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1 Problem formulation

Definition 1 (Markov Random Field). Let G = (V, E) be an undirected graph. Define
the label space as X =[],y Xy, where | X;| < oo is a discrete set of labels. To each
node i € V there exists a unary potential 6; : X; — R and to each edge ij € E there
exists a pairwise potential 0;; : X; x X; — R. We call the tuple (V, E, X, 8) a Markov
Random Field or a graphical model. An element x € X is called a labeling. We index
its components by x;.

Definition 2 (MAP-inference). The problem min,e x 0(x) with 6(x) =3, 0:(x;) +
> ijer 0ij(xi, x;) is called the Maximun-A-Posteriori (MAP)-inference or energy
minimization problem for the given MRF.

2 Complexity of MAP-inference

Theorem 1. The Hamiltonian cycle problem reduces to MAP-inference.

Proof. Let the Hamiltonian cycle problem be given for graph G’ = (V’/, E’). Define
!/

G=(V,E)byV = {1,...,|V'|} and E — (V

9 ), i.e. G is the full graph. Define
X, =V'forall: € Vand 0, =0foralli € V.

0, (s,t)ePl’

) , where we take 1+1 = 1
oo, otherwise

fori=1,... |V’

1. Let 91'71‘4_1(8,75) = {
fori = [V7].

0, s#t

2. For all other ij € E'let 6;;(s,t) = { o
oo, otherwise

Then z € X with §(z) < oo defines a Hamiltonian cycle by construction: (x;, z;4+1)
corresponds to an edge due to in G (i) and no node is visited twice due to (ii). O

The above complexity result shows that probably no polynomial algorithm for
MAP-inference exists. We will hence look at efficiently solvable subclasses (chains,
submodular problems) and approximate algorithms for solving the general problem
(LP-relaxation, message passing).



3 Chain models

For the rest of this section we will assume that V' = {1,...,n}and E = {{i,i+1},i =
1,...,n—1}

Definition 3. Define

Jj—1 j—1
F;(S) = min Z 91(.%‘1) + Z 91"141(371‘, $i+1) . N
=1 i=1

reX 1 X...xX;_1x{s} P
Clearly, minge x Fi,(8) + 0,(s) = mingex 6(z). Also,
FI(S) = teHlXIIl (Fi,1(t) + eifl(t) + eiflﬁi(t, S)) . (2)

Algorithm 1: Dynamic programming for MAP-inference on chains
F1 =0;
fori=2,...,ndo
for s € X; do
Fi(s) = mingex, , (Fi—1(t) + 0i—1(t) + 0i—1,i(, 5));
Choose T (5) € argmintexi_l (Fz_l(t) + 91'_1(15) + 91‘_171‘ (t, S)),
end
end
E* = mingex, (Fn(s)+ 6n(9));
Choose y,, € argmin ey (Fn(s) +0.(5));
fori=mn,...,2do
‘ Choose y;—1 = 7i(yi);
end

4 Linear programming

Definition 4 (Polyhedron). Ler A € R™*™, b € R™ be given. We call the set {x €
R™ : Ax < b,z > 0} the polyhedron associated to (A, b).

Definition 5 (Standard simplex). We call the polyhedron

An:{xeRﬁ_:Zmzl} 3
i=1

the n-dimensional standard simplex, or just simplex for conciseness.
Definition 6 (Convex hull). Let 6° € R™, i = 1,..., N be points in R™. Define the
convex hull as

N

conv{él,...,éN}:{:c:EIchSNs.t.:L':Zpl-'éi}. 4)
i=1



Lemma 1. Let a € R". Then

n
“min {a;} = min g pia; = min I (5)
i=1,...,n pEA,, 4 7 pEconv{a,...,an}

1=

4.1 Marginal polytope

From now on we assume that the label space for all nodes i € Vis X; = {1,...,|X;|}.

Definition 7 (Labeling mapping). 1. Define the node mapping for all© € V and all
z; € X;
() — T
6i(z;)=(0,...,0, 1 ,0,...,0}". ©6)

i-th position
2. Define the edge mapping for all ij € E and all x; € X;, x; € X; by

0O ... ... ... 0
8ij (i, w5) = vee(| 1 1), ©)
0o ... ... ... 0
with a 1 in the x;-th column and x ;-th row and 0 everywhere else in the matrix.

3. Define the overall labeling mapping § : X — {0,1}, where I = Y ey | Xi| +
Zije | X5 - | X ;| by concatenating all node and edge mappings.

