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Weak supervision 
 Only 2 clicks per object. 

Full supervision 
 Time-consuming. 

 Is it possible to get object boundaries with  
bounding box supervision? 

2 
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 Task: detection of object boundaries 

Ground truth Image 
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Image Generic boundary detector output 
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True positive boundaries 

False positive boundaries 

False negative boundaries 

Image Generic boundary detector output 
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True positive boundaries 

False positive boundaries 

False negative boundaries 

Object boundary detector output Full supervision 
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True positive boundaries 

False positive boundaries 

False negative boundaries 

Weak supervision Object boundary detector output 
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 It is possible to get object boundaries with  
bounding box supervision. 

Weakly supervised Fully supervised Image 
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True positives False positives False negatives 
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Pipeline: 

Generation of 
annotations 

Input 

Image and 
bounding boxes  

Object boundary 
detections 

Output 

Regular  
boundary  
detector  
training 
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 Task: detection of generic boundaries 

Image Generic boundaries 

 Dataset: BSDS [Martin et al., ICCV’01; Arbeláez et al., PAMI’11] 
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Human 

Classical 
[gPb, Arbeláez et al.,PAMI’11] 

Task: generic boundaries, BSDS dataset. 

Better 
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Human 

Classical 
[gPb, Arbeláez et al.,PAMI’11] 

Fully supervised  
[HED, Xie & Tu, ICCV’15] 
  

Task: generic boundaries, BSDS dataset. 

Better 
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Human 

Unsupervised  
[Felzenszwalb et al., IJCV’04] 

Classical 
[gPb, Arbeláez et al.,PAMI’11] 

Fully supervised  
[HED, Xie & Tu, ICCV’15] 
  

Task: generic boundaries, BSDS dataset. 

Better 
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[Felzenszwalb et al., IJCV’04] 

Unsupervised Full supervision 
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Task: generic boundaries, BSDS dataset. 
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Human 

Unsupervised  
[Felzenszwalb et al., IJCV’04] 

Classical 
[gPb, Arbeláez et al.,PAMI’11] 

Fully supervised  
[HED, Xie & Tu, ICCV’15] 
  

Unsupervised 

Starting 
point 

Better 
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Task: generic boundaries, BSDS dataset. 

Human 

Unsupervised  
[Felzenszwalb et al., IJCV’04] 

Classical 
[gPb, Arbeláez et al.,PAMI’11] 

Fully supervised  
[HED, Xie & Tu, ICCV’15] 
  
Weakly supervised  
[HED, Xie & Tu, ICCV’15] 
 

Starting 
point 

Better 
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 Boundary detectors are robust to annotation noise. 
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Pipeline: 

Generation of 
annotations 

Input 

Image and 
bounding boxes  

Object boundary 
detections 

Output 

Regular  
boundary  
detector  
training 
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Object boundaries Image 

 Dataset: VOC [Everingham et al., IJCV’15] 
 

 Task: detection of object boundaries 
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Generation of annotations: 

Generation of 
annotations 

Boundary 
detections 

Output Input 

Bounding 
boxes  

Regular  
boundary  
detector  
training 

Detection bounding boxes  Object proposals  

[Fast-RCNN, Girshick, ICCV’15] [SeSe, Uijlings et al., IJCV’13] 

Ignore region 

Positive boundaries 

Negative boundaries 



Khoreva et al.  |  Weakly Supervised Object Boundaries 21 

Combining weak annotations from: 
Object proposals  GrabCut 

[Rother et al., SIGGRAPH’04] [SeSe, Uijlings et al., IJCV’13] [Felzenszwalb et al., IJCV’04] 

Graph-based 
segmentation 

Positive boundaries 

Ignore boundaries 

Negative boundaries 
Consensus between 

different methods 

Generation of 
annotations 

Boundary 
detections 

Output Input 

Bounding 
boxes  

Regular  
boundary  
detector  
training 
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Generated annotations 
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Positive boundaries Ignore boundaries Negative boundaries 

