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Abstract

Non-rigid object detection and articulated pose estima-
tion are two related and challenging problems in computer
vision. Numerous models have been proposed over the
years and often address different special cases, such as
pedestrian detection or upper body pose estimation in TV
footage. This paper shows that such specialization may not
be necessary, and proposes a generic approach based on
the pictorial structures framework. We show that the right
selection of components for both appearance and spatial
modeling is crucial for general applicability and overall
performance of the model. The appearance of body parts is
modeled using densely sampled shape context descriptors
and discriminatively trained AdaBoost classifiers. Further-
more, we interpret the normalized margin of each classifier
as likelihood in a generative model. Non-Gaussian rela-
tionships between parts are represented as Gaussians in the
coordinate system of the joint between parts. The marginal
posterior of each part is inferred using belief propagation.
We demonstrate that such a model is equally suitable for
both detection and pose estimation tasks, outperforming the
state of the art on three recently proposed datasets.

1. Introduction and Related Work
Both people detection and human pose estimation have

a large variety of applications such as automotive safety,
surveillance, and video indexing. The goal of this paper is
to develop a generic model for human detection and pose es-
timation that allows to detect upright people (i.e., pedestri-
ans [12]), as well as highly articulated people (e.g., in sports
scenes [15]), and to estimate their poses. Our model should
also enable upper body detection and pose estimation [6],
e.g., for movie indexing. The top performing methods for
these three scenarios do currently not share the same archi-
tecture, nor are components necessarily similar either. Here,
we present a generic approach that allows for both human
detection and pose estimation thereby addressing the above
mentioned scenarios in a single framework. Due to its care-
ful design the proposed approach outperforms recent work
on three challenging datasets (see Fig. 1 for examples).

Figure 1. Example results (from left to right): Pedestrian detec-
tion, upper-body pose estimation, and full body pose estimation
(3rd and 4th column) using our method. Bottom: Part posteriors.

Our work builds upon the pictorial structures model
[4, 6, 15], which is a powerful and general, yet simple gen-
erative body model that allows for exact and efficient infer-
ence of the part constellations. We also build upon strong
part detectors [1, 13, 24], which have shown to enable ob-
ject and people detection in challenging scenes, but have not
yet proven to enable state-of-the-art articulated pose estima-
tion. While previous work has either focused on strong part
detectors or on powerful body models, our work combines
the strengths of both.

The original pictorial structures approach of Felzen-
szwalb and Huttenlocher [4] is based on a simple appear-
ance model requiring background subtraction, which ren-
ders it inappropriate for the scenes considered here. In
[18] the approach has been demonstrated to work without
background substraction by relying on a discriminative ap-
pearance model, but while still using rather simple image
features (Gaussian derivatives). More powerful part tem-
plates are extracted in [15] using an iterative parsing ap-
proach. This was later extended by [6], which furthermore
integrates features from an automatic foreground segmenta-
tion step to improve performance, which we do not require
here. Both approaches iteratively build more powerful de-
tectors to reduce the search space of valid articulations, but
use relatively weak edge cues at the initial detection stage.

Our approach, on the other hand, uses strong generic part
detectors that do not require iterative parsing or other ways
of reducing the search space, other than of course an ar-
ticulated body model. In particular, we compute dense ap-
pearance representations based on shape context descriptors
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, θi, si). xi and yi is the position of
the part center in image coordinates, θi is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) ∝ p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).
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Given such a model, we estimate articulated poses by
finding the most probable location for each part given the
image evidence through maximizing the marginal posterior
p(li|D). In case of multiple people this directly generalizes
to finding the modes of the posterior density.

To address the problem of people detection, we also rely
on an articulated body model (like e.g., [1, 15]) to be able to
cope with the large variety of possible body poses. To that
end we first compute the marginal distribution of the posi-
tion of the torso, and then use its modes to deterministically
predict the positions of the detection bounding boxes.

2.1. Kinematic tree prior

The first important component in our pictorial structures
approach is the prior p(L), which encodes probabilistic
constraints on part configurations. A common source of
such constraints are kinematic dependencies between parts.
Mapping the kinematic structure on a directed acyclic graph
(DAG), the distribution over configurations can be factor-
ized as

p(L) = p(l0)
∏

(i,j)∈E

p(li|lj), (1)

where we let E denote the set of all directed edges in the
kinematic tree and assign l0 to be the root node (torso).

