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Abstract

Personal knowledge about users’ professions,
hobbies, favorite food, and travel preferences,
among others, is a valuable asset for individu-
alized AI, such as recommenders or chatbots.
Conversations in social media, such as Reddit,
are a rich source of data for inferring personal
facts. Prior work developed supervised meth-
ods to extract this knowledge, but these ap-
proaches can not generalize beyond attribute
values with ample labeled training samples.
This paper overcomes this limitation by devis-
ing CHARM: a zero-shot learning method that
creatively leverages keyword extraction and
document retrieval in order to predict attribute
values that were never seen during training.
Experiments with large datasets from Reddit
show the viability of CHARM for open-ended
attributes, such as professions and hobbies.

1 Introduction

Motivation. Personal Knowledge Bases (PKBs)
capture individual user traits for customizing down-
stream applications like chatbots or recommender
systems (Balog et al., 2019). A potentially au-
tomatic way to populate a PKB is to draw per-
sonal knowledge from the user’s conversations in
social media and dialogues on other platforms.
These interactions are a rich source of personal
attributes, such as hobbies, professions, cities vis-
ited, medical conditions (experienced by the user)
and many more. Each of these would consist of
key-value pairs, such as cities visited:Paris or symp-
tom:dizziness. However, a large number of poten-
tial attributes and their respective values makes this
a challenging task. In particular, there is little hope
to have training data for each of these key-value
pairs. Moreover, the textual cues in user conversa-
tions are often implicit and thus difficult to learn.
Example. Consider the user’s utterance: “I just
visited London, which was a disaster. My hotel was

a headache and I spent half the time in bed with
a fever... So glad to be back home finishing the
masts on my galleon.” As humans, we can infer
the following attribute-value pairs: (a) cities vis-
ited:London, (b) symptom:fever, (c) hobby:model
ships. Capturing such user traits is a daunting task,
however, with both implicit and explicit signals
present. We need to consider the context “spent in
bed with”, to infer that fever relates to a disease
(as opposed to headache). To predict the user’s
hobby model ships, we have to pay attention to
the cues ‘galleon’ and ‘mast’. Proper inference re-
quires both deep language understanding and back-
ground knowledge (e.g., about ships, cities, etc.).

State of the Art and its Limitations. Explicit
mentions of attribute-value pairs can be captured
by pattern-based methods (e.g., Li et al. (2014);
Yen et al. (2019)). Such methods are able to extract
London from the the previous example by using the
pattern “I . . . visited 〈city name〉”. Pattern-based
approaches are limited, though, by their inability
to consider implicit contexts, such as “finishing the
masts on my galleon”. Question answering meth-
ods can be used to relax rigid patterns (e.g., Levy
et al. (2017)), but still rely on explicit mentions of
attribute values.

In this work we aim to extract attribute values
leveraging both explicit and implicit cues, such as
inferring symptom:fever and hobby:model ships.
Additionally, we address the cases where there is a
long-tailed set of values for such attributes as hobby.
In principle, deep learning is suitable for such infer-
ence (Tigunova et al., 2019; Preoţiuc-Pietro et al.,
2015; Rao et al., 2010), but it critically hinges
on the availability of labeled training samples for
every attribute value that the model should predict.
Supervised training is suitable for a pre-specified
limited-scope setting, such as learning personal in-
terest from a fixed list of ten movie genres, but



it does not work for the situation with large and
open-ended sets of possible values, for which there
is little hope of obtaining comprehensive training
samples. Therefore, we pursue a zero-shot learning
(Larochelle et al., 2008; Palatucci et al., 2009) ap-
proach that learns from labeled samples for a small
subset of labels (i.e., attribute values in our setting)
and generalizes to the full set of labels including
values unseen at training time.

