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Abstract—Attributes act as intermediate representations that enable parameter sharing between classes, a must when training

data is scarce. We propose to view attribute-based image classification as a label-embedding problem: each class is embedded in

the space of attribute vectors. We introduce a function that measures the compatibility between an image and a label embedding.

The parameters of this function are learned on a training set of labeled samples to ensure that, given an image, the correct

classes rank higher than the incorrect ones. Results on the Animals With Attributes and Caltech-UCSD-Birds datasets show that

the proposed framework outperforms the standard Direct Attribute Prediction baseline in a zero-shot learning scenario. Label

embedding enjoys a built-in ability to leverage alternative sources of information instead of or in addition to attributes, such as

e.g. class hierarchies or textual descriptions. Moreover, label embedding encompasses the whole range of learning settings from

zero-shot learning to regular learning with a large number of labeled examples.

Index Terms—Image classification, Label Embedding, Attributes, Subspace Learning, Fine Grained Image Classification.
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1 INTRODUCTION

We consider the image classification problem where the

task is to annotate a given image with one (or multiple)

class label(s) describing its visual content. Image classifi-

cation is a prediction task: the goal is to learn from a labeled

training set a function f : X → Y which maps an input x in

the space of images X to an output y in the space of class

labels Y . In this work, we are especially interested in the

case where classes are related (e.g. they all correspond to

animals), but where we do not have any (positive) labeled

sample for some of the classes. This problem is generally

referred to as zero-shot learning [18], [30], [31], [43]. Given

the impossibility to collect labeled training samples in an

exhaustive manner for all possible visual concepts, zero-

shot learning is a problem of high practical value.

An elegant solution to zero-shot learning, called attribute-

based learning, has recently gained popularity in computer

vision. Attribute-based learning consists in introducing an

intermediate space A referred to as attribute layer [18],

[30]. Attributes correspond to high-level properties of the

objects which are shared across multiple classes, which

can be detected by machines and which can be understood

by humans. Each class can be represented as a vector

of class-attribute associations according to the presence

or absence of each attribute for that class. Such class-
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Fig. 1. Much work in computer vision has been de-

voted to image embedding (left): how to extract suitable

features from an image. We focus on label embedding

(right): how to embed class labels in a Euclidean

space. We use side information such as attributes for

the label embedding and measure the “compatibility”’

between the embedded inputs and outputs with a

function F .

attribute associations are often binary. As an example, if the

classes correspond to animals, possible attributes include

“has paws”, “has stripes” or “is black”. For the class

“zebra”, the “has paws” entry of the attribute vector is zero

whereas the “has stripes” would be one. The most popular

attribute-based prediction algorithm requires learning one

classifier per attribute. To classify a new image, its attributes

are predicted using the learned classifiers and the attribute

scores are combined into class-level scores. This two-step

strategy is referred to as Direct Attribute Prediction (DAP)

in [30].

DAP suffers from several shortcomings. First, DAP

proceeds in a two-step fashion, learning attribute-specific

classifiers in a first step and combining attribute scores into

class-level scores in a second step. Since attribute classi-

fiers are learned independently of the end-task the overall

strategy of DAP might be optimal at predicting attributes
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but not necessarily at predicting classes. Second, we would

like an approach that can perform zero-shot prediction if

no labeled samples are available for some classes, but that

can also leverage new labeled samples for these classes

as they become available. While DAP is straightforward

to implement for zero-shot learning problems, it is not

straightforward to extend to such an incremental learning

scenario. Third, while attributes can be a useful source

of prior information, they are expensive to obtain and

the human labeling is not always reliable. Therefore, it is

advantageous to seek complementary or alternative sources

of side information such as class hierarchies or textual

descriptions (see section 4). It is not straightforward to

design an efficient way to incorporate these additional

sources of information into DAP. Various solutions have

been proposed to address each of these problems separately

(see section 2). However, we do not know of any existing

solution that addresses all of them in a principled manner.

Our primary contribution is therefore to propose such a

solution by making use of the label embedding framework.

We underline that, while there is an abundant literature in

the computer vision community on image embedding (how

to describe an image) much less work has been devoted

in comparison to label embedding in the Y space (how

to describe a class). We embed each class y ∈ Y in the

space of attribute vectors and thus refer to our approach

as Attribute Label Embedding (ALE). We use a structured

output learning formalism and introduce a function which

measures the compatibility between an image x and a label

y (see Figure 1). The parameters of this function are learned

on a training set of labeled samples to ensure that, given an

image, the correct class(es) rank higher than the incorrect

ones. Given a test image, recognition consists in searching

for the class with the highest compatibility.

Another important contribution of this work is to show

that our approach extends far beyond the setting of

attribute-based recognition: it can be readily used for any

side information that can be encoded as vectors in order to

be leveraged by the label embedding framework.

Label embedding addresses in a principled fashion the

three limitations of DAP that were mentioned previously.

First, we optimize directly a class ranking objective,

whereas DAP proceeds in two steps by solving intermediate

problems. We show experimentally that ALE outperforms

DAP in the zero-shot setting. Second, if available, labeled

samples can be used to learn the embedding. Third, other

sources of side information can be combined with attributes

or used as alternative source in place of attributes.

The paper is organized as follows. In Sec. 2-3, we review

related work and introduce ALE. In Sec. 4, we study

extensions of label embedding beyond attributes. In Sec. 5,

we present experimental results on Animals with Attributes

(AWA) [30] and Caltech-UCSD-Birds (CUB) [63]. In par-

ticular, we compare ALE with competing alternatives, using

the same side information i.e. attribute-class associations

matrices.

A preliminary version of this article appeared in [1].

This version adds (1) an expanded related work section;

(2) a detailed description of the learning procedure for

ALE; (3) additional comparisons with random embed-

dings [14] and embeddings derived automatically from

textual corpora [40], [20]; (4) additional zero-short learning

experiments, which show the advantage of using continuous

embeddings; and (5) additional few-shots learning experi-

ments.

2 RELATED WORK

We now review related work on attributes, zero-shot

learning and label embedding, three research areas which

strongly overlap.

2.1 Attributes

Attributes have been used for image description [19],

[18], [9], caption generation [27], [41], face recognition

[29], [51], [10], image retrieval [28], [56], [15], action

recognition [32], [69], novelty detection [62] and object

classification [30], [18], [64], [65], [34], [54], [38]. Since

our task is object classification in images, we focus on the

corresponding references.

The most popular approach to attribute-based recognition

is the Direct Attribute Prediction (DAP) model of Lampert

et al. which consists in predicting the presence of attributes

in an image and combining the attribute prediction proba-

bilities into class prediction probabilities [30]. A significant

limitation of DAP is the fact that it assumes that attributes

are independent from each other, an assumption which

is generally incorrect (see our experiments on attribute

correlation in section 5.3). Consequently, DAP has been

improved to take into account the correlation between

attributes or between attributes and classes [64], [65],

[71], [34]. However, all these models have limitations of

their own. Wang and Forsyth [64] assume that images

are labeled with both classes and attributes. In our work

we only assume that classes are labeled with attributes,

which requires significantly less hand-labeling of the data.

