f )| > ε

8

)
≤ 8 SF (2n) e−

nε2

32
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Discussion of VC-Bound

For a finite class log SF (n) ≤ |F| ⇒ up to constants at least as good as
the previous bound for finite F .

Definition

The VC dimension VC(F) of a class F is the largest n such that
SF (n) = 2n.

What happens if F can always realize all 2n possibilities ?

R(fn) ≤ R(f ∗F ) + 8

√
log SF (2n) + log 8

δ

2n

≤ R(f ∗F ) + 8

√
n log 2 + log 8

δ

2n

The second term does not converge to zero as n→∞ !
=⇒ bound suggests that restricted F is required for generalization.
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VC dimension

What happens with SF (n) for n > VC(F) ?
We know: n ≤ VC(F) =⇒ SF (n) = 2n but what if n > VC(F) ?

Lemma (Vapnik-Chervonenkis, Sauer, Shelah)

Let F be a class of functions with finite VC-dimension VC(F). Then for
all n ∈ N,

SF (n) ≤
VC(F)∑
i=0

(
n

i

)
,

and for all n > VC(F),

SF (n) ≤
( e n

VC(F)

)VC(F)
.

Phase transition from exponential to polynomial growth of SF (n)

Pons-Moll (06.02.2019) Machine Learning 19 / 36



VC bound II

Plugging the bounds on the growth function into the VC bounds

Corollary

Let F be a function class with VC-dimension VC(F), then for
2n > VC(F) one has for any δ > 0, with probability at least 1− δ,

R(fn) ≤ R(f ∗F ) + 8

√
VC(F) log 2 e n

VC(F) + log 8
δ

2n
.

Deviation of R(fn) from R(f ∗F ) = inff ∈F R(f ) decays as
√
VC(F) log nn .

VC dimension is not just counting the number of functions but the
variability of the functions in the class on the sample.

finite VC dimension ensures universal consistency,

other techniques for bounds exist: covering numbers, Rademacher
averages.
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VC bound III

Necessary and sufficient conditions for consistency
The following theorem is one of the key-theorems for statistical learning.

Theorem (Vapnik-Chervonenkis (1971))

A necessary and sufficient condition for the universal consistency of
empirical risk minimization using a function class F is,

lim
n→∞

log SF (n)

n
= 0.

We have proven that limn→∞
log SF (n)

n = 0 is sufficient for consistency.
The proof, that this condition is also necessary requires a bit more effort.
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Is the restriction necessary ?

Empirical risk minimization can be inconsistent
Input space: X = [0, 1]. The labels are deterministic

Y =

{
−1, if X ≤ 0.5,
1, if X > 0.5.

and P(X ≤ 0.5) =
1

2
.

We consider the following classifier,

fn(X ) =

{
Yi if X = Xi for some i = 1, . . . , n
1 otherwise.

.

We have Rn(fn) = 0 but R(fn) = 1
2 .

The classifier fn is not Bayes consistent. We have,

lim
n→∞

R(fn) =
1

2
6= 0 = R∗.

=⇒ just memorizing - no learning, no generalization.
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VC Dimension

VC dimensions of selected function classes:

The set of linear halfspaces in Rd has VC dimension d + 1.

The set of linear halfspaces of margin ρ and where the smallest sphere
enclosing the data has radius R has VC dimension,

VC(F) ≤ min
{
d ,

4R2

ρ2

}
+ 1.

The function sign(sin(tx)) on R has infinite VC dimension.

⇒ VC dimension has nothing to do with the number of free parameters !
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VC Bounds and SVM

Justification for Support Vector machines
The set of linear halfspaces of margin ρ and where the smallest sphere
enclosing the data has radius R has VC dimension,

VC(F) ≤ min
{
d ,

4R2

ρ2

}
+ 1.

The vector w of the optimal maximal-margin hyperplane satisfies,

‖w‖2 =
1

ρ2
,

Thus, the Support-Vector Machine (SVM)

min
w ,b

1

n

n∑
i=1

max{0, 1− Yi (〈w ,Xi 〉+ b)}+ λ ‖w‖2 .

penalizes large margins ‖w‖ =⇒ limits capacity of function class
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VC Bounds

Remarks on VC bounds (applies also to other existing bounds)

No a-posteriori justification: bounds cannot be used for a posteriori
justification. In particular, the bound holds not for the margin
obtained by the SVM, but the bound holds for a function class with
pre-defined margin (before seeing the data) !

Bounds are often loose: the bounds are worst-case bounds which
apply to any possible probability measure on X × Y =⇒ for practical
sample sizes bounds are often larger than 1 ! But: bounds capture
certain characteristics of the learning algorithm.
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Universal Bayes consistency

Decomposition into estimation and approximation error),

R(fn)− R∗ = R(fn)− inf
f ∈F

R(f )︸ ︷︷ ︸
Estimation error

+ inf
f ∈F

R(f )− R∗︸ ︷︷ ︸
Approximation error

.