Problem Statement. For a given attribute we con-
sider the set of known values V , which can be
drawn from lists in dictionary-like sources like
Wikipedia. At training time, our method requires
samples for a small subset of values S ⊂ V . Typi-
cally, the complement V \ S is much larger than S:
|V \ S| � |S|. For instance, S may consist solely
of the popular values sports, travel, reading, music,
games, whereas the complement includes hundreds
of long-tail values, such as beach volleyball, model
ships, brewing, etc. At inference time we need to
predict values from all of V , although most of the
values are unseen during training.

Approach and Contributions. We present
CHARM, a Conversational Hidden Attribute
Retrieval Model, for inferring attribute values in
a zero-shot setting. CHARM identifies cues in
related to a target attribute, which it then uses to re-
trieve relevant texts from external document collec-
tions, indicative of different attribute values. These
external documents could be gathered by simple
web search. They help CHARM to link the cues in
the user’s utterances to the actual attribute values to
predict. CHARM consists of two components: (i)
a cue detector, which identifies attribute-relevant
keywords in a user’s utterances (e.g., galleon), and
(ii) a value ranker, which matches these keywords
against documents that indicate possible values of
the attribute (e.g., model ships).

To evaluate our approach, we conduct exper-
iments predicting Reddit users’ professions and
hobbies based on their conversational utterances.
We demonstrate that CHARM performs well when
inferring unseen values and performs competitively
with the best-performing baselines when predicting
values seen during training. CHARM can easily
be extended to other attributes with long-tail val-
ues, such as favorite cuisine, preferred news topics
or medication taken, by providing a list of known
attribute values, training examples for a subset of
these values and access to external documents (e.g.,
via a Web search engine).

The salient contributions of this paper are: (1) a
method for inferring both seen and previously un-
seen (zero-shot) attribute values from a user’s con-
versational utterances; (2) a comprehensive evalua-
tion for the profession and hobby attributes over a
large dataset of Reddit discussions; and (3) labeled
data and code as resources for later research.1 2

2 Related Work

User profiling from utterances. There is ample
prior work on classification models to predict a
user’s personal traits based on hand-crafted textual
features (Preoţiuc-Pietro et al., 2015; Basile et al.,
2017), or with embedding-based representations
(Li et al., 2016; Bayot and Gonçalves, 2018; Ti-
gunova et al., 2019). While classification models
work well for inferring demographic attributes with
a small set of values such as age, gender or occupa-
tional class (Preoţiuc-Pietro et al., 2015; Flekova
et al., 2016; Basile et al., 2017) their dependence
on seeing all attribute values in (sufficiently many)
labeled training samples renders supervised classi-
fiers inappropriate for open-ended attributes such
as profession (Tigunova et al., 2019), hobby (Bando
et al., 2019) or favorite food (Zeng et al., 2019),
which are often modeled as a binary multilabel
task predicting the presence of each attribute value
(Welch et al., 2019). Similar to our approach, some
studies map user input to Wikipedia concepts (Abel
et al., 2011; Krishnamurthy et al., 2014) to predict
interests or locations. However, this method re-
quires explicit mentions of the entities.

Pattern-based approaches alleviate the problem
of the lack of labeled entities for long-tail classes
by employing information extraction techniques to
obtain personal attribute values from users’ utter-
ances, using sequence labeling methods (Jing et al.,
2007; Li et al., 2014) or context classification (Yen
et al., 2019). However, their coverage is limited
because they require crisp and explicit statements,
like “I am a student”, which are infrequent in con-
versations.

Our approach is designed for handling attribute
values that were never seen at training time. This
is known as the zero-shot learning problem, which
has been widely studied in the field of computer
vision but less explored in NLP. We employ a tech-
nique similar to Ba et al. (2015) for visual classes,

1https://github.com/Anna146/CHARM
2https://www.mpi-inf.mpg.de/

departments/databases-and-information-systems/
research/pkb

https://github.com/Anna146/CHARM
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/pkb
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/pkb
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/pkb


which builds image classifiers directly from ency-
clopedia articles without training images.