It is certainly possible to incorporate action specific con-
straints into the prior, and to combine them with articula-
tion dynamics to enable tracking, as is done for example
in [10, 23]. However, we omit such extensions, since they
would restrict the applicability of the model to rather spe-
cific scenarios.
Part relations. To complete the specification of the prior,
we have to specify the various components of Eq. (1). The
prior for the root part configuration p(l0) is simply assumed
to be uniform, to allow for a wide range of possible configu-
rations. The part relations are modeled using Gaussian dis-
tributions (c.f . [4, 16]), which allow for efficient inference
(see below). This may seem like a significant limitation, for
example as the distribution of the forearm position given
the upper arm position intuitively has a semi-circular rather
than a Gaussian shape. It was pointed out in [4] that while
such a distribution is not Gaussian in the image coordinates,
it is possible to transform it to a different space, in which the
spatial distribution between parts is again well captured by a
Gaussian distribution. More specifically, to model p(li|lj),
we transform the part configuration li = (xi, yi, θi, si) into
the coordinate system of the joint between the two parts
using the transformation:

Tji(li) =


xi + sid

ji
x cos θi − sid

ji
y sin θi

yi + sid
ji
x sin θi + sid

ji
y cos θi

θi + θ̃ji

si

 . (2)
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Figure 3. Priors on the part configurations (left to right): Pedes-
trian detection (star vs. tree model) and upper body detection.

Here, dji = (dji
x , dji

y )T is the mean relative position of the
joint between parts i and j in the coordinate system of part
i and θ̃ji is the relative angle between parts. Then the part
relation is modeled as a Gaussian in the transformed space:

p(li|lj) = N (Tji(li)|Tij(lj),Σji), (3)

where Tij is the transformation that maps position of par-
ent part lj to the position of the joint between parts i and
j, and Σji is the covariance between the parts that we learn
from data, which determines the stiffness of the joint. More-
over, we need to learn the mean relative joint position dji.
Both dji and Σji can be learned in a quite straightforward
way using maximum likelihood estimation. One important
thing to note is that this corresponds to a so-called “loose
limbed” model (c.f . [21]), because the limbs do not rigidly
rotate around the joints. Instead, the parts are only loosely
attached to the joint by means of the Gaussian distribution
from Eq. (3), which helps reduce brittle behavior. In our
experiments, we found this simple and efficient procedure
to work much better than the non-parametric part relation
model used in [15].
Learned prior. Figure 2 shows the prior learned from the
multi-view and multi-articulation people dataset from [15],
which includes people involved in large variety of activities
ranging from simple walking to performing acrobatic exer-
cises. Samples from this model (see Fig. 2) exhibit a large
variety of poses. Fig. 3 also shows priors learned on the
TUD-Pedestrians dataset [1], which contains upright pedes-
trians in street scenes, and from the “Buffy” dataset [6],
which contains upper body configurations in TV footage.

2.2. Discriminatively trained part models

The other important component in our formulation is the
likelihood p(D|L) of the image evidence D given the part
configuration L. We rely on part specific appearance mod-
els, each of which will result in a part evidence map di that
reports the evidence for part i for each possible position,
scale, and rotation. To unify this discriminative appearance
model with the generative body model, we assume that the
part evidence maps are generated based on knowing the true
body configuration L. Assuming that the different part evi-
dence maps are conditionally independent given the config-
uration L, and that the part map di for part i only depends
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on its own configuration li, the likelihood simplifies as:

p(D|L) =
N∏

i=0

p(di|L) =
N∏

i=0

p(di|li). (4)

While this is clearly a simplifying assumption, it is justifi-
able as long as parts do not occlude each other significantly
(c.f . [4]). Moreover, this enables efficient and exact infer-
ence and leads to very competitive experimental results. As
a consequence of Eq. (4) the posterior over the configura-
tion of parts factorizes as:

p(L|D) ∝ p(l0) ·
N∏

i=0

p(di|li) ·
∏

(i,j)∈E

p(li|lj), (5)

