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Abstract. In this work, we propose a novel extension of pseudo 2D im-
age warping (P2DW) which allows for joint alignment and recognition of
non-rectified face images. P2DW allows for optimal displacement infer-
ence in a simplified setting, but cannot cope with stronger deformations
since it is restricted to column-to-column mapping. We propose to imple-
ment additional flexibility in P2DW by allowing deviations from column
centers while preserving vertical structural dependencies between neigh-
boring pixel coordinates. In order to speed up the recognition we employ
hard spacial constraints on candidate alignment positions. Experiments
on two well-known face datasets show that our algorithm significantly
improves the recognition quality under difficult variability such as 3D
rotation (poses), expressions and illuminations, and can reliably classify
even automatically detected faces. We also show an improvement over
state-of-the-art results while keeping computational complexity low.

1 Introduction
Fully automatic reasoning about similarity of facial images is a hard task in com-
puter vision. Strong changes in expression and pose, as well as affine transforma-
tions stemming from automatic face detection all contribute to rich intra-class
variability which is difficult to tell apart from inter-class dissimilarity.

Many methods approach the problem of intra-class variability by extracting
local features from interest points or regular grids and matching them between
images. The similarity is then based on the quality or the number of found
matches [2, 3, 18, 22]. No geometrical dependencies between matches are con-
sidered, which makes these methods fast. However, descriptors must be chosen
or trained to carry as much discriminatory information as possible which makes
these methods prone to overfitting on a certain task. Even more task-specific are
methods like Elastic Bunch Graph Matching [21], where faces are represented as
labelled graphs, and the approach of [23] who obtain pose projections by creating
3D head models from two training images per class.

Recently, increased research focus has been put on finding geometrically
smooth, dense correspondences between images, which is alleviated by the avail-
ability of relatively fast, approximative energy minimization techniques for (loopy)
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(a) test (b) (c) (d) reference
Fig. 1: The reference image (d) is aligned to the query image (a) using P2DW (top row)
and the proposed P2DW-FOSE approach (bottom row). The aligned reference image
(b) shows vertical artifacts for P2DW while the proposed approach allows for much
better alignment due to flexible warping; (c) shows respective warping grids

graphs [1, 5, 9]. The complexity of these approaches is high, and the impact of
the approximative optimization on the classification performance remains un-
clear. Contrarily, relaxing the first-order dependencies between neighbouring
pixels leads to optimally solvable problems. [14] developed a pseudo-2D hidden
Markov model (P2DHMM), where column-to-column mappings are optimised in-
dependently, leading to two separate 1D alignment problems. This idea has been
extended to trees [13], allowing for greater flexibility compared to P2DHMMs at
the cost of great computational complexity.

In this work, we present a novel algorithm for finding dense correspondences
between images. Our approach is based on the ideas of pseudo-2D warping
(P2DW) motivated by [4, 10, 14]. We show that the restriction to column-to-
column mapping is insufficient for recent face recognition problems and extend
the formulation to allow strip-like deviations from a central column while obey-
ing first-order smoothness constraints between vertically neighbouring pixels (c.f.
Fig. 1). This leads to an efficient formulation which is experimentally shown to
work very well in practise.

We will first introduce a general formulation of two-dimensional warping
(2DW) before discussing P2DW and introducing our novel algorithm. Then, we
will present an experimental evaluation and finally provide concluding remarks.

2 Image Warping

In this section, we briefly recapitulate the two-dimensional image warping (2DW)
as described in [19]. In 2DW, an alignment of a reference image R ∈ FU×V to
a test image X ∈ F I×J is searched so that the aligned or warped image R′ ∈
F I×J becomes as similar as possible to X. F is an arbitrary feature descriptor.
An alignment is a pixel-to-pixel mapping {wij} = {(uij , vij)} for each position
(i, j) ∈ I ×J to a position (u, v) ∈ U ×V . This alignment defines a dissimilarity
E as follows:

E(X,R, {wij}) =
∑
ij

[
d(Xij , Rwij

) + Th(wi−1,j , wij) + Tv(wi,j−1, wij)
]
, (1)
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where d(Xij , Rwij ) is a distance between corresponding pixel descriptors and
Th(·), Tv(·) are horizontal and vertical smoothness functions implementing first-
order dependencies between neighboring pixels. An alignment is obtained through
minimization of the energy function E(X,R, {wij}). Unfortunately, finding a
global minimum for such energy functions was shown to be NP-complete [7] due
to cycles in the underlying graphical model representing the image lattice.