4. Similarly, define the cost vector by (abusing notation) 0;(xz;) = (0;, 6;(x;)) for
alli € V, x; € Xz and eij(miamj) = <9ij35ij(xiaxj)>for all Z] € E, xT; € Xi,
x; € X;. and denote again the concatenated vector by 0 € R

Definition 8 (Marginal Polytope). Define M = conv{d(z): z € X}.

Proposition 1.
inf(z) = min (6, u) . 8
min 6(z) ffé% S ) ®)
Proof. “<”:Lety € M. Theny =} p,6(x)andhence (0, ) = > x po(0,6(z)) >
minge x (0(z),0(x)) = mingc x 6(z).
“>”: Choose p = §(«*) for some =* € argmin,c x 6(z). O

4.2 Local marginal polytope

Since MAP-inference is NP-hard, the marginal polytope has no known characterization
as a polytope with either polynomially many inequalities describing it nor does there
exist a known polynomial time separation routine to determine whether = € M. Hence,
we will study a simpler polytope £ with M C L that has a simple characterization but
that still allows to obtain good results in practice.



Definition 9 (Local marginal polytope). Define

Zziexi .uz(xv) =1, VieV
L={peR: 2aiexayex, i (@i 15) = 1, Vij e B )
DD ex: Mg (T mg) = pi(m), VijEEmeX; [

Dayex; Mig (@i x;) = pj(x;), Vij € E,xj € X;
Proposition 2.
MCL. (10)

Corollary 1.

< 0.1) = in  (0,). 11
ggg(f) 1) %mm Meggig,l}x,m (1

4.3 Linear programming duality

Let (A, b) describe a polyhedron. For some objective vector ¢ we call min g, >o. 4z—p} (¢, T)
the primal problem and maxy,. 47, <y (b, y) the dual problem.

Proposition 3 (Weak duality).

i > . 12
{zzg:l}lg:b} <C > y: glrayx<c<b7 y> (12)

Proof. Let x and y be feasible to the primal resp. dual problem. Then

(c,z) > (b,y)
&(c,x) = (by) >0
(e,z) — (AT y> 0 (13)
s x c—ATy) >

\/H/_/

>0 >0
O
Proposition 4 (Strong duality).
i = b,y) . 14
{ng}ﬁ:b}<67 ) y;iﬁafgc< . Y) (14)

4.4 Linear programming duality for the local marginal polytope

We apply linear programming duality to optimizing over the linear polytope relaxation
L.

min,, (0, 1) max; ¢ ) ey % + ZijeE Zij
leex pi(zi) =1 Z;
z,€X;,0,€X pij (i, x5) = Zij
leex Mg (xvvxj) Mz(%) =0 @—m(%)
Dmsex; Mij (@i, ;) — pj(a;) =0 (bJ‘”(QjJ)
Nz(xZ) >0 2~ Zj:ijeE Girj(wi) < 0i(z:)
pij (@i, z5) > 0 zij + Ginsj(@:) + djilas) < 035w, %)(15)



Definition 10 (Reparametrization). For any dual variables ¢ we call

07 (x;) + > binlay) (16)
JijeER
and
07 (i, 25) = 03 (24, 25) — Gicsj(2:) — Bjsi(xy) (17)

reparametrized unary resp. dual potentials.

We can succinctly rewrite the dual optimization problem over the local polytope
relaxation in terms of reparametrizations as

< 0% (2 e V.o e X
maXZstt s ngl)’ We ) B3 € A (18)
Zij < Qij(xi,xj), Vij € E,x; € Xi,il'j S Xj
and even shorter as

R S UL R DI, TS CACTE Y B

ijEE

4.5 Optimality conditions

Letp* € argmin ¢ o (6, 1) be a primal optimal solution for the local polytope relaxation.
Let

((b*)z*) € ar%max ZiEV Zi + ZijeE Zij

Zij < 6‘?}(1‘171']) VZ] € E71‘i S Xi,l‘j S Xj
be a dual optimal solution. Write the constraint matrix defining the local polytope

relaxation as £ = {u : Ay = (1

0)' Then the primal/dual LP-optimality conditions

applied to the local polytope read

e 1)
~ro-a7(3))
=D 07 =2+ > (i 08 — @)
i€V >0 ijeE N
This implies that
i) > 0= 07 (@) = min 167" () = = (22)

and

(i, 25) > 0= 07 (2;,2,) = {00 (a2l =25 (23)

x) EX,,Q: €X;



5 Dual block coordinate ascent

Remark 1. The class of algorithms we will present are an instance of the family of dual
block coordinate ascent techniques. In the literature, the algorithms are also referred to
by message passing and belief propagation.