Most zero-shot studies for NLP (Wang et al.,
2019) deal with machine translation, cross-lingual
retrieval and entity/relation extraction (Levy et al.,
2017; Pasupat and Liang, 2014), which are not
suitable for our task, because they identify values
that are explicitly mentioned rather than inferring
them. Our task is similar to zero-shot text classifi-
cation (Yazdani and Henderson, 2015; Zhang et al.,
2019), where the class labels are represented as
single-word embeddings. We consider a zero-shot
BERT baseline (Devlin et al., 2018) that matches
utterances with rich document representations.

Keyword extraction from conversational text.
Notable applications of keyword extraction from
conversational text include just-in-time information
retrieval (Habibi and Popescu-Belis, 2015), with
continuous monitoring of users activities (e.g., par-
ticipation in meetings) and generating personalized
tags for Twitter users (Wu et al., 2010) or search
for relevant email attachments (Van Gysel et al.,
2017). Prior work mostly pursued unsupervised
approaches, e.g. TextRank (Mihalcea and Tarau,
2004) and RAKE (Rose et al., 2010), due to limited
availability of training data. Exceptions use super-
vised learning, with feature-based classifiers (Kim
and Baldwin, 2012) or neural sequence tagging
models (Zhang et al., 2016).

Our neural approach lies in between, as we learn
to identify salient keywords for a specific attribute
(e.g., profession), without having training data of
relevant keywords.

Information Retrieval in NLP. Most existing
work leveraging Information Retrieval (IR) com-
ponents to solve NLP tasks focused on Question
Answering (QA) (Kratzwald and Feuerriegel, 2018;
Wang et al., 2018; Guu et al., 2020) or dialogue
systems (Feng et al., 2019; Luo et al., 2019), where
the retrieval part is responsible for ranking the most
appropriate answers or responses, given a question
or chat session. As far as we know, we are the first
to leverage a retrieval-based model for inferring
attribute values without training samples.

3 Methodology

Overview. As illustrated in Figure 1, CHARM
consists of two stages: cue detection and value
ranking. As input CHARM receives a user’s ut-
terances U = u0..uN that contain a set of terms
t0..tM , for example, U ={“I stayed late at the li-

Figure 1: The pipeline of CHARM. The Term Scoring
Model assigns scores l0..lM to the terms in the input ut-
terances u0..uN . The terms with the highest scores are
passed to the Retrieval Model, which queries the doc-
ument collection D. The document scores are aggre-
gated to produce attribute value scores for predictions.

brary yesterday”, “Studied for the exam so I could
have better grades than my classmates”}. In the
first stage, the term scoring model assigns a score to
each term in the user’s utterances, yielding l0..lM .
The highest scoring terms are then selected to form
a query Q = q0..qK characterizing the user’s cor-
rect attribute value, e.g., Q =“library studied exam
grades classmates” for the profession attribute.

In the second stage, Q is evaluated against an
external document collection D = d0..dL; each
document in D is associated with possible at-
tribute values. Documents such as Wiki:Student
and Wiki:Dean’s List, which are associated with
the attribute value student, would score high with
the example query. The score aggregator then ranks
the attribute values based on the documents’ scores
s0..sL, for instance, yielding a high attribute score
for student given our example utterances. The list
of attribute values V is known in advance (e.g.,
taken from Wikipedia lists); however, potentially
only a subset of values S ⊂ V have instances seen
during training.

3.1 Cue detection

The term scoring model δ evaluates how useful
each word in a given user’s utterances is for mak-
ing a prediction, and assigns real-value scores
l0...lM to the terms accordingly. That is, lj =
δ(tj |t0, ..tM ;W ), where W denotes the parame-
ters of the model. The term scores l0..lM are then



used to select the words which will form the query
for the value ranking component.

The term scoring model should produce high
scores for terms that are descriptive of the user and
of the attribute in general, instead of a specific at-
tribute value. This means that it should be able to
exploit background knowledge and a term’s context
to judge its relevance to the attribute. For instance,
having seen the phrase “stayed late at the hospital”
for the physician at training time, at prediction time
an ideal model would correctly estimate the impor-
tance of the word ‘library’ in the phrase “stayed
late at the library”, even if there were no instances
of student in the training set.