2.1 Pseudo Two-dimensional Warping (P2DW)

In order to overcome the NP-completeness of the problem, P2DW [4, 10, 14]
decouples horizontal and vertical displacements of the pixels. This decoupling
leads to separate one-dimensional optimization problems which can be solved
efficiently and optimally. In this case, the energy function (1) is transformed as
follows:

E(X,R, {wij}) =
∑
ij

[
d(Xij , Rwij ) + Tv(vij , vi,j−1) + Th(ui, ui−1)

]
=

∑
i

J · Th(ui, ui−1) +
∑
ij

[
d(Xij , Rwij ) + Tv(vij , vi,j−1)

]
, (2)

where the horizontal smoothness is only preserved between entire columns by
the slightly changed term Th. Dynamic programming (DP) techniques have been
used to separately find optimal alignments between column matching candidates,
and then perform an additional DP optimization in order to find the globally
optimal column-to-column mapping [4].

3 Extended Pseudo-2D Warping

The simplification of horizontal dependencies not only reduces complexity of
P2DW, but also decreases the flexibility of the approach since all pixels in a
column are forced to have the same horizontal displacement. An example of such
an alignment is demonstrated in Fig. 1(b) (top row) revealing the inability of
P2DW to cope with rotation. Furthermore, scan-line artifacts are clearly visible.
Column-to-column mapping degrades discriminative qualities of P2DW, which
can lead to an overall decrease of recognition performance. In the following we
present a flexible extension of P2DW which intends to overcome the explained
shortcomings with a reasonable raise of complexity.

Strip extension. In order to overcome the limitations of the column-to-column
mapping in P2DW, we propose to permit horizontal deviations from the col-
umn centers. This allows for more flexible alignments of local features within a
strip of neighbouring columns rather than within a single column. The degree of
flexibility is controlled through parameter ∆ restricting the maximal horizontal
deviation. This parameter is task-dependent and can be adjusted in each par-
ticular case. Setting ∆ to 0 results in the original P2DW, while large values of
∆ allow to compensate for noticeable image misalignments.



4 Pishchulin et al.

Especially in the last case it is important to enforce structure-preserving
constraints within a strip, since otherwise one facilitates matching of similar
but non-corresponding local features, which degrades the discriminative power.
Therefore, we propose to model horizontal deviations from column centers while
retaining the first-order dependencies between alignments in a strip, which re-
sults in a f irst-order strip extension of P2DW (P2DW-FOSE). The first-order
dependencies are modeled by hard structure-preserving constraints enforcing
monotonicity and continuity of the alignment. This type of constraints was in-
troduced in [19] in order to prevent mirroring and large gaps between aligned
neighbouring pixels. Formally these constraints are expressed as follows:

0 ≤ vi,j − vi,j−1 ≤ 2, | ui,j − ui,j−1 |≤ 1 . (3)

The constraints (3) can easily be implemented in the smoothness penalty
function Tv by setting the penalty to infinity if the constraints are violated. In
order to decrease the complexity, we hardcode the constraints in the optimization
procedure, which prevents the computation of all alignments by considering only
those permitted by the constraints. This helps to greatly reduce the number of
possible alignments of a coordinate given the alignments of its neighbours.

Energy function. According to the explained changes, we rewrite Eq. (2) as

E(X,R, {wij}) =
∑
i

J · Th(ui, ui−1)

+
∑
ij

[
d(Xij , Rwij

) + Tcv(wij , wi,j−1) + T∆(ui, ui,j)
]
. (4)

Here, T∆ penalizes the deviations from the central column ui of a strip, and T∆ =
∞ if |ui−ui,j | > ∆; Tcv is the smoothness term with continuity and monotonicity
constraints. In comparison to P2DW, minimization of (4) is of slightly increased
complexity which is linearly dependent on the choice of parameter ∆.