Mahajan et al. [34] use transductive learning and, therefore,

assume that the test data is available as a batch, a strong

assumption we do not make. Yu and Aloimonos’s topic

model [71] is only applicable to bag-of-visual-word image

representations and, therefore, cannot leverage recent state-

of-the-art image features such as the Fisher vector [50]. We

will use such features in our experiments. Finally, the latent

SVM framework of Wang and Mori [65] is not applicable

to zero-shot learning, the focus of this work.

Several works have also considered the problem of dis-

covering a vocabulary of attributes [5], [16], [36]. [5] lever-

ages text and images sampled from the Internet and uses

the mutual information principle to measure the information

of a group of attributes. [16] discovers local attributes

and integrates humans in the loop for recommending the

selection of attributes that are semantically meaningful. [36]

discovers attributes from images, textual comments and

ratings for the purpose of aesthetic image description. In our

work, we assume that the class-attribute association matrix

is provided. In this sense, our work is complementary to

those previously mentioned.



3

2.2 Zero-shot learning

Zero-shot learning requires the ability to transfer knowledge

from classes for which we have training data to classes

for which we do not. There are two crucial choices when

performing zero-shot learning: the choice of the prior

information and the choice of the recognition model.

Possible sources of prior information include attributes

[30], [18], [43], [47], [46], semantic class taxonomies [46],

[39], class-to-class similarities [47], [70], text features [43],

[47], [46], [57], [20] or class co-occurrence statistics [37].

Rohrbach et al. [46] compare different sources of infor-

mation for learning with zero or few samples. However,

since different models are used for the different sources

of prior information, it is unclear whether the observed

differences are due to the prior information itself or the

model. In our work, we compare attributes, class hierarchies

and textual information obtained from the internet using

the exact same learning framework and we can, therefore,

fairly compare different sources of prior information. Other

sources of prior information have been proposed for special

purpose problems. For instance, Larochelle et al. [31]

encode characters with 7×5 pixel representations. However,

it is difficult to extend such an embedding to the case of

generic visual categories – our focus in this work. For a

recent survey of different output embeddings optimized for

zero-shot learning on fine-grained datasets, the reader may

refer to [2].

As for the recognition model, there are several alter-

natives. As mentioned earlier, DAP uses a probabilistic

model which assumes attribute independence [30]. Closest

to the proposed ALE are those works where zero-shot

recognition is performed by assigning an image to its

closest class embedding (see next section). The measure

of distance between an image and a class embedding

is generally measured as the Euclidean distance and a

transformation is learned to map the input image features

to the class embeddings [43], [57]. The main difference

between these works and ours is that we learn the input-

to-output mapping features to optimize directly an image

classification criterion: we learn to rank the correct label

higher than incorrect ones. We will see in section 5.3 that

this leads to improved results compared to those works

which optimize a regression criterion such as [43], [57].

Few works have considered the problem of transitioning

from zero-shot learning to learning with few shots [71],

[54], [70]. As mentioned earlier, [71] is only applicable to

bag-of-words type of models. [54] proposes to augment the

attribute-based representation with additional dimensions

for which an autoencoder model is coupled with a large

margin principle. While this extends DAP to learning with

labeled data, this approach does not improve DAP for zero-

shot recognition. In contrast, we show that the proposed

ALE can transition from zero-shot to few-shots learning

and improves on DAP in the zero-shot regime. [70] learns

separately the class embeddings and the input-to-output

mapping which is suboptimal. In this paper, we learn jointly

the class embeddings (using attributes as prior) and the

input-to-output mapping to optimize classification accuracy.

2.3 Label embedding

In computer vision, a vast amount of work has been devoted

to input embedding, i.e. how to represent an image. This

includes work on patch encoding (see [8] for a recent

comparison), on kernel-based methods [55] with a recent

focus on explicit embeddings [35], [60], on dimension-

ality reduction [55] and on compression [26], [49], [61].

Comparatively, much less work has been devoted to label

embedding.

Provided that the embedding function ϕ is chosen cor-

rectly – i.e. “similar” classes are close according to the

Euclidean metric in the embedded space – label embedding

can be an effective way to share parameters between

classes. Consequently, the main applications have been

multiclass classification with many classes [3], [66], [67],

[4] and zero-shot learning [31], [43]. We now provide a

taxonomy of embeddings. While this taxonomy is valid

for both input θ and output embeddings ϕ, we focus here

on output embeddings. They can be (i) fixed and data-

independent, (ii) learned from data, or (iii) computed from

side information.

Data-Independent Embeddings. Kernel dependency es-

timation [68] is an example of a strategy where ϕ is

data-independent and defined implicitly through a kernel

in the Y space. The compressed sensing approach of

Hsu et al. [25], is another example of data-independent

embeddings where ϕ corresponds to random projections.

The Error Correcting Output Codes (ECOC) framework en-

compasses a large family of embeddings that are built using

information-theoretic arguments [22]. ECOC approaches

allow in particular to tackle multi-class learning problems

as described by Dietterich and Bakiri in [14]. The reader

can refer to [17] for a summary of ECOC methods and

latest developments in the ternary output coding methods.

Other data-independent embeddings are based on pairwise

coupling and variants thereof such as generalized Bradley-

Terry models [23].

Learned Embeddings. A strategy consists in learning

jointly θ and ϕ to embed the inputs and outputs in a

common intermediate space Z . The most popular exam-

ple is Canonical Correlation Analysis (CCA) [23], which

maximizes the correlation between inputs and outputs.

Other strategies have been investigated which maximize

directly classification accuracy, including the nuclear norm

regularized learning of Amit et al. [3] or the WSABIE

algorithm of Weston et al. [67].

Embeddings Derived From Side Information. There

are situations where side information is available. This

setting is particularly relevant when little training data is

available, as side information and the derived embeddings

can compensate for the lack of data. Side information

can be obtained at an image level [18] or at a class

level [30]. We focus on the latter setting which is more

practical as collecting side information at an image level is
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more costly. Side information may include “hand-drawn”

descriptions [31], text descriptions [18], [30], [43], [20]

or class taxonomies [66], [4]. Certainly, the closest work

to ours is that of Frome et al. [20] 1 which involves

embedding classes using textual corpora and then learning a

mapping between the input and output embeddings using a

ranking objective function. We also use a ranking objective

function and compare different sources of side information

to perform embedding: attributes, class taxonomies and

textual corpora.

While our focus is on embeddings derived from side

information for zero-shot recognition, we also considered

data independent embeddings and learned embeddings (us-

ing side information as a prior) for few-shots recognition.

3 LABEL EMBEDDING WITH ATTRIBUTES

Given a training set S = {(xn, yn), n = 1 . . . N} of

input/output pairs with xn ∈ X and yn ∈ Y , our goal is to

learn a function f : X → Y by minimizing an empirical

risk of the form

min
f∈F

1

N

N
∑

n=1

∆(yn, f(xn)) (1)

where ∆ : Y × Y → R measures the loss incurred from

predicting f(x) when the true label is y, and where the

function f belongs to the function F . We shall use the 0/1

loss as a target loss: ∆(y, z) = 0 if y = z, 1 otherwise, to

measure the test error, while we consider several surrogate

losses commonly used for structured prediction at learning

time (see Sec. 3.3 for details on the surrogate losses used

in this paper).