BERT (Devlin et al., 2018) is well-suited for
this requirement, because it is a sequential model
that effectively uses word context and incorporates
world knowledge.

For further description, let us suppose the cue
detector picks the words Q = q0...qK as our query
terms for CHARM’s value ranking stage. A typ-
ical query would consist of the terms associated
with the correct attribute value (e.g., Q =“library
studied exam grades classmates”).

3.2 Value ranking

The second stage of the model consists of two steps:
first, using the selected query terms to rank the
documents in the external collection; and second,
aggregating document scores to predict values.

Document ranking. The ranking component
takes two inputs: query terms Q = q0...qK re-
sulting from the cue detector and an (automati-
cally labeled) document collection D = d0...dL.
The document collection could be a set of Web
pages, where each page indicates a specific at-
tribute value, v0...vL. For example, by generating a
search-engine query “hobby 〈value〉” we can gather
web pages related to specific hobbies.

The ranker ρ(Q, dk) evaluates the query Q, con-
structed by the cue detector, against each document
dk in the document collection to produce document
relevance scores s0...sL. For the example query
“library studied exam grades classmates”, the docu-
ment Wiki:Dean’s List labeled with student will get
a higher score than Wiki:Junior doctor (for physi-
cian). We consider two particular instantiations
of the ranker: BM25 (Robertson et al., 1995) and
KNRM (Xiong et al., 2017). BM25 is a strong un-
supervised retrieval model, whereas KNRM is an
efficient neural retrieval model that can consider se-

mantic similarity via term embeddings in addition
to considering exact matches of query terms.

Document score aggregation. The document
scores s0...sL obtained from the ranker are then
aggregated to produce scores for each known at-
tribute value. Depending on the document collec-
tion used, each attribute value may be represented
by several documents. For example, the student
attribute value may be associated with documents
Wiki:Dean’s List, Wiki:Master’s degree, etc. In
this case, the scores per document have to be ag-
gregated to form the final scores a0...aT for each
attribute value in V . In our experiments, we con-
sider the following aggregation techniques: (i) av-
erage (which allows multiple documents to con-
tribute to the final ranking) and (ii) max (which
may help when the document collection is noisy
and we care only about the top-scoring document
for each value). Having obtained the final attribute
scores a0...aT , we sort them to get the top value as
the model prediction.

3.3 Training

While predicting attribute values is not inherently
a reinforcement learning problem, we utilize the
REINFORCE policy gradient method (Sutton et al.,
2000) to train the cue detector component because
there are no labels indicating which input terms
should be selected. This allows the cue detector
to be trained based on the correct attribute values
regardless of the non-differentiable argmax oper-
ation needed to identify the K top scoring terms
from the scores it outputs.

When using the policy gradient method, the state
in our system is represented by a sequence of input
terms t0...tM . Each of the M input terms also
represents an independent action. The term scoring
model acts as the policy, which outputs the term
selection probabilities based on the current state.
Then a term is sampled (at training time) or the term
with maximum probability is selected (at prediction
time) and added to the query.

During training, we form the query sampling
without replacement one word at a time. After sam-
pling each term, we issue the current query and
get intermediate feedback. The training episode
ends when the query reaches its maximum length
K. We define the reward rτ for an intermediate
query to be the normalized discounted cumulative
gain (the nDCG ranking metric) of the correct at-
tribute values’ scores after aggregation at timestep



τ . The objective of REINFORCE is to maximize
J =

∑K
τ=1 rτ ∗ log pτ by updating the weights of

the policy network (where pτ is the probability of
selecting a term at timestep τ ).

4 Dataset

Figure 2: Example of an input utterance from Reddit.

