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Manifold
� A manifold is a topological space which is 

locally Euclidean. In general, any object 
which is nearly "flat" on small scales is a 
manifold. 

� Examples of 1-D manifolds include a line, a 
circle, and two separate circles.
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Embedding
� An embedding is a representation of a 

topological object, manifold, graph, field, etc. 
in a certain space in such a way that its 
connectivity or algebraic properties are 
preserved.

� Examples:
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Manifold and Dimensionality 
Reduction (1)
� Manifold: generalized “subspace” in Rn

� Points in a local region on a manifold can be 
indexed by a subset of Rk (k<<n)
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Manifold and Dimensionality 
Reduction (2)
� If there is a global indexing scheme for M…
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Introduction (1)
� We consider the problem of constructing a 

representation for data lying on a low 
dimensional manifold embedded in a high 
dimensional space
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Introduction (2)
� Linear methods

- PCA (Principal Component  Analysis) 1901
- MDS (Multidimensional Scaling) 1952

� Nonlinear methods
- ISOMAP 2000
- LLE (Locally Linear Embedding) 2000
- LE (Laplacian Eigenmap) 2003
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Linear Methods (1)
� What are “linear” methods?

- Assume that data is a linear function of the 
parameters 

� Deficiencies of linear methods
- Data may not be best summarized by linear 
combination of features
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Linear Methods (2)
� PCA: rotate data so that principal axes lie in 

direction of maximum variance
� MDS: find coordinates that best preserve 

pairwise distances
� Linear methods do nothing more than 

“globally transform” (rotate/translate/scale) 
data.
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ISOMAP, LLE and Laplacian
Eigenmap
� The graph-based algorithms have 3 basic 

steps.
� 1.  Find K nearest neighbors.
� 2.  Estimate local properties of manifold by 

looking at neighborhoods found in Step 1.
� 3.  Find a global embedding that preserves the 

properties found in Step 2.
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Geodesic Distance (1)
� Geodesic: the shortest curve on a manifold 

that connects two points on the manifold
� Example: on a sphere, geodesics are great circles

� Geodesic distance: length of the geodesic
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Geodesic Distance (2)
� Euclidean distance needs not be a good 

measure between two points on a manifold
� Length of geodesic is more appropriate
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ISOMAP

14

� Comes from Isometric feature mapping
Step1: Take a distance matrix {gij} as input
Step2: Estimate geodesic distance between 
any two points by “a chain of short paths”
à Approximate the geodesic distance by Euclidean 

distance
Step3: Perform MDS



LLE (1)
� Assumption: manifold is approximately 

“linear” when viewed locally
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LLE (2)
� The geometrical property is best preserved if 

the error below is small

i.e. choose the best W to minimize the cost 
function
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Some Aspects of the Algorithm
� It reflects the intrinsic geometric structure of 

the manifold
� The manifold is approximated by the 

adjacency graph computed from the data 
points

� The Laplace Beltrami operator is 
approximated by the weighted Laplacian of 
the adjacency graph
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Laplace Beltrami Operator (1)
� The Laplace operator is a second order 

differential operator in the n-dimensional 
Euclidean space:

� Laplace Beltrami operator:
The Laplacian can be extended to functions 
defined on surfaces, or more generally, on 
Riemannian and pseudo-Riemannian 
manifolds.
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Laplace Beltrami Operator (2)
� We can justify that the eigenfunctions of the 

Laplace Beltrami operator have properties 
desirable for embedding…
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Lapalcian of  a Graph (1)
� Let G(V,E) be a undirected graph without 

graph loops. The Laplacian of the graph is 

dij if  i=j  (degree of node i)

Lij =    -1   if  i≠j and (i,j) belongs to E

0   otherwise
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Lapalcian of  a Graph (2)
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Laplacian Eigenmap (1)
� Consider that                      , and M is a 

manifold embedded in Rl. Find y1,.., yn in Rm

such that yi represents xi(m<<l )
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Laplacian Eigenmap (2)
� Construct the adjacency graph to 

approximate the manifold
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Laplacian Eigenmap (3)
� There are two variations for W (weight matrix)

- simple-minded (1 if connected, 0 o.w.)
- heat kernel (t is real)
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Laplacian Eigenmap (4)
� Consider the problem of mapping the graph G 

to a line so that connected points stay as close 
together as possible

� To choose a good “map”, we have to minimize 
the objective function

Wij , (yi-yj)  
yTLy where y = [y1 … yn]T
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Laplacian Eigenmap (5)
� Therefore, this problem reduces to find               

argmin yTLy subjects to yTDy = 1
(removes an arbitrary scaling factor in the 
embedding)

