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This exercise does not have to be submitted. Please prepare the sheet for your
next exercise group as it will be discussed.

Exercise 1 - Spectrum of Symmetric Matrices

Any real, symmetric matrix A ∈ Rn×n has the decomposition

A = UΣUT ,

where Σ ∈ Rn×n is a diagonal matrix with the eigenvalues λ1, . . . , λn of A on the diagonal and U is
an orthogonal matrix in Rn×n, that is UUT = UTU = 1, which contains the corresponding eigen-
vectors (more precisely: an orthogonal basis of the eigenspace of the corresponding eigenvalue).

a. Derive the eigenvalues and eigenvectors of Ak (matrix product with itself) for k ∈ N.

b. Prove that
〈x,Ax〉
〈x, x〉

≤ λmax(A),

where 〈x, y〉 = xT y is the inner product in Rn, λmax(A) is the largest eigenvalue of A.

Exercise 2 - Empirical Mean and Covariance

Given a set of n points X = [x1, . . . , xn], where xn ∈ Rd, X ∈ Rd×n.

a. Derive the minimizer c∗ for function

f(c) =

n∑
i=1

‖xi − c‖22 ,

where ‖x‖2 denotes the Euclidean norm ‖c‖2 =
√∑d

j=1 c
2
j .

b. Show that the empirical covariance matrix for X

ΣX =
1

n

n∑
i=1

(xi − µ)(xi − µ)T

is positive semi-definite, that is wT ΣXw ≥ 0, for all w ∈ Rd, µ = 1
n

∑n
i=1 xi.

Hint: consider using the Cauchy-Schwarz inequality, 〈u, v〉2 ≤ ‖u‖2 ‖v‖2.

Exercise 3 - Multivariate Gaussian

In the lecture we have seen the multivariate Gaussian x ∼ N(µ,Σ) where the density function is
defined as

f(x) = (2π)−
d
2 |Σ|− 1

2 exp(−1

2
(x− µ)T Σ−1(x− µ))

Now we have n multivariate Gaussian random vectors {xi}ni=1, where xi ∼ N(0,Σi),xi ∈ Rd.

a. Consider the case where all the random vectors are mutually independent, derive the density
function for

∑n
i=1 xi.

b. Consider the case n = 2. Given the covariance matrix cov(x1, x2) = C, derive the density
function for the joint vector ( x1

x2
) ∈ R2d.
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