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Slides adapted from Stanford course on ConvNets

Gerard Pons-Moll



Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 - 3

Linear score function:

2-layer Neural Network
      

Last time: Neural Networks

x hW1 sW2

3072 100 10
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Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

4
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Frank Rosenblatt, ~1957: Perceptron

The Mark I Perceptron machine was the first 
implementation of the perceptron algorithm. 

The machine was connected to a camera that used 
20×20 cadmium sulfide photocells to produce a 400-pixel 
image. 

recognized 
letters of the alphabet

update rule:

A bit of history...

This image by Rocky Acosta is licensed under CC-BY 3.0
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Widrow and Hoff, ~1960: Adaline/Madaline

A bit of history...

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical 
Report with permission from Stanford University Special Collections.
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Rumelhart et al., 1986: First time back-propagation became popular

recognizable math

A bit of history...

Illustration of Rumelhart et al., 1986 by Lane McIntosh, 
copyright CS231n 2017
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[Hinton and Salakhutdinov 2006]

Reinvigorated research in 
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006  by Lane 
McIntosh, copyright CS231n 2017
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First strong results
Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks 
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright 
CS231n 2017

Imagenet classification with deep convolutional 
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012
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A bit of history:

Hubel & Wiesel,
1959
RECEPTIVE FIELDS OF SINGLE 
NEURONES IN
THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR 
INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...

10
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A bit of history

Topographical mapping in the cortex:
nearby cells in cortex represent 
nearby regions in the visual field

Retinotopy images courtesy of Jesse Gomez in the 
Stanford Vision & Perception Neuroscience Lab. 

Human brain

Visual
cortex
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Hierarchical organization

Illustration of hierarchical organization in early visual 
pathways by Lane McIntosh, copyright CS231n 2017
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A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)
simple cells: modifiable parameters
complex cells: perform pooling

13
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A bit of history:
Gradient-based learning applied to 
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

14
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A bit of history:
ImageNet Classification with Deep 
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

15
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Fast-forward to today: ConvNets are everywhere
Classification Retrieval
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Fast-forward to today: ConvNets are everywhere

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]
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Fast-forward to today: ConvNets are everywhere

NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup 
would involve NVIDIA Tegras, with integrated 
GPU and ARM-based CPU cores.self-driving cars
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Fast-forward to today: ConvNets are everywhere

[Taigman et al. 2014]

[Simonyan et al. 2014]
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Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

[Guo et al. 2014]



Fast forward to today: ConvNets are everywhere

Omran et al. 2018



Fast forward to today: ConvNets are everywhere

Huang et al. 2018



Fast forward to today: ConvNets are everywhere
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Fast-forward to today: ConvNets are everywhere

[Levy et al. 2016]

[Sermanet et al. 2011]
[Ciresan et al.]

Photos by Lane McIntosh.
Copyright CS231n 2017.

[Dieleman et al. 2014]
From left to right: public domain by NASA, usage permitted by 

ESA/Hubble, public domain by NASA, and public domain.

Figure copyright Levy et al. 2016. 
Reproduced with permission. 
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Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

This image by Christin Khan is in the public domain 
and originally came from the U.S. NOAA.

Photo and figure by Lane McIntosh; not actual 
example from Mnih and Hinton, 2010 paper.
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[Vinyals et al., 2015]
[Karpathy and Fei-Fei, 
2015]

Image 
Captioning

No errors Minor errors Somewhat related

A white teddy bear sitting in 
the grass

A man riding a wave on 
top of a surfboard

A man in a baseball 
uniform throwing a ball

A cat sitting on a 
suitcase on the floor

A woman is holding a 
cat in her hand

All images are CC0 Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

A woman standing on a 
beach holding a surfboard



Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201824



Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201825

Convolutional Neural Networks
(First without the brain stuff)
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10
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32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24
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Preview [Zeiler and Fergus 2013]
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Preview
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example 5x5 filters
(32 total)

We call the layer convolutional 
because it is related to convolution 
of two signals:

elementwise multiplication and sum of 
a filter and the signal (image)

one filter => 
one activation map
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preview:
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A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\
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In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0
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Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760
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Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)
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Example: CONV 
layer in Torch

Torch is licensed under BSD 3-clause.
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Example: CONV 
layer in Caffe

Caffe is licensed under BSD 2-Clause.
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The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between 
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)
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The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between 
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local 
connectivity... 
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The brain/neuron view of CONV Layer

32

32

3

An activation map is a 28x28 sheet of neuron 
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28
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The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of 
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different 
neurons all looking at the same 
region in the input volume5
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3072
1

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Each neuron 
looks at the full 
input volume 
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two more layers to go: POOL/FC
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING
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Common settings:

F = 2, S = 2
F = 3, S = 2
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
      where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet 
challenge this paradigm