An elegant framework, initially proposed in [68], allows

to concisely describe learning problems where both input

and output spaces are jointly or independently mapped

into lower-dimensional spaces. The framework relies on so-

called embedding functions θ : X → X̃ and ϕ : Y → Ỹ
resp for the inputs and outputs. Thanks to these embed-

ding functions, the learning problem is cast into a regular

learning problem with transformed input/output pairs.

In what follows, we first describe our function class

F (section 3.1). We then explain how to leverage side

information under the form attributes to compute label

embeddings (section 3.2). We also discuss how to learn

the model parameters (section 3.3). While, for the sake

of simplicity, we focus on attributes in this section, the

approach readily generalizes to any side information that

can be encoded in matrix form (see following section 4).

3.1 Framework

Figure 1 illustrates the proposed model. Inspired from

the structured prediction formulation [58], we introduce a

compatibility function F : X × Y → R and define f as

follows:

f(x;w) = argmax
y∈Y

F (x, y;w) (2)

1. Note that the work of Frome et al. [20] is posterior to our conference
submission [1].

where w denotes the model parameter vector of F and

F (x, y;w) measures how compatible is the pair (x, y)
given w. It is generally assumed that F is linear in some

combined feature embedding of inputs/outputs ψ(x, y):

F (x, y;w) = w′ψ(x, y) (3)

and that the joint embedding ψ can be written as the tensor

product between the image embedding θ : X → X̃ = R
D

and the label embedding ϕ : Y → Ỹ = R
E :

ψ(x, y) = θ(x)⊗ ϕ(y) (4)

and ψ(x, y) : RD × R
E → R

DE . In this case w is a DE-

dimensional vector which can be reshaped into a D × E
matrix W . Consequently, we can rewrite F (x, y;w) as a

bilinear form:

F (x, y;W ) = θ(x)′Wϕ(y). (5)

Other compatibility functions could have been considered.

For example, the function:

F (x, y;W ) = −‖θ(x)′W − ϕ(y)‖2 (6)

is typically used in regression problems.

Also, if D and E are large, it might be valuable to

consider a low-rank decomposition W = U ′V to reduce the

effective number of parameters. In such a case, we have:

F (x, y;U, V ) = (Uθ(x))
′
(V ϕ(y)) . (7)

CCA [23], or more recently WSABIE [67] rely, for exam-

ple, on such a decomposition.

3.2 Embedding classes with attributes

We now consider the problem of defining the label em-

bedding function ϕA from attribute side information. In

this case, we refer to our approach as Attribute Label

Embedding (ALE).

We assume that we have C classes, i.e. Y = {1, . . . , C}
and that we have a set of E attributes = {ai, i = 1 . . . E}
to describe the classes. We also assume that we are provided

with an association measure ρy,i between each attribute ai
and each class y. These associations may be binary or real-

valued if we have information about the association strength

(e.g. if the association value is obtained by averaging votes).

We embed class y in the E-dim attribute space as follows:

ϕA(y) = [ρy,1, . . . , ρy,E ] (8)

and denote ΦA the E × C matrix of attribute embeddings

which stacks the individual ϕA(y)’s.

We note that in equation (5) the image and label embed-

dings play symmetric roles. In the same way it makes sense

to normalize samples when they are used as input to large-

margin classifiers, it can make sense to normalize the output

vectors ϕA(y). In section 5.3 we compare (i) continuous

embeddings, (ii) binary embeddings using {0, 1} for the

encoding and (iii) binary embeddings using {−1,+1} for

the encoding. We also explore two normalization strategies:

(i) mean-centering (i.e. compute the mean over all learning
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classes and subtract it) and (ii) ℓ2-normalization. We under-

line that such encoding and normalization choices are not

arbitrary but relate to prior assumptions we might have on

the problem. For instance, underlying the {0, 1} embedding

is the assumption that the presence of the same attribute in

two classes should contribute to their similarity, but not its

absence. Here we assume a dot-product similarity between

attribute embeddings which is consistent with our linear

compatibility function (5). Underlying the {−1, 1} embed-

ding is the assumption that the presence or the absence of

the same attribute in two classes should contribute equally

to their similarity. As for mean-centered attributes, they take

into account the fact that some attributes are more frequent

than others. For instance, if an attribute appears in almost all

classes, then in the mean-centered embedding, its absence

will contribute more to the similarity than its presence. This

is similar to an IDF effect in TF-IDF encoding. As for the

ℓ2-normalization, it enforces that each class is closest to

itself according to the dot-product similarity.

In the case where attributes are redundant, it might be

advantageous to de-correlate them. In such a case, we make

use of the compatibility function (7). The matrix V may

be learned from labeled data jointly with U . As a simpler

alternative, it is possible to first learn the decorrelation, e.g.

by performing a Singular Value Decomposition (SVD) on

the ΦA matrix, and then to learn U . We will study the effect

of attribute de-correlation in our experiments.

3.3 Learning algorithm

We now turn to the estimation of the model parameters W
from a labeled training set S . The simplest learning strategy

is to maximize directly the compatibility between the input

and output embeddings:

1

N

N
∑

n=1

F (xn, yn;W ) (9)

with potentially some constraints and regularizations on

W . This is exactly the strategy adopted in regression [43],

[57]. However, such an objective function does not optimize

directly our end-goal which is image classification. There-

fore, we draw inspiration from the WSABIE algorithm [67]

that learns jointly image and label embeddings from data

to optimize classification accuracy. The crucial difference

between WSABIE and ALE is the fact that the latter uses

attributes as side information. Note that the proposed

ALE is not tied to WSABIE and that we report results

in 5.3 with other objective functions including regression

and structured SVM (SSVM). We chose to focus on the

WSABIE objective function with ALE because it yields

good results and is scalable.

In what follows, we briefly review the WSABIE objective

function [67]. Then, we present ALE which allows to do (i)

zero-shot learning with side information and (ii) learning

with few (or more) examples with side information. We,

then, detail the proposed learning procedures for ALE. In

what follows, Φ is the matrix which stacks the embeddings

ϕ(y).

WSABIE. Let 1(u) = 1 if u is true and 0 otherwise. Let:

ℓ(xn, yn, y) = ∆(yn, y) + θ(x)′W [ϕ(y)− ϕ(yn)] (10)

Let r(xn, yn) be the rank of label yn for image xn.

Finally, let α1, α2, . . . , αC be a sequence of C non-negative

coefficients and let βk =
∑k

j=1 αj . Usunier et al. [59]

propose to use the following ranking loss for S:

1

N

N
∑

n=1

βr(xn,yn) , (11)

where βr(xn,yn) :=
∑r(xn,yn)

j=1 αj . Since the βk’s are in-

creasing with k, minimizing βr(xn,yn) enforces to minimize

the r(xn, yn)’s, i.e. it enforces correct labels to rank higher

than incorrect ones. αk quantifies the penalty incurred by

going from rank k to k+ 1. Hence, a decreasing sequence

α1 ≥ α2 ≥ . . . ≥ αC ≥ 0 implies that a mistake on the

rank when the true rank is at the top of the list incurs a

higher loss than a mistake on the rank when the true rank is

lower in the list – a desirable property. Following Usunier

et al., we choose αk = 1/k.