Ground truth 
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Generated annotations 
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Positive boundaries Ignore boundaries Negative boundaries 

Ground truth 
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Pipeline: 

Generation of 
annotations 

Input 

Image and 
bounding boxes  

Object boundary 
detections 

Output 

Regular  
boundary  
detector  
training 



Generation of 
annotations 

Boundary 
detections 

Output Input 

Bounding 
boxes  

Regular  
boundary  
detector  
training 
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•  Structured Edge Forests [SE, Dollar et al., PAMI’15] 

•  Holistically-nested Edge Detection [HED, Xie & Tu, ICCV’15] 

Boundary detectors: 
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Object boundaries Image 

 Datasets: VOC [Everingham et al., IJCV’15] 

                 SBD [Hariharan et al., ICCV’11] 

 Task: detection of object boundaries 
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VOC [Everingham et al., IJCV’15] 
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SE results 

Generic boundaries 

Task: object boundaries, VOC dataset. 

Better 
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SE results 

Generic boundaries 

Fully supervised   

Task: object boundaries, VOC dataset. 

Better 
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SE results 

Generic boundaries 

Weakly supervised 

Fully supervised   

Task: object boundaries, VOC dataset. 

Better 
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HED results 

Generic boundaries 

Task: object boundaries, VOC dataset. 

Better 
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HED results 

Generic boundaries 

Fully supervised   

Task: object boundaries, VOC dataset. 

Better 
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HED results 

Generic boundaries 

Weakly supervised 

Fully supervised   

Task: object boundaries, VOC dataset. 

Better 
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Image Fully  
supervised 

Generic 
boundaries 

Weakly 
supervised 

True positives False positives False negatives 
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Image Fully  
supervised 

Generic 
boundaries 

Weakly 
supervised 

True positives False positives False negatives 



While training an object detector one can also  
get a high quality object boundary detector for free. 
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SBD [Hariharan et al., ICCV’11] 
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Task: semantic object boundaries, SBD dataset. 
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Image Ground truth Fully supervised Weakly supervised 

Uijlings et al., CVPR’15 

Weakly supervised 

Fully supervised   

Hariharan et al., ICCV’11 
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Weakly supervised object boundaries can reach  
the full supervision quality. 
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Contributions: 

•  Introduce the problem of weakly supervised object boundaries. 
 
•  Boundary detectors are robust to annotation noise. 
 
•  High quality object boundaries can be obtained using box annotations alone. 
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Even more results in the paper! 
Family Method ODS OIS AP 

Unsupervised F&H 64 67 64 

Trained on 
ground truth 

gPb-owt-ucm 73 76 73 

SE(BSDS) 74 76 79 

HED(BSDS) 79 81 84 

Trained on 
unsupervised 

boundary 
estimates 

SE(F&H) 71 74 76 

SE(SE(F&H)) 72 74 76 

HED(SE(F&H)) 73 76 75 

Family Method mF mAP 

Other GT Hariharan et al.  28 21 

SE 

GT 

SB(SBD) orig. 39 32 
SB(SBD) 43 37 

Det. + SE(SBD) 51 45 

Weakly 
super-
vised 

SB(SeSe∧BBs) 40 34 
SB(MCG∧BBs) 42 35 
Det. + SE(SeSe∧BBs) 48 42 
Det. + SE(MCG∧BBs) 51 45 

HED 

GT 
HED(SBD) 44 41 
Det. + HED(SBD) 49 45 

Weakly 
super-
vised 

HED(cons. MCG∧BBs) 41 37 
HED(cons. S&G∧BBs) 44 39 
Det. + HED(cons. MCG∧BBs) 48 44 
Det. + HED(cons. S&G∧BBs) 52 47 



Thank you for your attention! 

Project page at  
https://www.mpi-inf.mpg.de/wsob 

Trained models, generated annotations, and results 
are available online.  

Details and more results 
at poster 20 tomorrow 