Challenges. There are a number of considerations that
drive the choices behind our discriminative appearance
model. Our aim is to detect people in unconstrained en-
vironments and arbitrary poses. As the search space for all
possible poses is often very large, search space reduction
can be an important component of a successful approach
[6]. As has been argued before [22], using discriminatively
learned detectors allows to reduce the search space for the
generative model significantly thereby enabling not only ef-
ficient but also effective inference in challenging real world
scenes. Following this avenue, we rely on a part-specific
discriminative appearance model to effectively reduce the
search space as much as possible. In a similar vein, it is im-
portant to avoid prefiltering the possible part locations at the
part detection stage, and to postpone the final decision un-
til evidence from all body parts is available. Therefore we
densely evaluate the search space and consider all possible
part positions, orientations, and scales, which is in contrast
to bottom-up appearance models (e.g. [1, 13]) based on a
sparse set of local features. We believe that dense sampling
is better suited for detecting body parts, especially in cases
of low contrast and partial occlusion.
Boosted part detectors. Our discriminative part detectors
densely sample a variant of the shape context descriptor ini-
tially proposed in [14] and previously used for pedestrian
detection [19]. In this descriptor the distribution of locally
normalized gradient orientations is captured in a log-polar
histogram. The log-polar binning is especially suited for
our task, since it is tolerant to small changes in the rotation
of the body parts. In our experiments we use 12 bins for
the location and 8 bins for the gradient orientation, which
results in a 96 dimensional descriptor. We ignore the sign
of the gradient as we found this to improve generalization.

The feature vector used for classification is obtained by
concatenating all shape context descriptors whose centers
fall inside of the part bounding box, so that some of the fea-
ture vector dimensions also capture the surrounding context.
During detection all possible positions, scales, and orienta-
tions are scanned in a sliding window fashion. To predict

the presence of a part, we train an AdaBoost classifier [7]
with simple decision stumps that consider whether one of
the log-polar histogram bins of the feature vector is above a
threshold. Denoting the feature vector by x, the stump with
index t is given by ht(x) = sign(ξt(xn(t) − ϕt)), where
ϕt is a threshold, ξt ∈ {−1,+1}, and n(t) is index of the
histogram bin chosen by the stump. Training of the Ada-
Boost classifier proceeds as usual yielding a strong classi-
fier Hi(x) = sign (

∑
t αi,tht(x)) for each part i. Here, αi,t

are the learned weights of the weak classifiers.
To integrate the discriminative classifiers into the gener-

ative probabilistic framework described above, it is neces-
sary to give a probabilistic meaning to the classifier outputs.
For that we interpret the normalized classifier margin as the
likelihood:

p̃(di|li) = max
(∑

t αi,tht(x(li))∑
t αi,t

, ε0

)
(6)

where x(li) denotes the feature for the part configuration li,
and ε0 is a small positive constant, which makes the model
more robust to part occlusions and missing parts. In our
experiments we set ε0 = 10−4. As we show in Sec. 3 this
simple pseudo-probability works quite well in practice.
Training. At the training stage, each annotated part is
scaled and rotated to a canonical pose prior to learning.
Note that this in-plane rotation normalization significantly
simplifies the classification task. Additionally, we extend
the training set by adding small scale, rotation, and offset
transformations to the original images. The negative feature
vectors are obtained by uniformly sampling them from the
image regions outside of the object bounding box. After the
initial training, the classifiers are re-trained with a new neg-
ative training set that has been augmented with false pos-
itives produced by the initial classifier. This is commonly
referred to as bootstrapping. We have found that bootstrap-
ping is essential for obtaining good performance with our
discriminative part detectors (c.f . Fig. 4(c)).

2.3. Exact model inference

An important property of such a tree-based model is that
optimal inference is tractable. Specifically, we could com-
pute the globally optimal body configuration by doing MAP
inference using the max-product algorithm [4]. Moreover,
we can compute exact marginal distributions using the sum-
product algorithm [9], which we employ here, because we
require marginals for pedestrian detection.

To that end, we interpret the underlying directed graphi-
cal model as a factor graph, and apply standard factor graph
belief propagation (sum-product).

An important observation is that if the part dependencies
are modeled using Gaussian distributions, then expensive
summations necessary in the sum-product algorithm can be
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efficiently computed using Gaussian convolutions. How-
ever, care has to be taken when doing so, as the part re-
lations in our model are Gaussian not in the image space,
but rather in the transformed space of the joint. To apply
the efficient algorithm nonetheless, we rely on the approach
suggested in [4] and transform the messages into the coor-
dinate system of the joint using Eq. (2), then apply Gaussian
convolutions there, and finally transform the result into the
coordinate system of the target part, which is possible since
the transformation from the part position to the position of
the joint is invertible. These computations are especially ef-
ficient if the Gaussian distribution in the transformed space
is separable.