Definition 11 (Elementary steps). Define the elementary message computation from
node i € V to edgeij € E as

msg : RIX| 5 RIX:|
07— 67 .
In other words, msg;_, ;. is the identiry.
Define the elementary message computation from edge 1j € E to node 1 € V as

msg : R gIXil
ij—>i

. (25)
055 — (;jggj {9z’j($ivffj)}) o
and from edge ij € F tonode j € V as
msg : RIXIXIX1 _ rIX]
ij—j
(26)

05 (xﬂgg {03 (i, xj)}>

r;€X;

We define a basic MPLP step in Algorithm 2.

Algorithm 2: MPLP(i5)
I< A+ mSgi—m’j(‘g?);
Pisj < Gimg — Ais

H< Aj msgjmj(ef);
Pjsi  Pjmi — Ay

A mSgijai(eg);

PN.
A msg;;,;(07);
Gisj < bisj + 5A%
Gjsi  Djmi + AL

I

Proposition 5. MPLP(ij) improves the dual lower bound for every ij € E.

Proof. We will prove that steps I, I and III in Algorithm 2 all individually improve the
dual lower bound. Since only messages ¢;_,; and ¢;_,; are affected, it is enough to
consider

min {0:(w:)} + min {6;(z;)} + min {0;(xi)} 27)

T, €X;



before and after operations I, IT and III. Let ¢° be the dual variables before and ¢ the
dual variable after the respective steps I, II and III.

I: We have min,,cx, {Bf’} =0.

min {GZ(xz,xj)}

r,€X;,x;€X;

_ : B (.
_x,-e)g?,lxrjl-er {eij (24, x5) + 0; (371)}

>  min {Gzo(sci,:cj)} + min {9?0(%)}

_IiEXi,:L’jEXj T, €X;

(28)

lower bound brefore I
II: Analoguous to I.
I11:

' 0% (i,
ﬂfri@gﬂlwr,l-exj{ (zi,2;)}

. ° 1 1

r,€Xi,x;€X;

> i 207 (o) - J e @)

T aeXia€X;

. 1 .o
+ a:iE)gl.,l:vI}EXj {26¢ (xi,ﬂﬁj) - A;(x])}
=0.

Also,
iy {07 ()
1
= min {A;}
z,€X; | 2
IR G RNV
T e, 51?&1%]{ ij (fﬂi,xj)}

]_ o
_ : ¢
= min —07 (x4, x,;
mexi,xjexj{Q iy (@i J)}

(30)

and

min {03’(1‘1)}

r,€X;

1
= min 7A2
z€X; | 2
— 3 1 . 9¢o
B qu1€§1 5 xi%l)réj { ij (-ri,ﬂfj)}

1 o

: ¢
= min —07. (x;, x5
fCiEXi,ijEXj{Q ’L]( 3] J)}

3D



O

The overall MPLP Algorithm 3 works by iterating over all edges ¢j € E and
performing the basic MPLP step Algorithm 2.

Algorithm 3: MPLP
fort=1,...do
forij € E'do
MPLP(ij);
end
end

There is a family of algorithms that work similar to MPLP. The order of message
updates is however reversed: First come pairwise to unary messagesa and afterwards
come unary to pairwise messages. We call a basic step of such an algorithm a diffusion
step as detailed in Algorithm 4. For easy exposition define the neighborhood of any
nodei € V as

N;={jeV:ijeE}. (32)

Algorithm 4: Diffusion step

DS (i, R, w);
Input:i € V, R C N;, w e RY", Y. w; < 1.
for j € R; do
I Aj InSgij%i(Q?j);
Gisj < Pinj + A5
end
for j € N; do
‘ A;‘ — mSgiﬁij(Q?);
I end.
for j € N; do
‘ Gij & Pisj — ij};
end

Proposition 6. Foranyi € V, R; C N, and w € Rfi : ZjeNi wj < 1 the basic
diffusion step DS(i, R;,w) is monotonuous.

Proof. Similarly as in the proof of Proposition 5 we denote by ¢° and ¢ the dual
variables before and after step I resp. II. Also we prove the property individually for
step I and II.



I: We have forall j € R;

min {0¢}E (33)
T, €X4,x;€X;
Also
. by
min {07 (x0) |
_ : ¢°
7;2121_{@ (xl)+Al(:cl)}
. . (34)
> i {07 )} + g { i {05 (o)} }
2 iy 0 o)+ i {05 )
_xggl)rgi{@ (i) o 07 (i, ;)
1I:
min {9
xz, €X;
— /
-y "2 Al
JEN;
(35)
_ ¢>
-y LA
JEN;
-3 ) iy {i )
JEN;

For any j € N; we have

min {Og(mi,mj)}

z,€X;,2;€X;

= min {9;@0 (l’i,l'j) "‘r‘ij;(sz)} 36)

T, €Xi,z;€X;

> min {Q?jo(xi7l‘j)} + w; min {9?0(3%)}

7, €X;,x;€X; z;€X;
O

Example 1. Thera are multiple choices for the sets R; and w for the basic diffusion
step DS(i, R;,w).