Instead of optimizing an upper-bound on (11), Weston

et al. propose to optimize the following approximation of

objective (11):

R(S;W,Φ) =
1

N

N
∑

n=1

βr∆(xn,yn)

r∆(xn,yn)

∑

y∈Y

max{0, ℓ(xn, yn, y)}

(12)

where

r∆(xn, yn) =
∑

y∈Y

1(ℓ(xn, yn, y) > 0) (13)

is an upper-bound on the rank of label yn for image xn.

The main advantage of the formulation (12) is that it

can be optimized efficiently through Stochastic Gradient

Descent (SGD), as described in Algorithm 1. The label

embedding space dimensionality is a parameter to set,

for instance using cross-validation. Note that the previous

objective function does not incoporate any regularization

term. Regularization is achieved implicitly by early stop-

ping, i.e. the learning is terminated once the accuracy stops

increasing on the validation set.

ALE: Zero-Shot Learning. We now describe the ALE

objective for zero-shot learning. In such a case, we cannot

learn Φ from labeled data, but rely on side information. This

is in contrast to WSABIE. Therefore, the matrix Φ is fixed

and set to ΦA (see section 3.2 for details on ΦA). We only

optimize the objective (12) with respect to W . We note that,

when Φ is fixed and only W is learned, the objective (12)

is closely related to the (unregularized) structured SVM

(SSVM) objective [58]:

1

N

N
∑

n=1

max
y∈Y

ℓ(xn, yn, y) (14)

The main difference is the loss function, which is the

multi-class loss function for SSVM. The multi-class loss

function focuses on the score with the highest rank, while
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Algorithm 1 ALE stochastic training

Intitialize W (0) randomly.

for t = 1 to T do
Draw (x,y) from S.
for k = 1, 2, . . . , C − 1 do

Draw ȳ 6= y from Y
if ℓ(x, y, ȳ) > 0 then

// Update W

W
(t) = W

(t−1) + ηtβ⌊C−1

k
⌋
θ(x)[ϕ(y)− ϕ(ȳ)]′ (16)

// Update Φ (not applicable to zero-shot)

ϕ
(t)(y) = (1− ηtµ)ϕ

(t−1)(y) + ηtµϕ
A(y)

+ ηtβ⌊C−1

k
⌋
W

′
θ(x) (17)

ϕ
(t)(ȳ) = (1− ηtµ)ϕ

(t−1)(ȳ) + ηtµϕ
A(ȳ)

− ηtβ⌊C−1

k
⌋
W

′
θ(x) (18)

end if
end for

end for

ALE considers all scores in a weighted fashion. Similar to

WSABIE, a major advantage of ALE is its scalability to

large datasets [67], [44].

ALE: Few-Shots Learning. We now describe the ALE

objective to the case where we have labeled data and side

information. In such a case, we want to learn the class

embeddings using as prior information ΦA. We, therefore,

add to the objective (12) a regularizer:

R(S;W,Φ) +
µ

2
||Φ− ΦA||2 (15)

and optimize jointly with respect to W and Φ. Note that the

previous equation is somewhat reminiscent of the ranking

model adaptation of [21].

Training. For the optimization of the zero-shot as well as

the few-shots learning, we follow [67] and use Stochastic

Gradient Descent (SGD). Training with SGD consists at

each step t in (i) choosing a sample (x, y) at random, (ii)

repeatedly sampling a negative class denoted ȳ with ȳ 6=
y until a violating class is found, i.e. until ℓ(x, y, ȳ) >
0, and (iii) updating the projection matrix (and the class

embeddings in case of few-shots learning) using a sample-

wise estimate of the regularized risk. Following [67], [44],

we use a constant step size ηt = η. The detailed algorithm

is provided in Algorithm 1.

4 LABEL EMBEDDING BEYOND ATTRIBUTES

A wealth of label embedding methods have been proposed

over the years, in several communities and most often for

different purpose. Previous works considered either fixed

(data-independent) or learned-from-data embeddings. Data

used for learning could be either restricted to the task-at-

hand or could also be complemented by side information

from other modalities. The purpose of this paper is to

propose a general framework that encompasses all these

Fig. 2. Illustration of Hierarchical Label Embedding

(HLE). In this example, given 7 classes (including

a “root” class), class 6 is encoded in a binary 7-

dimensional space as ϕH(6) = [1, 0, 1, 0, 0, 1, 0].

approaches, and compare the empirical performance on

image classification tasks. Label embedding methods could

be organized according to two criteria: i) task-focused or

using other sources of side information; ii) fixed or data-

dependent embedding.

4.1 Side information in label embedding

A first criterion to discriminate among the different ap-

proaches for label embedding is whether the method is

using only the training data for the task at hand, that is the

examples (images) along with their class labels, or if it is

using other sources of information. In the latter option, side

information impacts the outputs, and can rely on several

types of modalities. In our setting, these modalities could

be i) attributes, ii) class taxonomies or iii) textual corpora.

i) was the focus of the previous section (see especially 3.2).

In what follows, we focus on ii) and iii).

Class hierarchical structures explicitly use expert knowl-

edge to group the image classes into a hierarchy, such as

knowledge from ornithology for birds datasets. A hierarchi-

cal structure on the classes requires an ordering operation

≺ in Y: z ≺ y means that z is an ancestor of y in the tree

hierarchy. Given this tree structure, we can define ξy,z = 1
if z ≺ y or z = y. The hierarchy embedding ϕH(y) can be

defined as the C dimensional vector:

ϕH(y) = [ξy,1, . . . , ξy,C ]. (19)

Here, ξy,i is the association measure of the ith node in the

hierarchy with class y. See Figure 2 for an illustration. We

refer to this embedding as Hierarchy Label Embedding

(HLE). Note that HLE was first proposed in the context of

structured learning [58]. Note also that, if classes are not

organized in a tree structure but form a graph, other types

of embeddings can be used, for instance by performing a

kernel PCA on the commute time kernel [48].

The co-occurrence of class names in textual corpora

can be automatically extracted using field guides or public

resources such as Wikipedia 2. Co-occurences of class

names can be leveraged to infer relationships between

classes, leading to an embedding of the classes. Stan-

dard approaches to produce word embeddings from co-

ocurrences include Latent Semantic Analyis (LSA) [12],

probabilistic Latent Semantic Analysis (pLSA) [24] or

2. http://en.wikipedia.org

http://en.wikipedia.org
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Latent Dirichlet Allocation (LDA) [6]. In this work, we use

the recent state-of-the-art approach of Mikolov et al. [40],

also referred to as “Word2Vec”. It uses a skip-gram model

that enforces a word (or a phrase) to be a good predictor

of its surrounding words, i.e. it enforces neighboring words

(or phrases) to be close to each other in the embedded

space. Such an embedding , which we refer to as Word2Vec

Label Embedding (WLE), was recently used for zero-shot

recognition [20] on fine-grained datasets [2].

In section 5, we compare attributes, class hierarchies

and textual information (i.e. resp. ALE, HLE and WLE)

as sources of side information for zero-shot recognition.

4.2 Data-dependence of label embedding

A second criterion is whether the label embedding used

at prediction time was fit to training data at training

time or not. Here, being data-dependent refers to the

training data, putting aside all other possibles sources of

information. There are several types of approaches in this

respect: i) fixed and data-independent label embeddings;

ii) data-dependent, learnt solely from training data; iii)

data-dependent, learnt jointly from training data and side

information.