Absolute displacement constraints. In order to reduce the overall complex-
ity of the proposed approach, we restrict the absolute displacement between ij
and its matching candidate wij [16]. Formally these constraints are expressed as

0 ≤| i− ui,j |≤W, | j − vi,j |≤W . (5)

The warp-range parameter W can be adjusted for each task. It can be relatively
small assuming pre-aligned faces, while more challenging conditions of misaligned
faces require sufficiently large W . Absolute displacement constraints help to
reduce the complexity from O(IJUV ∆) to O(IJW 2∆) providing a significant
speed-up even for a large W which is viewed as an accuracy/complexity trade-off.

Fig. 1(b) (bottom row) exemplifies the advantages of the proposed approach
over the original P2DW. It can clearly be seen that the deviations from columns
allow to compensate for local and global misalignments, while the implemented
monotonicity and continuity constraints preserve the geometrical structure of the
facial image. Both improvements lead to a visibly better quality of alignment.
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Fig. 2: Sample images from AR Face (top row) and CMU-PIE (bottom row) datasets.
Faces in the top row were detected by VJ, faces in the bottom were manually aligned.

We accentuate that preserving structural constraints within a strip does not
guarantee global smoothness, since strips are optimised independently. The latter
can lead to intersecting paths in neighbouring columns, especially for large ∆.

4 Results

We evaluate the proposed algorithm on two challenging databases with varying
expressions, illuminations, poses and strong misalignments.

AR Face. Following [3], we use a subset of 110 individuals of the AR Face [12].
We use four different expressions and three illuminations, all fully taken in two
sessions two weeks apart. The first session is for training, the second for testing.
Simulating a real world environment we detect and crop the faces automatically
to 64x64 pixels using the Viola&Jones (VJ) detector [20]. See Fig. 2 for samples.

CMU-PIE. The CMU-PIE [17] database consists of over 41000 images of 68
individuals. Each person is imaged under 43 different illumination conditions,
13 poses and 4 various facial expressions. In order to evaluate our algorithm on
3D transformations, we use a subset of all individuals in 13 poses with neutral
facial expression. The original face images were manually aligned by eye-centre
locations [6] and cropped to 64× 64 resolution. Fig. 2 shows sample images.

Experimental Setup. We extract an 128-dimensional SIFT [11] descriptor at
each position of the regular pixel grid. As proposed by [8], we reduce the de-
scriptor to 30 dimensions by means of PCA estimated on the respective training
data and subsequently normalize each descriptor to unit length. We use a NN
classifier for recognition directly employing the obtained energy as dissimilarity
measure and the L1 norm as local feature distance. Similar to [5], we include
a context of 5 × 5 neighboring pixels in the distance, which is also thresholded
with an empirically estimated threshold value of τ = 1. This makes our approach
robust to unalignable pixels. Additionally, we speed up the computation of the
alignments using local distance caching, and track the smallest energy obtained
to stop if it is surpassed by a rough lower bound on the current energy [5]. For
comparison, we use our own re-implementation of P2DW [4].

Evaluation on the AR Face database. First, we show the effects of strip
width on the recognition error. Fig. 3 shows the error rate for increasing ∆ where
the biggest improvement is seen at ∆ = 1. Although the error decreases further
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Fig. 3: Error rate on automatically de-
tected faces for different strip widths ∆,
where ∆ = 0 is equivalent to the P2DW.
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Fig. 4: Error rate on VJ detected faces and
relative complexity compared to P2DW-
FOSE with different warping ranges.

afterwards, the return is diminishing quickly. This gives rise to two interpreta-
tions: on the one hand, it seems most important to allow (even slight) horizontal
movements of individual pixels. On the other hand, big strip widths increase the
chance of intersecting column paths, making the deformation less smooth.

In order to study means of speeding up the recognition, we fix ∆ = 3 (c.f.
Fig. 3) and vary the warp-range parameter W restricting the maximum absolute
displacement. Fig. 4 shows the influence of W on both recognition accuracy and
computational complexity. As the total number of possible alignments grows
quadratically with increasing W , the recognition error decreases until the accu-
racy of the unconstrained version is reached (c.f. Fig. 3). For W = 8, the relative
complexity is 7.1%, corresponding to a speed up by a factor of 15 (in comparison
to W =∞) while leading to only a slight increase of the error.

