Pictorial Structures Revisited: People Detection and Articulated Pose Estimation

Mykhaylo Andriluka

Stefan Roth

Bernt Schiele

Department of Computer Science TU Darmstadt

Generic model for human detection and pose estimation

Human pose estimation

[Felzenszwalb&Huttenlocher, ICCV'05], [Ren et al., ICCV'05], [Sigal&Black, CVPR'06], [Zhang et al., CVPR'06], [Jiang&Marin, CVPR'08], [Ramanan, NIPS'06], [Ferrari et al., CVPR'08], [Ferrari et al., CVPR'09]

often rather simple appearance model focus on finding optimal assembly of parts

People Detection

[Viola et al., ICCV'03], [Dalal&Triggs, CVPR'05], [Leibe et al., CVPR'05], [Andriluka et al., CVPR'08]

complex appearance model no pose model or limited to walking motion

Generic model for human detection and pose estimation

Human pose estimation

[Felzenszwalb&Huttenlocher, ICCV'05], [Ren et al., ICCV'05], [Sigal&Black, CVPR'06], [Zhang et al., CVPR'06], [Jiang&Marin, CVPR'08], [Ramanan, NIPS'06], [Ferrari et al., CVPR'08], [Ferrari et al., CVPR'09]

often rather simple appearance model focus on finding optimal assembly of parts

People Detection

[Viola et al., ICCV'03], [Dalal&Triggs, CVPR'05], [Leibe et al., CVPR'05], [Andriluka et al., CVPR'08]

complex appearance model no pose model or limited to walking motion

Can we make pictorial structures model effective for these tasks?

[Fischler&Elschlager, 1973]

Can we make pictorial structures model effective for these tasks?

Yes... if the model components are chosen right.

Pictorial Structures Model

Pictorial structures allow exact and efficient inference.

- tree-structured prior
- independent part appearance model
- discretized part locations

- Gaussian pairwise part relationships

posterior marginals

 $p(\mathbf{l}_i|D) \propto \sum p(L|D)$ $L \setminus \mathbf{l}_i$

Can we make pictorial structures model effective for these tasks?

So... what are the right components?

Model Components

Appearance Model:

Model Components

Appearance Model:

- Build on recent advances in object detection:
 - state-of-the-art image descriptor: Shape Context [Belongie et al., PAMI'02; Mikolajczyk&Schmid, PAMI'05]
 - dense representation
 - discriminative model: AdaBoost classifier for each body part

- Shape Context: 96 dimensions (4 angular, 3 radial, 8 gradient orientations)
- Feature Vector: concatenate the descriptors inside part bounding box
- head: 4032 dimensions
- torso: 8448 dimensions

• Part likelihood derived from the boosting score:

Model Components

Appearance Model:

Kinematic Tree Prior

2

 Represent pairwise part relations [Felzenszwalb & Huttenlocher, IJCV'05]

$$p(L) = p(\mathbf{l}_0) \prod_{(i,j)\in E} p(\mathbf{l}_i | \mathbf{l}_j),$$

$$p(\mathbf{l}_2|\mathbf{l}_1) = \mathcal{N}(T_{12}(\mathbf{l}_2)|T_{21}(\mathbf{l}_1), \Sigma^{12})$$

part locations relative to the joint

Kinematic Tree Prior

- Prior parameters: $\{T_{ij}, \Sigma^{ij}\}$
- Parameters of the prior are estimated with maximum likelihood

Evaluation Scenarios

1. Human Pose Estimation "People" dataset [Ramanan, NIPS'06]

2. Upper-body Pose Estimation "Buffy" dataset [Ferrari et al., CVPR'08]

3. Pedestrian Detection"TUD Pedestrians" dataset[Andriluka et al., CVPR'08]

Evaluation Scenarios

 Human Pose Estimation "People" dataset [Ramanan, NIPS'06]

2. Upper-body Pose Estimation "Buffy" dataset [Ferrari et al., CVPR'08]

3. Pedestrian Detection"TUD Pedestrians" dataset[Andriluka et al., CVPR'08]

Method	Torso	Upper legs	Lower legs	Upper arm	Forearm	Head	Total
[Ramanan, NIPS'06] 2nd parse	52	30	29	17	13	37	27
Our inference, edge features from [Ramanan, NIPS'06]	63	48	37	26	20	45	37
Our part detectors (SC)	29	12	18	3	4	40	14
Our prior, our part detectors (SC)	81	63	55	47	31	75	55
Our prior, our part detectors (SIFT)	78	58	54	44	31	66	52