Fixed and data-independent correspond to fixed map-

pings of the original class labels to a lower-dimensional

space. In our experiments, we explore three of such kind

of embeddings: i) trivial label embedding corresponding to

identity mapping, which boils down to plain one-versus-

rest classification (OVR); ii) Gaussian Label Embedding

(GLE), using Gaussian random projection matrices and

assuming Johnson-Lindenstrauss properties; iii) Hadamard

Label embedding, similarly, using Hadamard matrices for

building the random projection matrices. None of these

three label embedding approaches use the training data (nor

any side information) to build the label embedding. It is

worthwhile to note that the underlying dimensions of these

label embedding do rely on training data, since they are

usually cross-validated; we shall however ignore this fact

here for simplicity of the exposition.

Data-dependent label embedding use the training data to

build the label embedding used at prediction time. Popular

methods in this family are principal component analysis

on the outputs, and canonical correlation analysis, and the

plain WSABIE approach.

Note that it is possible to use both the available training

data and side information to learn the embedding func-

tions. The proposed family of approaches, Attribute Label

Embedding (ALE), belongs to this latter category.

Combining embeddings. Different embeddings can be

easily combined in the label embedding framework, e.g.

through simple concatenation of the different embeddings

or through more complex operations such as a CCA of

the embeddings. This is to be contrasted with DAP which

cannot accommodate so easily other sources of prior infor-

mation.

5 EXPERIMENTS

We now evaluate the proposed ALE framework on two

public benchmarks: Animal With Attributes (AWA) and

CUB-200-2011 (CUB). AWA [30] contains roughly 30,000

images of 50 animal classes. CUB [63] contains roughly

11,800 images of 200 bird classes.

We first describe in sections 5.1 and 5.2 respectively

the input embeddings (i.e. image features) and output

embeddings that we have used in our experiments. In

section 5.3, we present zero-shot recognition experiments,

where training and test classes are disjoint. In section 5.4,

we go beyond zero-shot learning and consider the case

where we have plenty of training data for some classes

and little training data for others. Finally, in section 5.5 we

report results in the case where we have equal amounts of

training data for all classes.

5.1 Input embeddings

Images are resized to 100K pixels if larger while keeping

the aspect ratio. We extract 128-dim SIFT descriptors [33]

and 96-dim color descriptors [11] from regular grids at

multiple scales. Both of them are reduced to 64-dim using

PCA. These descriptors are, then, aggregated into an image-

level representation using the Fisher Vector (FV) [45],

shown to be a state-of-the-art patch encoding technique

in [8]. Therefore, our input embedding function θ takes

as input an image and outputs a FV representation. Using

Gaussian Mixture Models with 16 or 256 Gaussians, we

compute one SIFT FV and one color FV per image and

concatenate them into either 4,096 (4K) or 65,536-dim

(64K) FVs. As opposed to [1], we do not apply PQ-

compression which explains why we report better results

in the current work (e.g. on average 2% better with the

same output embeddings on CUB).

5.2 Output Embeddings

In our experiments, we considered three embeddings de-

rived side information: attributes, class taxonomies and

textual corpora. When considering attributes, we use the

attributes (binary, or continuous) as they are provided with

the datasets, with no further side information.

Attribute Label Embedding (ALE). In AWA, each class

was annotated with 85 attributes by 10 students [42]. Con-

tinuous class-attribute associations were obtained by aver-

aging the per-student votes and subsequently thresholded

to obtain binary attributes. In CUB, 312 attributes were

obtained from a bird field guide. Each image was annotated

according to the presence/absence of these attributes. The

per-image attributes were averaged to obtain continuous-

valued class-attribute associations and thresholded with

respect to the overall mean to obtain binary attributes. By

default, we use continuous attribute embeddings in our

experiments on both datasets.

Hierarchical Label Embedding (HLE). We use the Word-

net hierarchy as a source of prior information to compute

output embeddings. We collect the set of ancestors of the



8

50 AWA (resp. 200 CUB) classes from Wordnet and build

a hierarchy with 150 (resp. 299) nodes3. Hence, the output

dimensionality is 150 (resp. 299) for AWA (resp. CUB).

We compute the binary output codes following [58]: for a

given class, an output dimension is set to {0, 1} according

the absence/presence of the corresponding node among

the ancestors. The class embeddings are subsequently ℓ2-

normalized.

Word2Vec Label Embedding (WLE). We trained the

skip-gram model on the 13 February 2014 version of the

English-language Wikipedia which was tokenized to 1.5

million words and phrases that contain the names of our

visual object classes. Additionally we use a hierarchical

softmax layer 4. The dimensionality of the output embed-

dings was cross-validated on a per-dataset basis.

We also considered three data-independent embeddings:

One-Vs-Rest embedding (OVR). The embedding dimen-

sionality is C where C is the number of classes and the

matrix Φ is the C × C identity matrix. This is equivalent

to training independently one classifier per class.

Gaussian Label Embedding (GLE). The class embed-

dings are drawn from a standard normal distribution, similar

to random projections in compressed sensing [13]. Simi-

larly to WSABIE, the label embedding dimensionality E is

a parameter of GLE which needs to be cross-validated. For

GLE, since the embedding is randomly drawn, we repeat

the experiments 10 times and report the average (as well

as the standard deviation when relevant).

Hadamard Label Embedding. An Hadamard matrix is

a square matrix whose rows/columns are mutually or-

thogonal and whose entries are {−1, 1} [13]. Hadamard

matrices can be computed iteratively with H1 = (1)

and H2k =

(

H2k−1 H2k−1

H2k−1 −H2k−1

)

. In our experiments

Hadamard embedding yielded significantly worse results

than GLE. Therefore, we only report GLE results in the

following.

Finally, when labeled training data is available in suf-

ficient quantity, the embeddings can be learned from the

training data. In this work, we considered one data-driven

approach to label embedding:

Web-Scale Annotation By Image Embedding (WSA-

BIE). The objective function of WSABIE [67] is provided

in (12) and the corresponding optimization algorithm is

similar to the one of ALE described in Algorithm 1.

The difference is that WSABIE does not use any prior

information and, therefore, the regularization value µ is set

to 0 in equations (17) and (18). Another difference with

ALE is that the embedding dimensionality E is a parameter

of WSABIE which is obtained through cross-validation.

This is an advantage of WSABIE since it provides an

3. In some cases, some of the nodes have a single child. We did not
clean the automatically obtained hierarchy.

4. We obtain word2vec representations using the publicly available
implementation from https://code.google.com/p/word2vec/.

AWA

FV=4K FV=64K

µ ℓ2 cont {0, 1} {−1,+1} cont {0, 1} {−1,+1}
no no 41.5 34.2 32.5 44.9 42.4 41.8
yes no 42.2 33.8 33.8 44.9 42.4 42.4
no yes 45.7 34.2 34.8 48.5 44.6 41.8
yes yes 44.2 34.9 34.9 47.7 44.8 44.8

CUB

FV=4K FV=64K

µ ℓ2 cont {0, 1} {−1,+1} cont {0, 1} {−1,+1}
no no 17.2 10.4 12.8 22.7 20.5 19.6
yes no 16.4 10.4 10.4 21.8 20.5 20.5
no yes 20.7 15.4 15.2 26.9 22.3 19.6
yes yes 20.0 15.6 15.6 26.3 22.8 22.8

TABLE 1

Comparison of the continuous embedding (cont), the

binary {0, 1} embedding and the binary {+1,−1}
embedding. We also study the impact of

mean-centering (µ) and ℓ2-normalization.

additional free parameter compared to ALE. However, the

cross-validation procedure is computationally intensive.