3. Experiments
We evaluate our model on three related tasks of increa-

sing complexity: Pedestrian detection, upper body pose es-
timation, and multi-view full body pose estimation. For
each task we use publicly available datasets and directly
compare to the respective methods designed to work specif-
ically on each of the tasks. In all experiments we discretize
the part configurations in the same way. The discretization
step is 1 pixel for the position in the image, 15 degrees for
the part orientation, and 0.1 for the object scale.

3.1. Pedestrian detection

To detect pedestrians, we compute the marginal distribu-
tion of the torso location and use that to predict the pedes-
trian’s bounding box. To deal with multiple peaks in the
posterior corresponding to the same detection hypothesis,
we perform a non-maximum suppression step. For each de-
tection we remove all detections with smaller probability
and more than 50% cover and overlap.

We use two datasets to evaluate different aspects of our
model. The TUD-Pedestrians dataset [1] contains 250 im-
ages with 311 pedestrians (mostly side-views) with large
variability in clothing and articulation. The training set
contains 400 images. We created a new dataset called
TUD-UprightPeople, which contains images from TUD-
Pedestrians and additional images taken under various il-
lumination conditions. This new dataset is used to evaluate
different aspects of our model. The dataset contains 435 im-
ages with one person per image. We compare our approach
to previous work on both datasets.

In all pedestrian detection experiments we use the 400
training images provided with TUD-Pedestrians to train the
part detectors. We used two different priors on the part con-
figuration: (1) A star prior in which all parts are connected
directly to the center part; and (2) a kinematic tree prior
(both are shown in Fig. 3).

To start our discussion consider Fig. 4(d), where we
compare our approach (using 8 body parts) to results from

(a) (b) (c) (d)
Figure 5. Several examples of detections at equal error rate ob-
tained with our model (8 parts and tree prior, top) and partISM
(bottom) on the “TUD-Pedestrians” dataset.

the literature on the TUD-Pedestrians dataset. We use
8 parts either with the star prior or with the kinematic
tree prior, both estimated on the training images of TUD-
Pedestrians based on part annotations.

While the tree-based prior slightly outperforms the star
prior, both outperform the partISM-model [1] by 4 and
5 % equal error rate (EER) respectively. They are also
significantly better than the publicly available HOG bi-
nary [3], which however needs less supervision since it
does not require part annotations during training. Similarly,
Fig. 4(c) shows the same relative performance on the TUD-
UprightPeople dataset. We attribute the improved perfor-
mance over partISM to our dense part representation and to
the discriminatively learned appearance model. PartISM, in
contrast, uses a generative appearance model on sparse in-
terest points. Fig. 5 shows sample detections of our model
and partISM. Our model is flexible enough to capture di-
verse articulations of people as for example in Fig. 5(b), (c)
and (d), which typically are problematic for monolithic de-
tectors. However since our model is build on top of discrim-
inative classifiers, it can avoid false positives in the back-
ground, which plague the generative partISM model (e.g.,
Fig. 5(a) and (d)).

To gain more insight into the role of the different com-
ponents, we conducted a series of experiments on the TUD-
UprightPeople dataset. Here, we report results for the star
prior only, as it allows to arbitrarily add and remove body
parts from the model. Fig. 4(a) shows the influence of dif-
ferent numbers of parts on the detection performance. As
expected, using more body parts generally improves the de-
tection performance. We also compare to a monolithic de-
tector that consists of single part defined by the person’s
bounding box (as is typical, e.g., for the HOG detector [3]).
This monolithic detector did not perform well even com-
pared to detectors with as few as 3 parts.

In Fig. 4(b) we evaluate how the density of sampling the
local features affects performance. In both cases the dis-
tance between evaluated part positions is kept the same, but
the distance between features included in the feature vector
presented to the AdaBoost classifier is set to 4, 8 and 16 pix-
els. The denser version produces consistently better results
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Figure 4. Pedestrian detection results: Performance of our model with different number of parts (a) and different step sizes between local
features (b) on the “TUD-UprightPeople” dataset. Comparison with previously proposed approaches partISM [1] and HOG [3] on the
“TUD-UprightPeople” dataset (c) and “TUD-Pedestrians” dataset (d). Note that denser sampling of local features (b) and bootstrapping
(c) result in improvements of 6% and 8% EER respectively.

and outperforms the sparser one by approximately 6% EER.
This confirms our intuition that an over-complete encoding
of information at different spatial resolutions is important
for classification. Note that the overall performance differ-
ence between Fig. 4(a) and (b) is due to the fact that we did
not perform bootstrapping on the part detectors in 4(b).