The datasets used in our experiments cover
two types of input: (i) users’ utterances along
with their corresponding attribute-value pairs (e.g.,
hobby:brewing from the example in Figure 2), and
(ii) a collection of documents associated with each
attribute value (e.g., documents describing brewing
as a hobby). We consider two exemplary attributes:
profession and hobby. We define lists of their at-
tribute values based on Wikipedia lists3.

4.1 Users’ utterances

We consider publicly-available Reddit submissions
and comments4 from 2006 to 2018 as users’ ut-
terances. Given a Reddit user having a set of ut-
terances U = u0..uN , we aim to label the user
with a set of profession and hobby values, based
on explicit personal assertions (e.g., “I work as a
doctor”) found in the user’s posts. To label the
candidate users with attribute values we utilized
the Snorkel framework (Ratner et al., 2017). We
provide details on our data labeling using Snorkel
in Appendix A.1.

For our experiments, we removed all posts con-
taining explicit personal assertions that we used
for labeling each user, because we want to test the
ability of CHARM to predict attribute values based
on inference, as opposed to explicit pattern extrac-
tion. The final dataset consists of 6000 users per
attribute, with a maximum of 500 and an average
of 23 users per attribute value. The number of at-
tribute values for hobby and profession attributes is
149 and 71 respectively.

We evaluated the quality of Snorkel labeling on
a held-out validation set, which we manually anno-
tated. The validation set contains roughly 100 users
per attribute, and was annotated with attribute val-
ues agreed by at least two out of three judges. The
labeling obtained by Snorkel corresponded to 0.9

3Wikipedia pages: List of hobbies & Lists of occupations
4https://files.pushshift.io/reddit/

precision on the validation set. To demonstrate that
Snorkel provides the same level of quality as crowd-
sourcing, we calculated the precision of human an-
notators on the same validation set by comparing
the labels of each annotator against the agreement
labels. The obtained precision scores were 0.91 for
profession and 0.88 for hobby, demonstrating that
Snorkel is a reasonable alternative.

4.2 Document collection

The scope of possible attribute values may be open-
ended in nature, and thus, calls for an automatic
method for collecting Web documents. In this work,
we consider three different Web document collec-
tions; summary statistics on the number of docu-
ments per attribute value are provided in Table 1.
Each document may be associated with multiple
attribute values. To provide more diversity and
comprehensiveness we augmented our pre-defined
lists of known attribute values with their synonyms
and hyponyms.5

Note that the approaches used to construct the
document collections are straightforward and easily
applicable for further attributes, such as favorite
travel destination or favorite book genre.

Wikipedia pages (Wiki-page). To create this col-
lection we take the lists of known attribute values
and automatically retrieve a Wikipedia page corre-
sponding to each value, which usually coincides
with the article title (e.g., Wiki:Barista).

Wikipedia pages–extended (Wiki-category).
This collection is an extension of Wiki-page that
additionally includes pages found using Wikipedia
categories. This allows us to include pages about
concepts related to the attribute values, such as
tools used for a profession and the profession’s
specializations. To construct Wiki-category, we
identified at least one relevant category for each
attribute value and included all leaf pages under
the category (i.e., including no subcategories).

Web search. To create this collection we queried
a Web search engine using attribute-specific pat-
terns: “my profession as 〈profession value〉” and

“my favorite hobby is 〈hobby value〉”. The collection
consists of the top 100 documents returned for each
value. Such patterns can be created with low effort
by evaluating a few sample queries. Alternatively,
patterns could be mined from a corpus or simplified
to the generic form “〈attribute〉 〈value〉”.

5Available at https://github.com/Anna146/
CHARM

https://en.wikipedia.org/wiki/List_of_hobbies
https://en.wikipedia.org/wiki/Lists_of_occupations
https://files.pushshift.io/reddit/
https://github.com/Anna146/CHARM
https://github.com/Anna146/CHARM


min max avg total

profession Wiki-page 1 10 2 156
Wiki-category 1 191 57 4,156
Web search 71 100 92 6,688

hobby Wiki-page 1 1 1 149
Wiki-category 2 479 74 10,782
Web search 54 100 82 12,312

Table 1: Document collection statistics.