In summary, in the following we report results for six

label embedding strategies: ALE, HLE, WLE, OVR, GLE

and WSABIE. Note that OVR, GLE and WSABIE are not

applicable to zero-shot learning since they do not rely on

any source of prior information and consequently do not

provide a meaningful way to embed a new class for which

we do not have any training data.

5.3 Zero-Shot Learning

Set-up. In this section, we evaluate the proposed ALE in the

zero-shot setting. For AWA, we use the standard zero-shot

setup which consists in learning parameters on 40 classes

and evaluating accuracy on the 10 remaining ones. We use

all the images in 40 learning classes (≈ 24,700 images) to

learn and cross-validate the model parameters. We then use

all the images in 10 evaluation classes (≈ 6,200 images)

to measure accuracy. For CUB, we use 150 classes for

learning (≈ 8,900 images) and 50 for evaluation (≈ 2,900

images).

Comparison of output encodings for ALE. We first

compare three different output encodings: (i) continuous

encoding, i.e. we do not binarize the class-attribute as-

sociations, (ii) binary {0, 1} encoding and (iii) binary

{−1,+1} encoding. We also compare two normalizations:

(i) mean-centering of the output embeddings and (ii) ℓ2-

normalization. We use the same embedding and normaliza-

tion strategies at training and test time.

Results are shown in Table 1. The conclusions are the

following ones. Significantly better results are obtained

with continuous embeddings than with thresholded binary

embeddings. On AWA with 64K-dim FV, the accuracy is

48.5% with continuous and 41.8% with {−1,+1} embed-

dings. Similarly on CUB with 64K-dim FV, we obtain

26.9% with continuous and 19.6% with {−1,+1} em-

beddings. This is expected since continuous embeddings

encode the strength of association between a class and an

attribute and, therefore, carry more information. We believe
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RR SSVM RNK

AWA 44.5 47.9 48.5

CUB 21.6 26.3 26.3

TABLE 2

Comparison of different learning algorithms for ALE:

ridge-regression (RR), multi-class SSVM (SSVM) and

ranking based on WSABIE (RNK).

Obj. pred. Att. pred.

DAP ALE DAP ALE

AWA 41.0 48.5 72.7 72.7

CUB 12.3 26.9 64.8 59.4

TABLE 3

Comparison of DAP [30] with ALE. Left: object

classification accuracy (top-1 %) on the 10 AWA and

50 CUB evaluation classes. Right: attribute prediction

accuracy (AUC %) on the 85 AWA and 312 CUB

attributes. We use 64K FVs.

that this is a major strength of the proposed approach as

other algorithms such as DAP cannot accommodate such

soft values in a straightforward manner. Mean-centering

seems to have little impact with 0.8% (between 48.5% and

47.7%) on AWA and 0.6% (between 26.9% and 26.3%)

on CUB using 64K FV as input and continuous attributes

as output embeddings. On the other hand, ℓ2-normalization

makes a significant difference in all configurations except

from the {−1,+1} encoding (e.g. only 2.4% difference

between 44.8% and 42.4% on AWA, 2.3% difference

between 22.8% and 20.5% on CUB). This is expected,

since all class embeddings already have a constant norm

for {−1,+1} embeddings (the square-root of the number

of output dimensions E). In what follows, we always use

the continuous ℓ2-normalized embeddings without mean-

centric normalization.

Comparison of learning algorithms. We now compare

three objective functions to learn the mapping between

inputs and outputs. The first one is Ridge Regression (RR)

which was used in [43] to map input features to output

attribute labels. In a nutshell, RR consists in optimizing a

regularized quadratic loss for which there exists a closed

form formula. The second one is the standard structured

SVM (SSVM) multiclass objective function of [58]. The

third one is the ranking objective (RNK) of WSABIE [67]

which is described in detail section 3.3. The results are

provided in Table 2. On AWA, the highest result is 48.5%

obtained with RNK, followed by MUL with 47.9% whereas

RR performs worse with 44.5%. On CUB, RNK and

MUL obtain 26.3% accuracy whereas RR again performs

somewhat worse with 21.6%. Therefore, the conclusion

is that the multiclass and ranking frameworks are on-par

and outperform the simple ridge regression. This is not

surprising since the two former objective functions are more

closely related to our end goal which is classification. In

what follows, we always use the ranking framework (RNK)

to learn the parameters of our model, since it both performs

well and was shown to be scalable [67], [44].

Comparison with DAP. In this section we compare our

approach to direct attribute prediction (DAP) [30]. We start

by giving a short description of DAP and, then, present the

results of the comparison.

In DAP, an image x is assigned to the class y, which has

the highest posterior probability:

p(y|x) ∝

E
∏

e=1

p(ae = ρy,e|x). (20)

ρy,e is the binary association measure between attribute ae
and class y. p(ae = 1|x) is the probability that image x
contains attribute e. We train for each attribute one linear

classifier on the FVs. We use a (regularized) logistic loss

which provides an attribute classification accuracy similar

to SVM but with the added benefit that its output is already

a probability.

Table 3(left) compares the proposed ALE to DAP for

64K-dim FVs. Our implementation of DAP obtains 41.0%

accuracy on AWA and 12.3% on CUB. Our result for DAP

on AWA is comparable to the 40.5% accuracy reported by

Lampert. Note however that the features are different. Lam-

pert uses bag-of-features and a non-linear kernel classifier

(χ2 SVMs), whereas we use Fisher vectors and a linear

SVM. Linear SVMs enable us to run experiments more

efficiently. We observe that on both datasets, the proposed

ALE outperforms DAP significantly: 48.5% vs. 41.0% top-

1 accuracy on AWA and 26.9% vs. 12.3% on CUB.

Attribute Correlation. While correlation in the input space

is a well-studied topic, comparatively little work has been

done to measure the correlation in the output space. Here,

we reduce the output space dimensionality and study the

impact on the classification accuracy. It is worth noting

that reducing the output dimensionality leads to significant

speed-ups at training and test times. We explore two

different techniques: Singular Value Decomposition (SVD)

and attribute sampling. We learn the SVD on AWA (resp.

CUB) on the 50×85 (resp. 200×312) ΦA matrix. For the

sampling, we sub-sample a fixed number of attributes and

repeat the experiments 10 times for 10 different random

sub-samplings. The results of these experiments are pre-

sented in Figure 3.

We can conclude that there is a significant amount

of correlation between attributes. For instance, on AWA

with 4K-dim FVs (Figure 3(a)) when reducing the output

dimensionality to 25, we lose less than 2% accuracy and

with a reduced dimensionality of 50, we perform even

slightly better than using all the attributes. On the same

dataset with 64K-dim FVs (Figure 3(c)) the accuracy drops

from 48.5% to approximately 45% when reducing from

an 85-dim space to a 25-dim space. More impressively,

on CUB with 4K-dim FVs (Figure 3(b)) with a reduced

dimensionality to 25, 50 or 100 from 312, the accuracy

is better than the configuration that uses all the attributes.

