
Combinatorial Solution Set
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Picture: T Werner. A Linear Programming Approach to Max-sum Problem: A Review

1) 400
2) 440
3) 40
4) 1000
5) 10000
6) No correct answer 

Example: 2x2 grid and full graphs with 10 labels

ftp://cmp.felk.cvut.cz/pub/cmp/articles/werner/Werner-PAMI-2007.pdf


 Combinatorial Solution Set = No Polynomial Algorithm?
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 Hamiltonian Cycle
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A Hamiltonian cycle in a undirected graph is the cycle that visits each 
vertex exactly once.

Picture: Wikipedia

Determining whether such a cycle exists in a graph is NP-complete.

https://en.wikipedia.org/wiki/Hamiltonian_path


 Hamiltonian Cycle Reduces to MAP-Inference
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 Hamiltonian Cycle Reduces to MAP-Inference
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What about an inverse reduction: 
MAP-inference to a Hamiltonian cycle?



 How to Deal With NP-Hard Problems?
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1) Identify polynomially solvable subclasses

2) Consider its convex relaxations (polynomially solvable 
approximations)

3) Develop approximate algorithms

We start with some background...



Acyclic models: chains
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Acyclic models: recursive computation
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Semiglobal matching
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Linear Programs and Their Geometry
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Integer linear programs is a standard way to describe combinatorial problems.



Linear Programs and Their Geometry
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1) Yes
2) No
3) Don't know



Linear Programs and Their Geometry
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1) Yes
2) No
3) Don't know



Linear Programs and Their Geometry
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What about an inverse transformation:

to ? 



Linear Programs and Their Geometry
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What about an inverse transformation:

to ? 



Linear Programs and Their Geometry
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Linear programs (also holds for max):

Standard form Canonical form 

Vertexes and solutions:



Linear Programs and Their Geometry
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Linear programs (also holds for max):

Standard form Canonical form 

Vertexes and solutions:

                   is a vertex of a polyhedron P if there exists                         such that 

is finite and has a unique solution  



N-Dimensional Simplex
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Examples: 1) Yes 2) No 

0.3; 0.1; 0.7; 0.0;   



N-Dimensional Simplex
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Examples: 1) Yes 2) No 

0.3; 0.7; 0.0; 0.0;   



N-Dimensional Simplex
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Examples: 1) Yes 2) No 

- 0.3; 0.7; 0.0; 0.0;  



N-Dimensional Simplex
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Examples: 1) Yes 2) No 

 0.0; 0.1; 0.2; 0.7;   



N-Dimensional Simplex
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Examples: 1) Yes 2) No 

 0.0; 0.0; 0.0; 1.0;   



N-Dimensional Simplex
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Examples: 1) Yes 2) No 

 0.0; 0.0; 1.0; 0.0;   



N-Dimensional Simplex
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Examples: 1) Yes 2) No 

 0.0; 0.0; 0.0; 0.0;   



N-Dimensional Simplex
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Draw your own picture:



Convex Hull
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- arbitrary vectors

Convex hull: Always a polytope!



Convex Hull
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Lemma 1:



Marginal Polytope: Labeling → Vector
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Mapping: labeling → binary vector



Marginal Polytope
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Marginal polytope:



Marginal Polytope
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Marginal polytope:



Marginal Polytope
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Marginal polytope:

Corollary 1:



Marginal Polytope
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Marginal polytope:

Proposition 2:



Marginal Polytope
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Marginal polytope:

Proposition 2:

NP-hard problem = linear problem?



Marginal Polytope
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Marginal polytope:

Proposition 2:

NP-hard problem = linear problem?

Yes, with an exponential number of constraints!



Local (Marginal) Polytope
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Local constraints are required to keep their number polynomial. Recall:

- simplex constraints

- non-local, exponential number



Local (Marginal) Polytope
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Local constraints are required to keep their number polynomial. Recall:

- simplex constraints

Insufficient, the inference problem separates out into independent parts for each factor:

- non-local, exponential number



Local (Marginal) Polytope
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Local (Marginal) Polytope
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Local (Marginal) Polytope
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Local polytope (LP) relaxation; relaxed problem

- relaxed labeling - relaxed solution



Local (Marginal) Polytope
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Proposition 4:

Proposition 5:



Local (Marginal) Polytope
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Proposition 4:

Proposition 5:

Check:



Integer Linear Programs
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|I|=N – integer linear program

|I|<N – mixed integer linear program

NP-hard, standard solvers exist



Local (Marginal) Polytope
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Corollary 2:



Local (Marginal) Polytope
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Corollary 2:

1)

2)

3)

4)                None is correct

?



Local (Marginal) Polytope
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Corollary 2:

Corollary 3:



Local Polytope: Integer/Fractional Solutions
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Pictures and data: Middlebury Benchmark http://vision.middlebury.edu



Local Polytope: Integer/Fractional Solutions
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Pictures and data: OpenGM Benchmark http://hciweb2.iwr.uni-heidelberg.de/opengm



Local Polytope: Integer/Fractional Solutions
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Pictures and data: Middlebury Benchmark http://vision.middlebury.edu



Local Polytope: Integer/Fractional Solutions
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Pictures and data: Middlebury Benchmark http://vision.middlebury.edu



Rounding of a Relaxed Solution
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Problem Size
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Number of constraints,
order of 

1) less
2)     1 000
3)    10 000
4)  100 000
5) 1000 000
6) more

?



Problem Size
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Standard (simplex, interior point) methods do not scale good enough!

Specialized solvers are needed.



Complementary Slackness: Example 1
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Can this primal-dual pair be optimal?

1) Yes, because the complementary slackness condition is satisfied
2) Yes, the complementary slackness condition is not satisfied, but it is not necessary 
for optimum
3) Yes, because     is integer and     ,       have unique minima
4) No, because the complementary slackness condition is not satisfied
5) No, because optimal      can not be integer, since it corresponds to the relaxed 
problem
6) None is correct



Complementary Slackness: Example 2
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Can this primal-dual pair be optimal?

1) Yes, because the complementary slackness condition is satisfied
2) Yes, the complementary slackness condition is not satisfied, but it is not necessary 
for optimum
3) Yes, because     is integer and     ,       have unique minima
4) No, because the complementary slackness condition is not satisfied
5) No, because optimal      must be integer
6) None is correct



Complementary Slackness: Example 3
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Can this primal-dual pair be optimal?

1) Yes, because the complementary slackness condition is satisfied
2) Yes, the complementary slackness condition is not satisfied, but it is not necessary 
for optimum
3) Yes, because     is integer and     ,       have unique minima
4) No, because the complementary slackness condition is not satisfied
5) No, because optimal       ,      must be have unique minima
6) None is correct



Dual MAP LP Objective: Number of Variables
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Dual:

?



Dual MAP LP Objective: Number of Variables
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Dual:

?



Dual MAP LP Objective: Number of Variables
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Dual:

primal 106, dual 105 Primal 109, dual 107

Dual is preferable to optimize.
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