In Tab. 1, we summarise our findings and compare relative run-times and
performance of the proposed approach with basic methods and results from the
literature. The last column shows a computing-time factor (CTF) relative to
P2DW, which therefore has a CTF of 1 (26 s per image). It can be seen that
increasing the flexibility of P2DW by means of the proposed strip extension
greatly improves the accuracy. The proposed speedup allows us to use 64x64
pixels resolution, while the energy minimization technique presented in [5] op-
erates on 32x32 pixels due to much higher complexity. Our method also greatly
outperforms state-of-the-art feature matching approaches [2, 3, 18] which are
though more efficient. Moreover, [3, 18] used manually pre-registered faces.

Evaluation on CMU-PIE database. To demonstrate the robustness of our
approach w.r.t. to pose deformation, we evaluate our algorithm on the pose
subset of the CMU-PIE database, using the frontal image as reference and the
remaining 12 poses as testing images. As the reference is much more accurately
cropped compared to the testing images (see Fig. 2 (bottom row)), we reverse the
alignment procedure and align the test image to the reference one. This helps to
minimize the impact of background pixels in the test images. We also follow [1]
and additionally use left and right half crops of the reference image. We choose
∆ = 3 and set no absolute constraints for P2DW-FOSE, as this setup was shown
to lead to the best performance on the AR Face database. Recognition results
on the CMU-PIE database are listed in Tab. 2. In order to highlight the specific
difficulties of the task, we divide the test data in near frontal and near profile
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Table 1: Results for VJ-detected faces and
comparison of run-times.

Model ER [%] CTF

No warping 22.3 -

P2DW 2.7 1
P2DW-FOSE 1.8 2.3

+ W = 8 2.0 0.2

CTRW-S [5] 3.7 0.4
SURF-Face [2] 4.15 -
DCT [3] 4.70∗ -
Av-SpPCA [18] 6.43∗ -

∗ with manually aligned faces

Table 2: Average error rates [%] on CMU-
PIE groups of poses by our algorithms.

Model near near avg.
frontal profile

No warping 40.69 86.27 63.48

P2DW 0.25 17.63 8.94
P2DW-FOSE 0.25 10.39 5.32

Hierarch. match. [1] 1.22 10.39 5.76
3D shape mod. [23] 0.00 ∗∗14.40 ∗∗6.55
Prob. learning [15] ∗ 7 ∗ 32 19.30

∗ estimated from graphs, ∗∗ missing poses

Table 3: Qualitative evaluation of the proposed approach.

Query Ref Deformed Ref. Query Ref Deformed Query

P2DW P2DW-FOSE P2DW P2DW-FOSE

poses. For the former, most approaches are able to achieve error rates near to
0%, while the latter is very difficult. A clear improvement is achieved compared
to P2DW, and we also obtain the best result compared to the literature, where
[1] uses a much more complex warping algorithm and [23] even use an additional
profile shot as training data in order to generate a 3D head model. [15] uses
automatically cropped images, which make the task even harder.

Tab. 3 shows qualitative results on an expression and pose image: in both
cases the alignment by our method is much smoother compared to P2DW.

5 Conclusion

In this work, we have shown that a flexible extension of pseudo-2D warping helps
to significantly improve recognition results on highly misaligned faces with dif-
ferent facial expressions, illuminations and strong changes in pose. Interestingly,
even small deviations from the strict column-to-column mapping allow for much
smoother alignments, which in turn provides more accurate recognitions. One
interesting result from our evaluation is that it pays of to sacrifice a little of
the global smoothness for tractable run-time on higher-resolution images. Also,
we show that our globally optimal solution to a simplified problem outperforms
an hierarchical approximation of the original problem, which might suffer from
local minima. We believe this is an important road to explore, since quite often
problems in computer vision are made tractable by introducing heuristics such as
hierarchies without clearly investigating the impact of the hidden assumptions.
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