(i) Min-sum diffusion: Choose for any i € V the set R; = N; and w = U\l”\ 1.

(ii) Tree-reweighted message passing: Choose some order onnodes V. = {1,...,|V|}.
We visit the nodes in the given order, see Algorithm 5.

After computing a forward pass, we invert the order on V' and perform the above
procedure.



Algorithm 5: Forward pass of TRWS

fori=1,...,ndo
Ri={jeN;:j<i}
{O’ ]GRz
sz 1 . )
(RN F B
DS(i, Ri,w)
end

(iii) TRWS primal rounding: After step I in Algorithm 4 and before step Il we do the
following:

x; € argmin{@f(aji) + Z Gki(xz,mi)} . 37)

r,€X; kEN,;:k<i

6 Submodularity

We assume throughout this section that X; = {0,1} foralli € V.

Definition 12 (Submodularity). A pairwise potential 6;; : {0,1}> — R is submodular

iff
0:5(0,0) +0;5(1,1) < 6;;(0,1) +6;5(1,0). (38)

Anenergy 3oy, 0i(%i) + 31 e p Ui (i, x;) is submodular if all its pairwise potentials
are.

Example 2 (Ising model). 0;;(z;,7;) = aly, 1=y, is submodular if o > 0.

Lemma 2. Define the minimum operation x,y — x Ay = min(z, y) and the maximum
operation as x,y — =V y = max(x,y). Then for any z;,y; € X, and x;,y; € X;
and any submodular potential 0;j it holds that

Oij (s AN yi,xj Nyj) 4+ 0i(xs Vys, x5 V) < Oi(xs, x5) + 055 (s, y5) - (39)

Lemma 3. Let 6 be an MRF energy and ¢ any dual variables. If 6 is submodular, so is
9.

Proof. For any 1) € E we have

07,(0,0) + 67(1,1)
=0,;(0,0) — ¢i—;(0) — ¢j—:(0) + 6,;(1,1) — i (1) — Pj—4(1)
<0;5(0,1) — $i—;(0) — ¢j—i(1) +0i5(1,0) — disi (1) — ¢j4(0)

—p? —p?
=6%.(0,1) =6%,(1,0)

(40)

10



When having solved the primal and dual problem over the local polytope relaxation,
we still need to reconstruct a primal solution. We will show that it can be done such
that solution will fulfill the primal/dual optimality conditions. Hence, the reconstructed
primal solution is optimal.

Definition 13. Let 11" € argmin ¢ {0, 1y be an optimal primal solution of the local
polytope relaxation and let ¢* be an optimal dual solution. Define for every i € V the
space of locally optimal labels for the unary potentials as

S; = argmin {ef* (q;i)} . (1)
T, €X;

Denote for every edge ij € E the space of locally optimal labels for the pairwise

potentials as

S;j = argmin {0?}*(10,-,%)}. 42)
r,€X;,x;€X;

For every node i € V denote the support set f |1} as

Proposition 7. For all i € V choose x as the greatest label from O;. Then x* is
optimal.

Proof. We check primal/dual optimality conditions, i.e. that z} € S; and (z}, x}) € Sij.

e Fori € V we have by definition of O; and the primal/dual optimality conditions
that z; € S;.

e For ij € E we have that for i there exists a 2, € O; with (z},2}) € Sy,
since it holds that 4} (z}) > 0 and therefore there must exist a z; € X; with
pij(x7, @) > 0 (due to the marginalization constraints of the local polytope
relaxation). i (z7, ) > 0 (due to the marginalization constraints of the local
polytope relaxation). Further p* (7, x;) > 0 implies that (x}, 2;) € Si; due to
primal/dual optimality conditions. Last, x; € Oy again due to the marginalization
constraints of the local polytope relaxation. Similarly, there exists z; € O; such
that (z7, %) € Sy;. Then

0" (a2} = 07; (], @) = 0F; (a},25) < 07 (2}, 7). (44)

Since z} € O; we have z; < x} and likewise 2, < x due to the choice of z*.
Hence

07 (a7, a}) + 07 (2], 2)

= 9?;- (x] N,y Aal) + 9;@- (x] Vg, a) Vv a))

<07 (a7, 7)) + 07 (xh,27). (45)

O
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