=⇒ up to now fixed function class =⇒ fixed approximation error.

Structural risk minimization:

Let the function class F be a function of the sample size n: Fn.

as n→∞ let Fn grow so that in the limit it can model any function
but estimation error is still bounded:

withprob. ≥ 1−δ, R(fn) ≤ R(f ∗F )+8

√
VC(Fn) log 2 e n

VC(Fn)
+ log 8

δ

2n
.

=⇒ Universal Bayes consistency
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Questions

Naturally arising questions

Can we quantify the convergence to the Bayes risk ? Can we obtain
rates of convergence ?

What does universal consistency mean for the finite sample case ?

Is there a universally best learning algorithm ?
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No free lunch I

First negative result
Intuition: For every fixed n there exists a distribution where the classifier is
arbitrarily bad !

Theorem

For any ε > 0 and any integer n and classification rule fn, there exists a
distribution of (X ,Y ) with Bayes risk R∗ = 0 such that

E[R(fn)] ≥ 1

2
− ε.

construct a distribution on the set X = {1, . . . ,K},
noise-free but no structure,

for fixed n choose K sufficiently large such that the rule fn will fail
completely on the rest of X .
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No free lunch II

First negative result

There exists no universally consistent learning algorithm such
that R(fn) converges uniformly over all distributions to R∗.
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No free lunch III

Second negative result

Theorem

Let {an} be a sequence of positive numbers converging to zero with
1
16 ≥ a1 ≥ a2 ≥ . . .. For every sequence of classification rules, there exists
a distribution of (X ,Y ) with R∗ = 0, such that for all n,

E[R(fn)] ≥ an.

This result states that universally good learning algorithms do not exist
⇒ convergence to the Bayes risk can be arbitrarily slow !

There exist no universal rates to the Bayes risk. If one wants to
have rates of convergence to the Bayes risk one has to restrict

the class of distributions on X × Y.
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No free lunch IV

Third negative result

Theorem

For every sequence of classification rules fn, there is a universally consistent
sequence of classification rules gn such that for some distribution on X ×Y

P
(
fn(X ) 6= Y

)
> P

(
gn(X ) 6= Y

)
, ∀n ≥ 0.

Thus for every universally consistent learning rule there exists a
distribution on X × Y such that another universally consistent learning
rule is strictly better.

There exists no universally superior learning algorithm.
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No free lunch V

Summary

1 Restriction of the class of distributions on X × Y =⇒
convergence rates to Bayes for universally consistent learning
algorithms.
Problem: Assumptions cannot be tested. Performance guarantees
are only valid under the made assumptions.

2 Restriction of the function class =⇒ no universal consistency
possible.
Comparison to the best possible function in the class is possible
uniformly over all distributions.
But no performance guarantees with respect to the Bayes risk.
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Convergence rates to Bayes

Convergence rates to Bayes only possible under assumptions on the
distribution of (X ,Y )
Reasonable assumptions fulfill two requirements:

The assumptions should be as natural as possible, meaning that one
expects that most the data generating distributions one encounters in
nature fulfill these assumptions.

The assumptions should be narrow enough, so that one can still prove
convergence rates.
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Convergence rates to Bayes II

Assumptions
In terms of the regression function: η(x) = E[Y |X = x ].

η(x) lies in some Sobolev space (has certain smoothness properties),

Margin/low noise conditions introduced by Massart and Tsybakov,

Definition

A distribution P on X × {−1, 1} fulfills the low noise condition if there
exist constants C > 0 and α ≥ 0 such that

P
(
|η(X )| ≤ t

)
≤ Ctα, ∀ t ≥ 0.

The coefficient α is called the noise coefficient of P.

1 α = 0 is trival and implies no restrictions on the distribution,
2 α =∞, η(x) strictly bounded away from zero.
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Universal Consistency II

Universal consistency for soft-margin SVM’s

Definition

A continuous kernel k : X × X → R is called universal if the associated
RKHS Hk is dense in the set of continuous functions C (X ) with the
‖·‖∞-norm, that is for all f ∈ C (X ) and ε > 0 there exists a g ∈ Hk such
that

‖f − g‖∞ ≤ ε.

⇒ Measurable functions can be approximated by continuous functions.

A soft-margin SVM in Rd with a universal kernel is universally consistent.

Theorem

Let X ⊂ Rd be compact, then the soft-margin SVM with error parameter
Cn = n1−β for some 0 < β < 1

d and a Gaussian kernel is universally
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THE END

Bachelor/Master/PhD topics in
machine learning !

Thanks for your attention !
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