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Backpropagation and 
Neural Networks

Slides adapted from: http://cs231n.stanford.edu/syllabus.html

Gerard Pons-Moll
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want

scores function

SVM loss

data loss + regularization

Where we are...
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Optimization

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain
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Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient

Gradient descent
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input image

loss

weights

Convolutional network
(AlexNet)
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Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss
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Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.
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Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Chain rule:

Upstream 
gradient

Local
gradient
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Upstream 
gradient

Local
gradient
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f
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f

“local gradient”
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f
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gradients
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f

“local gradient”

gradients
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:

Upstream 
gradient

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2  (both inputs!)
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Another example:
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Another example:

[upstream gradient] x [local gradient]
x0: [0.2] x [2] = 0.4
w0: [0.2] x [-1] = -0.2
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sigmoid function

sigmoid gate

Computational graph representation may not 
be unique. Choose one where local gradients 
at each node can be easily expressed!
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sigmoid gate

47

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)]= 0.2

sigmoid function

Computational graph representation may not 
be unique. Choose one where local gradients 
at each node can be easily expressed!
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add gate: gradient distributor

Patterns in backward flow
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add gate: gradient distributor

Patterns in backward flow

Q: What is a max gate?
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 49

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 12, 201851

add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

Q: What is a mul gate? 
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add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

mul gate: gradient switcher
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+

Gradients add at branches
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f

“local gradient”

This is now the 
Jacobian matrix 
(derivative of each 
element of z w.r.t. each 
element of x)

(x,y,z are 
now vectors)

gradients

Gradients for vectorized code
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f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations
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Jacobian matrix

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Q: what is the 
size of the 
Jacobian matrix?
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Jacobian matrix

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]
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i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

in practice we process an 
entire minibatch (e.g. 100) 
of examples at one time:
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Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

Q2: what does it 
look like?

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Vectorized operations

Jacobian matrix
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A vectorized example:
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A vectorized example:
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A vectorized example:



 61

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 12, 201863

A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:

Always check: The 
gradient with 
respect to a variable 
should have the 
same shape as the 
variable
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A vectorized example:
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A vectorized example:
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A vectorized example:
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In discussion section: A matrix example...

?

?
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Modularized implementation: forward / backward API

Graph (or Net) object  (rough pseudo code)
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Upstream gradient variableLocal gradient
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Example: Caffe layers

Caffe is licensed under BSD 2-Clause
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* top_diff  (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer
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Stage your forward/backward computation!
E.g. for the SVM:

margins

In Assignment 1: Writing SVM / Softmax



 80

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 12, 201882

● neural nets will be very large: impractical to write down gradient formula 
by hand for all parameters

● backpropagation = recursive application of the chain rule along a 
computational graph to compute the gradients of all 
inputs/parameters/intermediates

● implementations maintain a graph structure, where the nodes implement 
the forward() / backward() API

● forward: compute result of an operation and save any intermediates 
needed for gradient computation in memory

● backward: apply the chain rule to compute the gradient of the loss 
function with respect to the inputs

Summary so far...
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Next: Neural Networks
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Neural networks: without the brain stuff

(Before) Linear score function:
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: without the brain stuff
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: without the brain stuff

x hW1 sW2

3072 100 10
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: without the brain stuff

x hW1 sW2

3072 100 10
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Neural networks: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
  or 3-layer Neural Network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:
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In HW: Writing a 2-layer net
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This image by Fotis Bobolas is 
licensed under CC-BY 2.0
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal
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Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical 

system
● Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions
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“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures
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We can efficiently evaluate an entire layer of neurons.

Example feed-forward computation of a neural network
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0

Example feed-forward computation of a neural network
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1

Summary

- We arrange neurons into fully-connected layers
- The abstraction of a layer has the nice property that it 

allows us to use efficient vectorized code (e.g. matrix 
multiplies)

- Neural networks are not really neural
- Next time: Convolutional Neural Networks


