Machine Learning Large Scale Learning

Dr. Gerard Pons-Moll

23.01.2019

Optimization problems in machine learning often have the form

$$\min_{w\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n L(y_i,\langle w,x_i\rangle)+\lambda\Omega(w).$$

What does large scale mean ?

- too large to fit into memory
- so large that training on subset yields already good results
- hyperparameter selection is done by optimizing on a validation set

Observation: very accurate solution not required !

Large Scale Learning

- Interaction of Learning and Optimization
 How does the game change when one has huge amounts of training data ?
- Stochastic/Cyclic Dual Coordinate Ascent
- Stochastic Gradient Descent

Classical Tradeoff in Learning

Goal: Bayes optimal classifier $f^* = \arg \min_f \mathbb{E}[L(Y, f(X))] =: R(f)$

• optimization over all functions impossible - choose function class \mathcal{F} best function in \mathcal{F} :

$$f_{\mathcal{F}}^* = \operatorname*{arg\,min}_{f\in\mathcal{F}} \mathbb{E}[L(Y,f(X))].$$

• only *n* i.i.d. samples - replace expectation with empirical average empirical risk minimization:

$$f_n^* = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n L(Y_i, f(X_i)) =: R_n[f].$$

Classical (Small-Scale) Tradeoff in Learning:

$$\underbrace{R(f_n) - R(f^*)}_{\text{excess risk}} = \underbrace{R(f_n) - R(f^*_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f^*_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

Pons-Moll (23.01.2019)

Key idea: Optimize up to the estimation error (Bottou, Bousquet (2008)).

Learning and Optimization should be seen as joint problem !

Optimization error as a new source of error

• we only estimate function \tilde{f} with:

$$R_n(\tilde{f}) < R_n(f_n) + \rho,$$

that is we get empirical risk minimizer only up to accuracy ρ

Goal: Minimize excess risk of \tilde{f} ,

 $\underbrace{R(\tilde{f}) - R(f^*)}_{\text{excess risk}} = \underbrace{R(\tilde{f}) - R(f_n)}_{\text{optimization error}} + \underbrace{R(f_n) - R(f^*_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f^*_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$

subject to $n < n_{\max}$ (label budget) and $t < t_{\max}$ (time budget)

Pons-Moll (23.01.2019)

The estimation error behaves typically as $\frac{1}{\sqrt{n}}$ and as $\frac{1}{n}$ (fast rates).

- small scale: bounded by n_{\max} minimize ρ as much as possible
- large scale: bounded by t_{max} allow larger ρ (on the order of the estimation error) in order to process more samples *n*.

Recap: Gradient Descent

Optimization problem:

$$\min_{w\in\mathbb{R}^d}\phi(w):=rac{1}{n}\sum_{i=1}^n L(y_i,\langle w,x_i
angle)+\lambda\Omega(w).$$

General gradient descent: Start with initial point w₀,

Sequence:
$$w_{t+1} = w_t - \alpha_t \nabla_w \phi$$
.

Stepsize and stopping criteria:

• α_t is the stepsize \rightarrow has to be chosen sufficiently small, such that $f(x_{t+1}) < f(x_t)$. Find minimum of $g(\alpha)$ (line search)

$$g(\alpha) := f(x_t + \alpha_t d_t)$$

In practice: backtracking line search.

• Several different stopping criteria e.g. $\|\nabla f(x_{t+1})\| \leq \epsilon$.

- requires pass over full training set in each iteration to compute gradient and to do function evaluations (computational cost O(nd))
- a lot of computation is wasted in the initial iterations

Problems with Large Scale Problems:

- each iteration is very costly (if training data fits into memory) or not affordable (if training data does not fit into memory)
- high accuracy not needed

Rewrite optimization problem as :

$$\min_{w\in\mathbb{R}^d}\phi(w):=\frac{1}{n}\sum_{i=1}^n\left(L(y_i,\langle w,x_i\rangle)+n\lambda\Omega(w)\right):=\frac{1}{n}\sum_{i=1}^n\phi_i(w).$$

Key idea: don't compute gradient with respect to full problem, but with respect to ϕ_i .

Stochastic gradient descent:

• variants: draw sample (x_i, y_i) with or without replacement

•
$$w_{k+1} = w_k - \alpha_k \nabla \phi_i(w_k)$$

If training data is i.i.d., then for every fixed w and every $i \in \{1, \ldots, n\}$,

$$\mathbb{E}[\nabla_{w}\phi_{i}(w)] = \nabla_{w}\mathbb{E}[L(Y, \langle w, X \rangle)] + n\lambda \nabla_{w}\Omega(w).$$

thus the gradients of ϕ_i are unbiased estimators of the true gradient of the objective.

Pons-Moll (23.01.2019)

Stochastic Optimization: $\min_{w \in \mathbb{R}^d} \mathbb{E}_X[f(w, X)]$. Let X_k be an i.i.d. sample from the probability measure of X, then

$$w_{k+1} = w_k - \alpha^k \nabla f(w_k, X_k).$$

Learning Problem: $\min_{w \in \mathbb{R}^d} \mathbb{E}_{(X,Y)}[L(Y, \langle X, w \rangle)].$

Two ways to see stochastic gradient desent for learning:

- stochastic optimization with respect to the empirical measure, that is optimization of the empirical loss ¹/_n ∑ⁿ_{i=1} L(Y_i, ⟨X_i, w⟩)
- the first epoch (until we have seen all samples once) can be seen as stochastic optimization of the expected loss E[L(Y, ⟨X, w⟩)].

Comparison of Gradient Descent (GD) and Stochastic Gradient Descent (SGD), Problem: $n \approx 480000$ and d = 55, we fit logistic loss without regularizer.

• SGD with momentum: keep track of direction of previous gradients

$$\mathbf{v}_k = \eta_k \mathbf{v}_{k-1} - \alpha_k \nabla \phi_i(\mathbf{w}_k), \quad \mathbf{w}_{k+1} = \mathbf{w}_k + \mathbf{v}_k.$$

related: Stochastic Average Gradient Descent (SAG) (2012), requires O(nd) memory.

- SGD with averaging: typical, average iterates $w^* = \frac{1}{K} \sum_{k=1}^{K} w_k$. \implies improved convergence rates compared to vanilla SGD
- proximal methods: $w_{k+1} = \underset{w \in \mathbb{R}^d}{\operatorname{arg\,min}} \phi_i(w) + \frac{1}{2\alpha_k} \|w w_k\|_2^2$.
- a lot of current research in adaptive techniques: AdaGrad, RMSProp, Adam,...