

Weakly Supervised Object Boundaries

Anna Khoreva¹, Rodrigo Benenson¹, Mohamed Omran¹, Matthias Hein², Bernt Schiele¹

¹ Max Planck Institute for Informatics, Saarbrücken, Germany ² Saarland University, Saarbrücken, Germany

Is it possible to get object boundaries with bounding box supervision?

Full supervision

Time-consuming.

Weak supervision

Only 2 clicks per object.

Task: detection of object boundaries

Image

Ground truth

Image

Generic boundary detector output

Image

Generic boundary detector output

False negative boundaries

Full supervision

Object boundary detector output

False negative boundaries

Weak supervision

Object boundary detector output

It is possible to get object boundaries with bounding box supervision.

Pipeline:

Task: detection of generic boundaries

Image

Generic boundaries

Dataset: BSDS [Martin et al., ICCV'01; Arbeláez et al., PAMI'11]

Full supervision

Unsupervised

[Felzenszwalb et al., IJCV'04]

Boundary detectors are robust to annotation noise.

Pipeline:

Task: detection of object boundaries

Image

Object boundaries

Dataset: VOC [Everingham et al., IJCV'15]

Generation of annotations:

Detection bounding boxes

[Fast-RCNN, Girshick, ICCV'15]

Object proposals

[SeSe, Uijlings et al., IJCV'13]

Combining weak annotations from:

GrabCut

Graph-based segmentation

[Rother et al., SIGGRAPH'04] [Felzenszwalb et al., IJCV'04] [SeSe, Uijlings et al., IJCV'13]

Ground truth

Generated annotations

Positive boundaries

Ignore boundaries

Negative boundaries

Ground truth

Generated annotations

Positive boundaries

Ignore boundaries

Negative boundaries

Pipeline:

Boundary detectors:

• Structured Edge Forests [SE, Dollar et al., PAMI'15]

• Holistically-nested Edge Detection [HED, Xie & Tu, ICCV'15]

Task: detection of object boundaries

Image

Object boundaries

Datasets: VOC [Everingham et al., IJCV'15] SBD [Hariharan et al., ICCV'11]

VOC [Everingham et al., IJCV'15]

Task: object boundaries, VOC dataset.

Task: object boundaries, VOC dataset.

Better

0.7

0.6

0.8

0.9

Image

True positives

False negatives

Khoreva et al. | Weakly Supervised Object Boundaries

False positives

While training an object detector one can also get a high quality object boundary detector for free.

SBD [Hariharan et al., ICCV'11]

Fully supervised

- Weakly supervised
- Uijlings et al., CVPR'15

Hariharan et al., ICCV'11

Task: semantic object boundaries, SBD dataset.

Weakly supervised object boundaries can reach the full supervision quality.

Contributions:

- Introduce the problem of weakly supervised object boundaries.
- Boundary detectors are robust to annotation noise.
- High quality object boundaries can be obtained using box annotations alone.

Even more results in the paper!

			(d) SE(BSDS)	
	Family	Method	m	mar
Other	GT	Hariharan et al.	28	21
SE	GT	SB(SBD) orig.	39	32
		SB(SBD)	43	37
		Det. + SE(SBD)	51	45
	Weakly super- vised	SB(SeSe∧BBs)	40	34
		SB(MCG∧BBs)	42	35
		Det. + SE(SeSe∧BBs)	48	42
		Det. + SE(MCG∧BBs)	51	45
HED	GT	HED(SBD)	44	41
		Det. + HED(SBD)	49	45
	Weakly super- vised	HED(cons. MCG∧BBs)	41	37
		HED(cons. S&G∧BBs)	44	39
		Det. + HED(cons. MCG∧BBs) 48	44
		Det. + HED(cons. S&G∧BBs)	52	47

amily	Method	ODS	OIS	AP
upervised	F&H	64	67	64
	gPb-owt-ucm	73	76	73
ined on	SE(BSDS)	74	76	79
	HED(BSDS)	79	81	84
ined on	SE(F&H)	71	74	76
upervised	SE(SE(F&H))	72	74	76
timates	HED(SE(F&H))	73	76	75

(e) SE (weak)

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0.9

1

SE(BSDS) SB(VOC) Det.+SE (VOC) Det.+SE (weak) Det.+HED (weak) Image Ground truth

Details and more results at **poster 20 tomorrow**

Project page at <u>https://www.mpi-inf.mpg.de/wsob</u>

Trained models, generated annotations, and results are available online.

Thank you for your attention!