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Large Scale Machine Learning

Optimization problems in machine learning often have the form

n

1
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What does large scale mean ?
@ too large to fit into memory
@ so large that training on subset yields already good results

@ hyperparameter selection is done by optimizing on a validation set

Observation: very accurate solution not required !
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Program for today

Large Scale Learning

@ Interaction of Learning and Optimization
How does the game change when one has huge amounts of

training data ?
@ Stochastic/Cyclic Dual Coordinate Ascent
@ Stochastic Gradient Descent
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Classical Tradeoff in Learning

Goal: Bayes optimal classifier * = argmin E[L(Y, f(X))] =: R(f)
f'

@ optimization over all functions impossible - choose function class F
best function in F:

fr =argminE[L(Y, f(X))].
feF

@ only ni.i.d. samples - replace expectation with empirical average
empirical risk minimization:

fy = argmin — (Y, F(Xi)) =: Ra[f].
g 1001000 = i

Classical (Small-Scale) Tradeoff in Learning:

R(f,) — R(f") = R(f,) — R(fr) + R(f7) — R(f")

excess risk estimation error approximation error
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Tradeoff in Large-Scale Learning

Key idea: Optimize up to the estimation error (Bottou, Bousquet (2008)).
Learning and Optimization should be seen as joint problem !

Optimization error as a new source of error

o we only estimate function £ with:
Rn(f) < Ra(fa) + p,

that is we get empirical risk minimizer only up to accuracy p

Goal: Minimize excess risk of f,
R(f) — R(f*) = R(f) — R(f,) + R(f,) — R(f%) + R(ff) — R(f*)

excess risk optimization error estimation error approximation error

subject to n < nNmax (label budget) and t < tmax (time budget)
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The estimation error behaves typically as f and as = (fast rates).
o small scale: bounded by nmax - minimize p as much as possible

o large scale: bounded by tmax - allow larger p (on the order of the
estimation error) in order to process more samples n.
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Recap: Gradient Descent

Optimization problem:

min 6(w) i= T3 Ly, (w, ) + Aw).
i=1

General gradient descent: Start with initial point wy,
Sequence: Wiy = Wy — &y V.

Stepsize and stopping criteria:

@ «; is the stepsize — has to be chosen sufficiently small, such that
f(Xt+]_) < f(Xt).

Find minimum of g(a) (line search)

gl(a) == f(x¢ + ar dp)

In practice: backtracking line search.
o Several different stopping criteria e.g. ||Vf(x:11)|| < e
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Discussion of gradient descent

@ requires pass over full training set in each iteration to compute
gradient and to do function evaluations (computational cost O(nd))

@ a lot of computation is wasted in the initial iterations

Problems with Large Scale Problems:

@ each iteration is very costly (if training data fits into memory) or not
affordable (if training data does not fit into memory)

@ high accuracy not needed
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Stochastic Gradient Descent

Rewrite optimization problem as :

min ¢(w) := ,172,1: (L(y,', (w, x;)) + nAQ(w > Z¢,

i=1
Key idea: don’t compute gradient with respect to full problem, but
with respect to ¢;.
Stochastic gradient descent:
@ variants: draw sample (x;, y;) with or without replacement
® Wiy1 = Wk — axVi(wk)
If training data is i.i.d., then for every fixed w and every i € {1,..., n},
E[Vwoi(w)] = VWE[L(Y, (w, X)) + nAV,Q(w).

thus the gradients of ¢; are unbiased estimators of the true gradient of the
objective.
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Learning as Stochastic Optimization

Stochastic Optimization: min Ex[f(w, X)]. Let Xy be an i.i.d. sample
weRd

from the probability measure of X, then
Wkt1 = Wk — aka(Wk,Xk).

Learning Problem: min Ex,v) [L(Y, (X, w))].
weRd

Two ways to see stochastic gradient desent for learning:

@ stochastic optimization with respect to the empirical measure, that is
optimization of the empirical loss £ S°7 | L(Y;, (X, w))

o the first epoch (until we have seen all samples once) can be seen as
stochastic optimization of the expected loss E[L(Y, (X, w))].

Pons-Moll (23.01.2019) Machine Learning



Gradient Descent versus SGD

Gradient Descent versus Stochastic Gradient Descent Gradient Descent versus Stochastic Gradient Descent
Bl 03

—SGD with stepsize aj = 120 --~Train. Err (SGD)
—Test Err (SGD)
---Train. Err (GD)

—Test Err (SGD)

T
15 —Gradient Descent with Backtracking Linesearch
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Comparison of Gradient Descent (GD) and Stochastic Gradient Descent
(SGD), Problem: n ~ 480000 and d = 55, we fit logistic loss without
regularizer.
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Extensions

SGD with momentum: keep track of direction of previous gradients
Vik = NkVk—-1 — aka),-(Wk), Wg41 = Wik + V.

related: Stochastic Average Gradient Descent (SAG) (2012), requires
O(nd) memory.

o SGD with averaging: typical, average iterates w* = % Zszl W
— improved convergence rates compared to vanilla SGD

e proximal methods: wy; = argmin ¢;(w) + ﬁ |w — WkH%.
weRd
@ a lot of current research in adaptive techniques: AdaGrad, RMSProp,

Adam, ...
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