3.2. Upper body pose estimation

To evaluate our method on the task of upper-body pose
estimation, we use the recently proposed Buffy dataset [6],
where the task is to estimate positions of torso, head, left
and right forearm, and left and right upper arm in still
frames extracted from 3 episodes of the popular TV show
“Buffy the Vampire Slayer”. This is very challenging due
to large variability of poses, varying and loose fitting cloth-
ing, as well as strongly varying illumination. Due to the
complexity of the task, the previously proposed approach
[6] used multiple stages to reduce the search space of ad-
missible poses. In particular, they perform an additional
automatic foreground/background separation step based on
‘GrabCut’, and use spatio-temporal constraints. In our ap-
proach we directly estimate the pose from images without
any search space pruning. Nonetheless, one can think of the
discriminative part models we use as a form of pruning.

Ferrari et al. [6] report quantitative pose estimation re-
sults only for the single-frame detector (no temporal co-
herency) on a subset of people that have been correctly lo-
calized with a weak object detector, which is used for pre-
filtering. To facilitate comparison, we used the same weak
detector (using the implementation made available by the
authors of [6]), and only estimated the upper body pose in
the image regions around correctly localized persons. Ta-
ble 1 gives the detection results for each of the 6 upper body
parts, along with the overall detection performance, which
are measured using the same criterion as in [6]. A body
part is considered correctly localized if the endpoints of its
segment lie within 50% of the ground-truth segment length
from their true positions.

We consider 3 different cases and report the localization

performance (1) of the boosted part detectors alone; (2) of
our full model with a generic upper body prior trained on the
data used in Sec. 3.3 (c.f . Fig. 2); and (3) of our full model
with a specialized front/back-view prior. Latter has been
estimated on episode 4 of the “Buffy” dataset, which was
not used for evaluation. In either case we used generic part
detectors trained on the 100 training images of the “Iterative
Image Parsing” dataset from [15].

As the results in Tab. 1 show, our method significantly
outperforms the approach of [6] (71.3% vs. 57.9% aver-
age localization performance), even when using a generic
body model. Yet in contrast to [6], we do not require sepa-
rate foreground/background segmentation or use color fea-
tures. The application specific front/back-view prior im-
proves performance even further, albeit only slightly. It is
also noteworthy that the part detectors alone, while power-
ful, do not perform well on this dataset, especially those of
the arms. On one hand this illustrates the difficulty of the
dataset, and on the other hand it demonstrates the impor-
tance of capturing the spatial relations between body parts,
which can improve part localization by more than ten times.

Fig. 6 shows examples of estimated upper-body configu-
rations, which demonstrate the effectiveness of our method
even for difficult poses including self-occlusions (e.g. ex-
amples (a), (c), and (h)). We also show some typical failure
cases that are often due to incorrect scale estimation by the
weak object detector (example (i)), or failures of the part
detector (parts (k) and (l)). Since we assume a constant size
of the object parts, our method is limited in how foreshort-
ening can be tolerated (example (j)).

3.3. Full body pose estimation

Finally, we evaluate our model on a full body pose
estimation task and compare to the iterative image pars-
ing method of Ramanan [15], which uses a similar spa-
tial model but approaches appearance modeling quite dif-
ferently. Note that this is the same algorithm that was used
in the pose estimation stage of [6]. In this comparison we
use the publicly available multi-view and multi-articulation
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Figure 6. Upper body pose estimation: Examples of pose estimation results (left), and some typical failure cases (right) of our method on
the “Buffy” dataset (see text for description). Note that color information is not used, but shown here for illustration.

Method Torso Upper arm Forearm Head Total
Progressive Search Space Reduction [6] − − − − − − 57.9

Our part detectors 18.9 6.6 7 3.3 2.9 47.2 14.3

Our part detectors and inference with generic prior 90.7 80.2 78.4 40.1 42.3 95.9 71.3

Our part detectors and inference with front/back view prior 90.7 80.6 82.1 44.2 47.9 95.5 73.5

Table 1. Upper body pose estimation: Comparison of body part detection rates on the “Buffy” dataset [6] (numbers indicate the percentage
of correctly detected parts. The total number of part segments is 6× 269 = 1614 ).