On the same dataset with 64K-dim FVs (Figure 3(d)),

with 25 dimensions the accuracy is on par with the 312-

dim embedding. SVD outperforms a random sampling of

the attribute dimensions, although there is no guarantee
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Fig. 3. Classification accuracy on AWA and CUB as a function of the label embedding dimensionality. We

compare the baseline which uses all attributes, with an SVD dimensionality reduction and a sampling of attributes

(we report the mean and standard deviation over 10 samplings).

ALE HLE WLE
AHLE
early

AHLE
late

AWA 48.5 40.4 32.5 46.8 49.4

CUB 26.9 18.5 16.8 27.1 27.3

TABLE 4

Comparison of attributes (ALE), hierarchies (HLE) and

Word2Vec (WLE) for label embedding. We consider

the combination of ALE and HLE by simple

concatenation (AHLE early) or by the averaging of the

scores (AHLE late). We use 64K FVs.

that SVD will select the most informative dimensions (see

for instance the small pit in performance on CUB at 50

dimensions). In random sampling of output embeddings,

the choice of the attributes seems to be an important factor

that affects the descriptive power of output embeddings.

Consequently, the variance is higher (e.g. see Figures 3(a)

and Figure 3(c) with a reduced attribute dimensionality of

5 or 10) when a small number of attributes is selected. In

the following experiments, we do not use dimensionality

reduction of the attribute embeddings.

Attribute interpretability. In ALE, each column of W
can be interpreted as an attribute classifier and θ(x)′W
as a vector of attribute scores of x. However, one major

difference with DAP is that we do not optimize for attribute

classification accuracy. This might be viewed as a disad-

vantage of our approach as we might loose interpretability,

an important property of attribute-based systems when, for

instance, one wants to include a human in the loop [7], [63].

We, therefore, measured the attribute prediction accuracy

of DAP and ALE. For each attribute, following [30], we

measure the AUC on the set of the evaluation classes and

report the mean.

Attribute prediction scores are shown in Table 3(right).

On AWA, the DAP and ALE methods obtain the same AUC

accuracy of 72.7%. On the other hand, on CUB the DAP

method obtains 64.8% AUC whereas ALE is 5.4% lower

with 59.4% AUC. As a summary, the attribute prediction

accuracy of DAP is at least as high as that of ALE.

This is expected since DAP optimizes directly attribute-

classification accuracy. However, the AUC for ALE is

still reasonable, especially on AWA (performance is on

par). Thus, our learned attribute classifiers should still be

interpretable. We provide qualitative results on AWA in

Figure 4: we show the four highest ranked images for

some of the attributes with the highest AUC scores (namely

>90%) and lowest AUC scores (namely <50%).

Comparison of ALE, HLE and WLE. We now compare

different sources of side information. Results are provided

in Table 4. On AWA, ALE obtains 48.5% accuracy, HLE

obtains 40.4% and WLE obtains 32% accuracy. On CUB,

ALE obtains 26.9% accuracy, HLE obtains 18.5% and

WLE obtains 16.8% accuracy. Note that in [1], we reported

better results on AWA with HLE compared to ALE. The

main difference with the current experiment is that we

use continuous attribute encodings while [1] was using a

binary encoding. Note also that the comparatively poor

performance of WLE with respect to ALE and HLE is

not unexpected: while ALE and HLE rely on strong expert

supervision, WLE is computed in an unsupervised manner

from Wikipedia.

We also consider the combination of attributes and hier-

archies (we do not consider the combination of WLE with

other embeddings given its relatively poor performance).

We explore two simple alternatives: the concatenation of

the embeddings (AHLE early) and the late fusion of classi-

fication scores calculated by averaging the scores obtained

using ALE and HLE separately (AHLE late). On both

datasets, late fusion has a slight edge over early fusion and

leads to a small improvement over ALE alone (+0.9% on

AWA and +0.4% on CUB).

In what follows, we do not report further results with

WLE given its relatively poor performance and focus on

ALE and HLE.

Comparison with the state-of-the-art. We can compare

our results to those published in the literature on AWA

since we are using the standard training/testing protocol

(there is no such zero-shot protocol on CUB). To the best

of our knowledge, the best zero-shot recognition results on

AWA are those of Yu et al. [70] with 48.3% accuracy. We

report 48.5% with ALE and 49.4% with AHLE (late fusion

of ALE and HLE). Note that we use different features.
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(a) is quadrapedal (b) lives in ocean (c) lives on the ground

(d) lives in plains (e) hibernates (f) is weak

Fig. 4. Sample attributes recognized with high (> 90%) accuracy (top) and low (i.e. <50%) accuracy (bottom)

by ALE on AWA. For each attribute we show the images ranked highest. Note that a AUC < 50% means that

the prediction is worse than random on average. The images whose attribute is predicted correctly are circled in

green and those whose attribute is predicted incorrectly are circled in red.
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Fig. 5. Classification accuracy on AWA and CUB

as a function of the number of training samples per

class. To train the classifiers, we use all the images

of the training “background” classes (used in zero-shot

learning), and a small number of images randomly

drawn from the relevant evaluation classes. Reported

results are 10-way in AWA and 50-way in CUB.

5.4 Few-Shots Learning

Set-up. In these experiments, we assume that we have few

(e.g. 2, 5, 10, etc.) training samples for a set of classes

of interest (the 10 AWA and 50 CUB evaluation classes)

in addition to all the samples from a set of “background

classes” (the remaining 40 AWA and 150 CUB classes).

For each evaluation class, we use approximately half of

the images for training (the 2, 5, 10, etc. training samples

are drawn from this pool) and the other half for testing. The

minimum number of images per class in the evaluation set

is 302 (AWA) and 42 (CUB). To have the same number of

training samples, we use 100 images (AWA) and 20 images

(CUB) per class as training set and the remaining images

for testing.

Algorithms. We compare the proposed ALE with three

baselines: OVR, GLE and WSABIE. We are especially

interested in analyzing the following factors: (i) the influ-

ence of parameter sharing (ALE, GLE, WSABIE) vs. no

parameter sharing (OVR), (ii) the influence of learning the

embedding (WSABIE) vs. having a fixed embedding (ALE,

OVR and GLE), and (iii) the influence of prior information

(ALE) vs. no prior information (OVR, GLE and WSABIE)

For ALE and WSABIE, W is initialized to the matrix

learned in the zero-shot experiments. For ALE, we experi-

mented with three different learning variations:

• ALE(W ) consists in learning the parameters W and

keeping the embedding fixed (Φ = ΦA).

• ALE(Φ) consists in learning the embedding parameters

Φ and keeping W fixed.

• ALE(WΦ) consists in learning both W and Φ.

While both ALE(W ) and ALE(Φ) are implemented

by stochastic (sub)gradient descent (see Algorithm 1 in

Sec. 3.3), ALE(WΦ) is implemented by stochastic al-

ternating optimization. Stochastic alternating optimization

alternates between SGD for optimizing over the variable

W and optimizing over the variable Φ. Theoretical con-

vergence of SGD for ALE(W ) and ALE(Φ) follows from

standard results in stochastic optimization with convex non-

smooth objectives [53], [52]. Theoretical convergence of

the stochastic alternating optimization is beyond the scope

of the paper. Experimental results show that the strategy

actually works fine empirically.

