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better: 12.05%
worse:  6.83%

improvement:  5.22%
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References

• state of the art on SUN397 benchmark[1]

• 49.5% (SIFT & LCS ⇨ Fisher Vector ⇨ MTL)
• consistent improvement over standard one-vs-all

single task learning (STL)
• w/ and w/o color cues
• 5..50 training examples per class
• top-K accuracy for all K

• scalability to Fisher Vector features
• 260 000 dimensions, dense

• previous state of the art[2] (47.2%)
• Fisher Vector on SIFT & LCS (color feature)
• independent one-vs-all SVMs

• SUN397 challenges
• groups of related (ambiguous) classes
• ≤50 training examples per class
combined with high dimensional FV features ⇒ overfitting

• existing relations between classes could be exploited

• effective regularization
(lower dimensional subspace)

• joint learning of mapping U
(multitask learning - MTL)
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1. start with an image representation xi
(e.g., Fisher Vector, but could be any)

2. train one-vs-all SVMs on xi
(first layer, initialization for MTL)

standard approach up to this point

3. stack learned predictors into U0
4. iterate (multitask learning)

• train SVMs on Uxi
• update U

prediction cost is effectively the same as 
STL since additional product is low dim.

5. final prediction:
•

• adapt SDCA solver[3]

(Stochastic Dual Coordinate Ascent)
• no primal variables, all in dual
• learning U via SDCA-variant

• both subproblems via SDCA
(hence MTL-SDCA)

• use precomputed kernels
(dual optimization: n=20K ≪ d=260K)

• closed-form updates, also for U
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industrial area

nuclear power plantpower plant

specialization

• discrimination between visually similar 
classes is hard (also for humans)

• forcing a one-vs-all classifier to separate 
‘nuclear power plants’ from ‘power plants’ 
may lead to increased overfitting

• instead, our method separates classes in 
a lower dimensional subspace, which is 
learned jointly for all scene categories

Algorithm Implementation Details (code on GitHub!)

argmax
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?
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Runtime Comparison*

MTL STL Overhead

SDCA training 25min 2min x11

+kernels +U0 33min 8min x4

+image representation 6.7h 6.2h x1.07
*further details can be found in the supplementary material https://github.com/mlapin/cvpr14mtl

• effective MTL regularization
consistently improves over STL

• achieves state of the art results
• scales to dense high dimensional

image representation (Fisher Vector)
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Left: SUN397 state of the art. Middle: STL vs MTL, SIFT only (top-K accuracy). Right: STL vs MTL, SIFT and color.
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• evaluation on SUN397
• FV fine-tuning +1.2%
• top-K accuracy

(top-5/15: +3.7%/+5%)

• sanity check on 
MNIST/USPS
(improvement over STL,
 on par w/ another MTL)

MTL-SDCA 
exhibits a small 
tendency to 
produce more 
human-like 
predictions
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