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Large Scale Machine Learning

Optimization problems in machine learning often have the form

min
w∈Rd

1

n

n∑
i=1

L(yi , 〈w , xi 〉) + λΩ(w).

What does large scale mean ?

too large to fit into memory

so large that training on subset yields already good results

hyperparameter selection is done by optimizing on a validation set

Observation: very accurate solution not required !

Pons-Moll (23.01.2019) Machine Learning 2 / 12



Program for today

Large Scale Learning

Interaction of Learning and Optimization
How does the game change when one has huge amounts of
training data ?

Stochastic/Cyclic Dual Coordinate Ascent

Stochastic Gradient Descent
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Classical Tradeoff in Learning

Goal: Bayes optimal classifier f ∗ = argmin
f

E[L(Y , f (X ))] =: R(f )

optimization over all functions impossible - choose function class F
best function in F :

f ∗F = argmin
f ∈F

E[L(Y , f (X ))].

only n i.i.d. samples - replace expectation with empirical average
empirical risk minimization:

f ∗n = argmin
f ∈F

1

n

n∑
i=1

L(Yi , f (Xi )) =: Rn[f ].

Classical (Small-Scale) Tradeoff in Learning:

R(fn)− R(f ∗)︸ ︷︷ ︸
excess risk

= R(fn)− R(f ∗F )︸ ︷︷ ︸
estimation error

+ R(f ∗F )− R(f ∗)︸ ︷︷ ︸
approximation error
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Tradeoff in Large-Scale Learning

Key idea: Optimize up to the estimation error (Bottou, Bousquet (2008)).

Learning and Optimization should be seen as joint problem !

Optimization error as a new source of error

we only estimate function f̃ with:

Rn(f̃ ) < Rn(fn) + ρ,

that is we get empirical risk minimizer only up to accuracy ρ

Goal: Minimize excess risk of f̃ ,

R(f̃ )− R(f ∗)︸ ︷︷ ︸
excess risk

= R(f̃ )− R(fn)︸ ︷︷ ︸
optimization error

+ R(fn)− R(f ∗F )︸ ︷︷ ︸
estimation error

+ R(f ∗F )− R(f ∗)︸ ︷︷ ︸
approximation error

subject to n < nmax (label budget) and t < tmax (time budget)
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Analysis

The estimation error behaves typically as 1√
n

and as 1
n (fast rates).

small scale: bounded by nmax - minimize ρ as much as possible

large scale: bounded by tmax - allow larger ρ (on the order of the
estimation error) in order to process more samples n.
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Recap: Gradient Descent

Optimization problem:

min
w∈Rd

φ(w) :=
1

n

n∑
i=1

L(yi , 〈w , xi 〉) + λΩ(w).

General gradient descent: Start with initial point w0,

Sequence: wt+1 = wt − αt ∇wφ.

Stepsize and stopping criteria:

αt is the stepsize → has to be chosen sufficiently small, such that
f (xt+1) < f (xt).
Find minimum of g(α) (line search)

g(α) := f (xt + αt dt)

In practice: backtracking line search.

Several different stopping criteria e.g. ‖∇f (xt+1)‖ ≤ ε.
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Discussion of gradient descent

requires pass over full training set in each iteration to compute
gradient and to do function evaluations (computational cost O(nd))

a lot of computation is wasted in the initial iterations

Problems with Large Scale Problems:

each iteration is very costly (if training data fits into memory) or not
affordable (if training data does not fit into memory)

high accuracy not needed
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Stochastic Gradient Descent

Rewrite optimization problem as :

min
w∈Rd

φ(w) :=
1

n

n∑
i=1

(
L(yi , 〈w , xi 〉) + nλΩ(w)

)
:=

1

n

n∑
i=1

φi (w).

Key idea: don’t compute gradient with respect to full problem, but
with respect to φi .

Stochastic gradient descent:

variants: draw sample (xi , yi ) with or without replacement

wk+1 = wk − αk∇φi (wk)

If training data is i.i.d., then for every fixed w and every i ∈ {1, . . . , n},

E[∇wφi (w)] = ∇wE[L(Y , 〈w ,X 〉)] + nλ∇wΩ(w).

thus the gradients of φi are unbiased estimators of the true gradient of the
objective.
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Learning as Stochastic Optimization

Stochastic Optimization: min
w∈Rd

EX [f (w ,X )]. Let Xk be an i.i.d. sample

from the probability measure of X , then

wk+1 = wk − αk∇f (wk ,Xk).

Learning Problem: min
w∈Rd

E(X ,Y )[L(Y , 〈X ,w〉)].

Two ways to see stochastic gradient desent for learning:

stochastic optimization with respect to the empirical measure, that is
optimization of the empirical loss 1

n

∑n
i=1 L(Yi , 〈Xi ,w〉)

the first epoch (until we have seen all samples once) can be seen as
stochastic optimization of the expected loss E[L(Y , 〈X ,w〉)].
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Gradient Descent versus SGD

Comparison of Gradient Descent (GD) and Stochastic Gradient Descent
(SGD), Problem: n ≈ 480000 and d = 55, we fit logistic loss without

regularizer.
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Extensions

SGD with momentum: keep track of direction of previous gradients

vk = ηkvk−1 − αk∇φi (wk), wk+1 = wk + vk .

related: Stochastic Average Gradient Descent (SAG) (2012), requires
O(nd) memory.

SGD with averaging: typical, average iterates w∗ = 1
K

∑K
k=1 wk .

=⇒ improved convergence rates compared to vanilla SGD

proximal methods: wk+1 = argmin
w∈Rd

φi (w) + 1
2αk
‖w − wk‖22.

a lot of current research in adaptive techniques: AdaGrad, RMSProp,
Adam,...
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