Weakly Supervised Object Boundaries

Anna Khoreva¹, Rodrigo Benenson¹, Mohamed Omran¹,
Matthias Hein², Bernt Schiele¹

¹ Max Planck Institute for Informatics, Saarbrücken, Germany
² Saarland University, Saarbrücken, Germany
Is it possible to get object boundaries with bounding box supervision?

Full supervision
Time-consuming.

Weak supervision
Only 2 clicks per object.
Task: detection of object boundaries

Image

Ground truth
Image

Generic boundary detector output
Image

Generic boundary detector output

- True positive boundaries
- False positive boundaries
- False negative boundaries
Full supervision

Object boundary detector output

- **True positive boundaries**
- **False positive boundaries**
- **False negative boundaries**
Weak supervision

Object boundary detector output

- True positive boundaries
- False positive boundaries
- False negative boundaries
It is possible to get object boundaries with bounding box supervision.
Pipeline:

Input: Image and bounding boxes

Generation of annotations

Regular boundary detector training

Output: Object boundary detections
Task: detection of generic boundaries

Dataset: BSDS [Martin et al., ICCV’01; Arbeláez et al., PAMI’11]
Task: generic boundaries, BSDS dataset.
Task: generic boundaries, BSDS dataset.
Task: generic boundaries, BSDS dataset.
Full supervision

Unsupervised

[Felzenszwalb et al., IJCV’04]
Task: generic boundaries, BSDS dataset.
Task: generic boundaries, BSDS dataset.
Boundary detectors are robust to annotation noise.
Pipeline:

Input:
- Image and bounding boxes

Generation of annotations:
- Object boundary detections

Output:
- Regular boundary detector training
- Object boundary detections
Task: detection of object boundaries

Dataset: VOC [Everingham et al., IJCV’15]
Generation of annotations:

Detection bounding boxes

Object proposals

[Fast-RCNN, Girshick, ICCV’15]

[SeSe, Uijlings et al., IJCV’13]
Combining weak annotations from:

Object proposals

GrabCut

Graph-based segmentation

Consensus between different methods
Ground truth

Generated annotations

Positive boundaries
Ignore boundaries
Negative boundaries
Ground truth

Generated annotations

Positive boundaries Ignore boundaries Negative boundaries
Pipeline:

Input

- Image and bounding boxes

Generation of annotations

Regular boundary detector training

Output

- Object boundary detections
Boundary detectors:

- Structured Edge Forests [SE, Dollar et al., PAMI’15]

- Holistically-nested Edge Detection [HED, Xie & Tu, ICCV’15]
Task: detection of object boundaries

Datasets:
- **VOC** [Everingham et al., IJCV’15]
- **SBD** [Hariharan et al., ICCV’11]
VOC [Everingham et al., IJCV’15]
Task: object boundaries, VOC dataset.
Task: object boundaries, VOC dataset.
Task: object boundaries, VOC dataset.
HED results

Task: object boundaries, VOC dataset.
HED results

Task: object boundaries, VOC dataset.
HED results

Task: object boundaries, VOC dataset.

Better

ODS

<table>
<thead>
<tr>
<th></th>
<th>SE</th>
<th>HED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully supervised</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Weakly supervised</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>Generic boundaries</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>
Image | Generic boundaries | Fully supervised | Weakly supervised

- True positives
- False positives
- False negatives
While training an object detector one can also get a high quality object boundary detector for free.
SBD [Hariharan et al., ICCV’11]
Task: semantic object boundaries, SBD dataset.
Weakly supervised object boundaries can reach the full supervision quality.
Contributions:

• Introduce the problem of weakly supervised object boundaries.

• Boundary detectors are robust to annotation noise.

• High quality object boundaries can be obtained using box annotations alone.
Even more results in the paper!

<table>
<thead>
<tr>
<th>Family</th>
<th>Method</th>
<th>ODS</th>
<th>OIS</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised</td>
<td>F&H</td>
<td>64</td>
<td>67</td>
<td>64</td>
</tr>
<tr>
<td>Trained on ground truth</td>
<td>gPb-owt-ucm</td>
<td>73</td>
<td>76</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Det. + SE(BSDS)</td>
<td>74</td>
<td>76</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>HED(BSDS)</td>
<td>79</td>
<td>81</td>
<td>84</td>
</tr>
<tr>
<td>Trained on unsupervised boundary estimates</td>
<td>SE(F&H)</td>
<td>71</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Det. + SE(SE(F&H))</td>
<td>72</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>HED(SE(F&H))</td>
<td>73</td>
<td>76</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Method</th>
<th>ODS</th>
<th>OIS</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>Hariharan et al.</td>
<td>28</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB(SBD) orig.</td>
<td>39</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB(SBD)</td>
<td>43</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + SE(SBD)</td>
<td>51</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>HED(BSDS)</td>
<td>44</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + HED(BSDS)</td>
<td>49</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + SE(BSDS)</td>
<td>51</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SE(BS) orig.</td>
<td>39</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SE(SE(SBD))</td>
<td>43</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + SE(SE(SBD))</td>
<td>44</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + SE(MCG ∧ BBs)</td>
<td>48</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + SE(MCG ∧ BBs)</td>
<td>52</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Method</th>
<th>ODS</th>
<th>OIS</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HED</td>
<td>HED(cons. MCG ∧ BBs)</td>
<td>41</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HED(cons. S&G ∧ BBs)</td>
<td>44</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + HED(cons. MCG ∧ BBs)</td>
<td>48</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Det. + HED(cons. S&G ∧ BBs)</td>
<td>52</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>
Details and more results at poster 20 tomorrow

Project page at https://www.mpi-inf.mpg.de/wsob

Trained models, generated annotations, and results are available online.

Thank you for your attention!