� The solution y is the eigenvector 
corresponding to the minimum eigenvalue of 
the generalized eigenvalue problem

Ly = λDy
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Laplacian Eigenmap (6)
� Now we consider the more general problem 

of embedding the graph into m-dimensional 
Euclidean space

� Let Y be such a n*m map
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Laplacian Eigenmap (7)

� To sum up:

Step1: Construct adjacency graph

Step2: Choosing the weights

Step3: Eigenmaps Ly = λDy

Ly0 = λ0Dy0, Ly1 = λ1Dy1 …
0= λ0≦ λ1≦… ≦ λn-1

xi à (y0(i), y1(i),…, ym(i))
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Recall that we have n data points, so L and D 
is n�n and y is a n�1 vector



ISOMAP, LLE and Laplacian
Eigenmap
� The graph-based algorithms have 3 basic 

steps.
� 1.  Find K nearest neighbors.
� 2.  Estimate local properties of manifold by 

looking at neighborhoods found in Step 1.
� 3.  Find a global embedding that preserves the 

properties found in Step 2.
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� The following material is from 
http://www.math.umn.edu/~wittman/mani/
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Swiss Roll (1)
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Swiss Roll (2)
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MDS is very slow, and ISOMAP is extremely slow.
MDS and PCA don’t can’t unroll Swiss Roll, use no manifold information.
LLE and Laplacian can’t handle this data.



Swiss Roll (3)
� Isomap provides a isometric embedding that 

preserves global geodesic distances
à It works only when the surface is flat

� Laplacian eigenmap tries to preserve the 
geometric characteristics of the surface
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Non-Convexity (1)
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Non-Convexity (2)
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Only Hessian LLE can handle non-convexity.
ISOMAP, LLE, and Laplacian find the hole but the set is distorted.



Curvature & Non-uniform Sampling
� Gaussian: We can randomly sample a 

Gaussian distribution.
� We increase the curvature by decreasing the 

standard deviation.
� Coloring on the z-axis, we should map to 

concentric circles
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For std = 1 (low curvature), MDS and PCA can project accurately.
Laplacian Eigenmap cannot handle the change in sampling.
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For std = 0.4 (higher curvature), PCA projects from the side rather than top-down.
Laplacian looks even worse.
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For std = 0.3 (high curvature), none of the methods can project correctly.



Corner
� Corner Planes: We bend a plane with a lift 

angle A.
� We want to bend it back down to a plane.
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For angle A=75, we see some disortions in PCA and Laplacian.
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For A = 135, MDS, PCA, and Hessian LLE overwrite the data points.
Diffusion Maps work very well for Sigma < 1.
LLE handles corners surprisingly well.



Clustering
� 3D Clusters: Generate M non-overlapping 

clusters with random centers.  Connect the 
clusters with a line.

45



46

For M = 3 clusters, MDS and PCA can project correctly.
LLE compresses each cluster into a single point.
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For M=8 clusters, MDS and PCA can still recover.
LLE and ISOMAP are decent, but Hessian and Laplacian fail.



Sparse Data & Non-uniform 
Sampling
� Punctured Sphere: the sampling is very 

sparse at the bottom and dense at the top.
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Only LLE and Laplacian get decent results.
PCA projects the sphere from the side.  MDS turns it inside-out.
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MDS PCA ISOMAP LLE Laplacian Diffusion 
Map

KNN 
Diffusion

Hessian

Speed Very 
slow

Extremely 
fast

Extremely 
slow

Fast Fast Fast Fast Slow

Infers 
geometry?

NO NO YES YES YES MAYBE MAYBE YES

Handles 
non-convex?

NO NO NO MAYBE MAYBE MAYBE MAYBE YES

Handles 
non-uniform 
sampling?

YES YES YES YES NO YES YES MAYBE

Handles 
curvature?

NO NO YES MAYBE YES YES YES YES

Handles 
corners?

NO NO YES YES YES YES YES NO

Clusters? YES YES YES YES NO YES YES NO

Handles 
noise?

YES YES MAYBE NO YES YES YES YES

Handles 
sparsity?

YES YES YES YES YES NO NO NO
may crash

Sensitive to 
parameters?

NO NO YES YES YES VERY VERY YES
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Applications
� We can apply manifold learning to pattern 

recognition (face, handwriting etc) 
� Recently, ISOMAP and Laplacian eigenmap

are used to initialize the human body model.
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Conclusions
� Laplacian eigenmap provides a 

computationally efficient approach to non-
linear dimensionality reduction that has 
locality preserving properties

� Laplcian and LLE attempts to approximate or 
preserve neighborhood information, while 
ISOMAP attempts to faithfully approximate all 
geodesic distances on the manifold 
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