Method	Torso	Upper legs	Lower legs	Upper arm	Forearm	Head	Total
[Ramanan, NIPS'06] 2nd parse	52	30	29	17	13	37	27
Our prior, edge features from [Ramanan, NIPS'06]	63	48	37	26	20	45	37
Our part detectors (SC)	29	12	8	3	4	40	4
Our prior, our part detectors (SC)		63					
Our prior, our part detectors (SIFT)	78	58	54	44	31	66	52

Method	Torso	Upper legs	Lower legs	Upper arm	Forearm	Head	Total
[Ramanan, NIPS'06] 2nd parse	52	30	29	17	3	37	27
Our inference, edge features from [Ramanan, NIPS'06]	63	48	37	26	20	45	37
Our part detectors (SC)	29	12	8	3	4	40	14
Our prior, our part detectors (SC)		63				75	55
Our prior, our part detectors (SIFT)	78	58	54	44	31	66	52

SC = Shape Context

Method	Torso	Upper legs	Lower legs	Upper arm	Forearm	Head	Total
[Ramanan, NIPS'06] 2nd parse	52	30	29	17	3	37	27
Our inference, edge features from [Ramanan, NIPS'06]	63	48	37	26	20	45	37
Our part detectors (SC)	29	12	18	3	4	40	14
Our prior, our part detectors (SC)	81	63	55	47	31	75	55
Our prior, our part detectors (SIFT)	78	58	54	44	31	66	52

SC = Shape Context

Method	Torso	Upper legs	Lower legs	Upper arm	Forearm	Head	Total
[Ramanan, NIPS'06] 2nd parse	52	30	29	17	3	37	27
Our inference, edge features from [Ramanan, NIPS'06]	63	48	37	26	20	45	37
Our part detectors (SC)	29	12	8	3	4	40	14
Our prior, our part detectors (SC)	81	63	55	47	31	75	55
Our prior, our part detectors (SIFT)	78	58	54	44	31	66	52

SC = Shape Context

Evaluation Scenarios

1. Human Pose Estimation "People" dataset [Ramanan, NIPS'06]

2. Upper-body Pose Estimation "Buffy" dataset [Ferrari et al., CVPR'08]

3. Pedestrian Detection"TUD Pedestrians" dataset[Andriluka et al., CVPR'08]

Estimated upper-body poses

Quantitative Results

Method	Torso	Upper arm	Lower arm	Head	Total
[Ferrari et al. CVPR'08]	-	-	-	-	57.9
detectors only	18.9	6.8	3.1	47.2	14.3
full model	90.7	79.3	41.2	95.9	71.3

- generic model
- prior and appearance learned on the "People" dataset

Quantitative Results

Method	Torso	Upper arm	Lower arm	Head	Total
[Ferrari et al. CVPR'08]	-	-	-	-	57.9
detectors only	18.9	6.8	3.1	47.2	14.3
full model	90.7	79.3	41.2	95.9	71.3
[Ferrari et al. CVPR'09]	-	-	-	-	72.2

- generic model
- prior and appearance learned on the "People" dataset

Quantitative Results

Method	Torso	Upper arm	Lower arm	Head	Total
[Ferrari et al. CVPR'08]	-	-	-	-	57.9
detectors only	18.9	6.8	3.1	47.2	14.3
full model	90.7	79.3	41.2	95.9	71.3
[Ferrari et al. CVPR'09]	-	-	-	-	72.2
full model, Buffy pose prior	90.7	81.35	46.5	95.5	73.5

- specialized upper body prior
- appearance learned on the "Deeple" detect
- "People" dataset

Typical Failure Cases

Foreshortening

Part occlusion

Detections on other body parts

Evaluation Scenarios

1. Human Pose Estimation "People" dataset [Ramanan, NIPS'06]

2. Upper-body Pose Estimation "Buffy" dataset [Ferrari et al., CVPR'08]

Pedestrian Detection
"TUD Pedestrians" dataset
[Andriluka et al., CVPR'08]

People Detection: Results

Comparison with state-of-the art in people detection

This work

Conclusion & Future Work

- Success of pose estimation by "body part" detection
 - use well understood pose estimation framework (Pictorial Structures)
 - use appropriate representation for kinematic dependencies
 - use state of the art appearance representation (SIFT, SC) and classification (AdaBoost)
- Next steps:
 - estimate poses in 3D
 - part occlusions
 - appearance constraints between parts

Thanks!

- Acknowledgements:
 - Thanks to Krystian Mikolajczyk for image descriptors code
 - Thanks to Christian Wojek for AdaBoost code and helpful suggestion
 - Thanks to Deva Ramanan and Vittorio Ferrari for making their code and datasets publicly available
 - This work is partially funded by German Research Foundation (DFG) through GRK 1362.
- Code and pre-trained models will be available at:
 - http://www.mis.informatik.tu-darmstadt.de/code