Iterative Image Parsing dataset from [15], which contains
people engaged in a wide variety of activities ranging from
simple standing and walking to dancing and performing
acrobatic exercises. The difficulty of the task is further
increased by the limited training set of only 100 images,
which only scarcely capture the variations in appearance
and poses present in the test set. We evaluate the part lo-
calization performance using the same criteria as proposed
in [6] and used in Sec. 3.2. The iterative image parsing re-
sults were obtained using the implementation by the author
of [15]. Quantitative results are shown in Tab. 2.

Our findings show significant performance gains: The
localization results of our approach surpass those of [15] by
more than a factor of 2 (55.2% vs. 27.2% accuracy). The lo-
calization performance of all body parts is significantly im-
proved, sometimes by a factor of 3. It is interesting to note
that our head detector alone (i.e., without any kinematic
model) has a better localization performance for the head
than the full model of [15]. This clearly demonstrates the
importance of powerful part detectors for obtaining good
overall performance.

Tab. 2 also shows the performance of our method when
the boosted part detectors are replaced with discriminatively
trained edge templates used in [15]. For this experiment
we extracted the responses of the part templates using the
author’s code [15] and fitted sigmoid functions to the fore-
ground and background responses of each part template in
order to make them comparable with one another. The av-
erage part localization rate in this experiment is 37.5%1,
which is significantly better than the results of iterative im-
age parsing [15] with the same edge template features. We
attribute this to the different representation of the part re-
lationships in our kinematic model. The performance of
the full model is still significantly better (55.2%), which

1Results without sigmoid fitting are considerably worse.

again shows that the boosted part detectors contribute sub-
stantially to the overall performance.

Fig. 7 shows a comparison between both approaches on
an arbitrary set of 12 consecutive test images from the “Iter-
ative Image Parsing” dataset. For each image we also show
the posterior distributions for each part and give the num-
ber of correctly localized body parts. From these results it
appears that Ramanan’s method works well in relatively un-
cluttered images (e.g., Fig. 7(i) and (l)); nonetheless, even
in those scenes, we often localize more parts correctly. In
strongly cluttered scenes (e.g., Fig. 7(d) or (g)), our method
seems to have a clear advantage in recovering the pose. This
may be attributed to the fact that the image parsing approach
was not able to build up appropriate appearance models dur-
ing the initial parse. The line templates used in the initial
parse may also be misguided by strong edges (Fig. 7(a)),
which our method handles more gracefully.

4. Conclusion
In this paper we proposed a generic model for detection

and articulated pose estimation. We demonstrated the gen-
erality of our approach on 3 recent datasets, where it out-
performed specialized approaches by a large margin, which
have been designed specifically for only one of these tasks.
Despite that, our model is surprisingly simple. We attribute
these excellent results to a powerful combination of two
components: A strong discriminatively trained appearance
model and a flexible kinematic tree prior on the configura-
tions of body parts. In order to facilitate comparison with
our model we will make the source code of our implemen-
tation available on our website2. Currently, we do not make
use of color information and do not model relationships be-
tween body parts beyond kinematic constraints, for example

2www.mis.informatik.tu-darmstadt.de/code
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Figure 7. Comparison of full body pose estimation results between our approach (top) and [15] (bottom). The numbers on the left of
each image indicate the number of correctly localized body parts.

Method Torso Upper leg Lower leg Upper arm Forearm Head Total
IIP [15], 1st parse (edge features only) 39.5 21.4 20 23.9 17.5 13.6 11.7 12.1 11.2 21.4 19.2

IIP [15], 2nd parse (edge + color feat.) 52.1 30.2 31.7 27.8 30.2 17 18 14.6 12.6 37.5 27.2

Our part detectors 29.7 12.6 12.1 20 17 3.4 3.9 6.3 2.4 40.9 14.8

Our inference, edge features from [15] 63.4 47.3 48.7 41.4 34.14 30.2 23.4 21.4 19.5 45.3 37.5

Our inference, our part detectors 81.4 67.3 59 63.9 46.3 47.3 47.8 31.2 32.1 75.6 55.2

Table 2. Full body pose estimation: Comparison of body part detection rates and evaluation of different components of the model on
the “Iterative Image Parsing” (IIP) dataset [15] (numbers indicate the percentage of the correctly detected parts. The total number of part
segments is 10× 205 = 2050 ).

in order to model occlusions (c.f . [20]). We expect that such
additional constraints will further improve the performance
and should be explored in future work.
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