Results. We show results in Figure 5 for AWA and CUB

using 64K-dim features. We can draw the following con-

clusions. First, GLE underperforms all other approaches for

limited training data which shows that random embeddings

are not appropriate in this setting. Second, in general,

WSABIE and ALE outperform OVR and GLE for small

training sets (e.g. for less than 10 training samples) which
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shows that learned embeddings (WSABIE) or embeddings

based on prior information (ALE) can be effective when

training data is scarce. Third, for tiny amounts of training

data (e.g. 2-5 training samples per class), ALE outperforms

WSABIE which shows the importance of prior information

in this setting. Fourth, all variations of ALE – ALE(W ),

ALE(Φ) and ALE(WΦ) – perform somewhat similarly.

Fifth, as the number of training samples increases, all

algorithms seem to converge to a similar accuracy, i.e. as

expected parameter sharing and prior information are less

crucial when training data is plentiful.

5.5 Learning and testing on the full datasets

In these experiments, we learn and test the classifiers on

the 50 AWA (resp. 200 CUB) classes. For each class,

we reserve approximately half of the data for training

and cross-validation purposes and half of the data for

test purposes. On CUB, we use the standard training/test

partition provided with the dataset. Since the experimental

protocol in this section is significantly different from the

one chosen for zero-shot and few-shots learning, the results

cannot be directly compared with those of the previous

sections.

Comparison of output encodings. We first compare dif-

ferent encoding techniques (continuous embedding vs. bi-

nary embedding) and normalization strategies (with/without

mean centering and with/without ℓ2-normalization). The

results are provided in Table 5. We can draw the following

conclusions.

As is the case for zero-shot learning, mean-centering

has little impact and ℓ2-normalization consistently improves

performance, showing the importance of normalized out-

puts. On the other hand, a major difference with the zero-

shot case is that the {0, 1} and continuous embeddings per-

form on par. On AWA, in the 64K-dim FVs case, ALE with

continuous embeddings leads to 53.3% accuracy whereas

{0, 1} embeddings leads to 52.5% (0.8% difference). On

CUB with 64K-dim FVs, ALE with continuous embeddings

leads to 21.6% accuracy while {0, 1} embeddings lead

to 21.4% (0.2% difference). This seems to indicate that

the quality of the prior information used to perform label

embedding has less impact when training data is plentiful.

Comparison of output embedding methods. We now

compare on the full training sets several learning algo-

rithms: OVR, GLE with a costly setting E = 2, 500 output

dimensions this was the largest output dimensionality al-

lowing us to run the experiments in a reasonable amount

of time), WSABIE (with cross-validated E), ALE (we use

the ALE(W ) variant where the embedding parameters are

kept fixed), HLE and AHLE (with early and late fusion).

Results are provided in Table 6.

We can observe that, in this setting, all methods perform

somewhat similarly. Especially, the simple OVR and GLE

baselines provide a competitive performance: OVR outper-

forms all other methods on CUB and GLE performs best

on AWA. This confirms that the quality of the embedding

has little importance when training data is plentiful.

AWA

FV=4K FV=64K

µ ℓ2 {0, 1} cont {0, 1} cont

no no 42.3 41.6 45.3 46.2

no yes 44.3 44.6 52.5 53.3

yes no 42.2 41.6 45.8 46.2

yes yes 44.8 44.5 51.3 52.0

CUB

FV=4K FV=64K

µ ℓ2 {0, 1} cont {0, 1} cont

no no 13.0 13.9 16.5 16.7

no yes 16.2 17.5 21.4 21.6

yes no 13.2 13.9 16.5 16.7

yes yes 16.1 17.3 17.3 21.6

TABLE 5

Comparison of different output encodings: binary

{0, 1} encoding, continuous encoding, with/without

mean-centering (µ) and with/without ℓ2-normalization

OVR GLE WSABIE ALE HLE
AHLE
early

AHLE
late

AWA 52.3 56.1 51.6 52.5 55.9 55.3 55.8

CUB 26.6 22.5 19.5 21.6 22.5 24.6 25.5

TABLE 6

Comparison of different output embedding methods

(OVR, GLE, WSABIE, ALE, HLE, AHLE early and

AHLE late ) on the full AWA and CUB datasets (resp.

50 and 200 classes). We use 64K FVs.

Reducing the training set size. We also studied the effect

of reducing the amount of training data by using only 1/4,

1/2 and 3/4 of the full training set. We therefore sampled

the corresponding fraction of images from the full training

set and repeated the experiments ten times with ten different

samples. For these experiments, we report GLE results with

two settings: using a low-cost setting, i.e. using the same

number of output dimensions E as ALE (i.e. 85 for AWA

and 312 for CUB) and using a high-cost setting, i.e. using

a large number of output dimensions (E = 2, 500 – see

comment above about the choice of the value 2, 500). We

show results in Figure 6.

On AWA, GLE outperforms all alternatives, closely

followed by AHLE late. On CUB, OVR outperforms all

alternatives, closely followed again by AHLE late. ALE,

HLE and GLE with high-dimensional embeddings perform

similarly. For these experiments, a general conclusion is

that, when we use high dimensional features, even simple

algorithms such as the OVR which are not well-justified

for multi-class classification problems can lead to state-of-

the-art performance.

6 CONCLUSION

We proposed to cast the problem of attribute-based classi-

fication as one of label-embedding. The proposed Attribute

Label Embedding (ALE) addresses in a principled fashion

the limitations of the original DAP model. First, we solve

directly the problem at hand (image classification) without

introducing an intermediate problem (attribute classifica-

tion). Second, our model can leverage labeled training
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Fig. 6. Learning on AWA and CUB using 1/4, 1/2,

3/4 and all the training data. Compared output embed-

dings: OVR, GLE, WSABIE, ALE, HLE, AHLE early

and AHLE late. Experiments repeated 10 times for

different sampling of Gaussians. We use 64K FVs.

data (if available) to update the label embedding, using

the attribute embedding as a prior. Third, the label em-

bedding framework is not restricted to attributes and can

accommodate other sources of side information such as

class hierarchies or words embeddings derived from textual

corpora.

In the zero-shot setting, we improved image classification

results with respect to DAP without losing attribute inter-

pretability. Continuous attributes can be effortlessly used

in ALE, leading to a large boost in zero-shot classification

accuracy. As an addition, we have shown that the dimen-

sionality of the output space can be significantly reduced

with a small loss of accuracy. In the few-shots setting,

we showed improvements with respect to the WSABIE

algorithm, which learns the label embedding from labeled

data but does not leverage prior information.

Another important contribution of this work was to relate

different approaches to label embedding: data-independent

approaches (e.g. OVR, GLE), data-driven approaches (e.g.

WSABIE) and approaches based on side information (e.g.

ALE, HLE and WLE). We present here a unified framework

allowing to compare them in a systematic manner.

Learning to combine several inputs has been extensively

studied in machine learning and computer vision, whereas

learning to combine outputs is still largely unexplored. We

believe that it is a worthwhile research path to pursue.
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