5 Experimental Setup

We evaluate the proposed method’s performance
in two experimental settings. First, we consider a
zero-shot setting in which the attribute values in
the training and test data are completely disjoint
(i.e., the test set only contains unseen labels). This
setting evaluates how well CHARM can predict
attribute values that were not observed during train-
ing. Second, we consider the standard classification
scenario in which all attribute values are seen as
labels in both training and test sets.This demon-
strates that CHARM’s performance in a normal
classification setting does not substantially degrade
because of its proposed architecture.

Experimental setup details differ for these two
evaluation settings, which will be discussed in the
following subsections. All our models were im-
plemented in PyTorch; technical details are in Ap-
pendix B. The code and labeled datasets will be
made publicly available upon acceptance.

Training and test data. For the unseen experi-
ments, we perform ten fold cross-validation with
folds constructed such that each attribute value
appears in only one test fold. Each of the folds
contains roughly the same number of users and
approximately 2-4 unique attribute values.6 We
assigned the users having multiple attribute values
to a fold corresponding to one of their randomly
chosen values. For the experiments with seen val-
ues, we randomly split the users into training and
test sets in a 9:1 proportion, respectively.

Hyperparameters. BERT, the term selection com-
ponent, generates a contextualized embedding for
each input term, which we process with a fully con-
nected layer to produce a term score for each word
in its context. Specifically, we use the pre-trained
BERT base-uncased model with 12 transformer
layers. To reduce BERT’s computational require-
ments, we discard the last 6 transformer layers (i.e.,

6We used a greedy algorithm to approximate a solution to
the NP-hard bin packing problem.

we use embeddings produced by the earliest 6 lay-
ers) after observing in pilot experiments that this
outperformed a distilled BERT model. (Sanh et al.,
2019)

Following prior work (Hui et al., 2018), KNRM
was trained with frozen word2vec embeddings on
data from the 2011-2014 TREC Web Track with
the 2009-2010 years for validation. We initialize
KNRM with these pre-trained weights.

During training, we sample 5 negative labels
(i.e., incorrect attribute values) to be ranked when
calculating the nDCG reward. For each label, we
sample a subset of 15 documents to represent the la-
bel (i.e., attribute value). If the document collection
has fewer than 15 documents for a label (e.g., Wiki-
page), we consider all the label’s available docu-
ments. When making predictions, we consider all
documents and all labels (values). In both settings,
we truncate documents to 800 terms when using
KNRM for efficiency and use the full documents
with BM25. We use ten fold cross-validation on
the training data to optimize the following hyperpa-
rameters in a grid search: (i) document aggregation
strategy (average vs max); (ii) length of query; and
(iii) maximum number of epochs. Further details
on the hyperparameter search are in Appendix B.

Baselines. For the unseen experiments, we evalu-
ate CHARM’s performance against an end-to-end
BERT ranking method and against a BM25 (Robert-
son and Zaragoza, 2009) ranker combined with two
state-of-the-art unsupervised keyword extraction
methods: TextRank and RAKE. We additionally
include a baseline giving the user’s full utterances
as input to BM25 (baseline: No-keyword).

Following related work (Nogueira and Cho,
2019; Dai and Callan, 2019), we train the BERT IR
baseline using a binary cross-entropy loss to pre-
dict the relevance of each document to the user’s
utterances (acting as queries). We use the same
pre-trained BERT model as in CHARM. To fit both
utterances and documents into the input size of
BERT, we split both into 256-token chunks and
run BERT on their Cartesian product. To obtain
the final score for each utterances-document pair
we average across all chunk pairs. Given N utter-
ances and M documents, this baseline processes
N ×M inputs with BERT, whereas CHARM pro-
cesses N inputs with BERT and M inputs with an
efficient ranking method. This makes the BERT
IR baseline very computationally expensive on the
Wiki-category and Web search document collec-



Model
profession hobby

Wiki-page Wiki-category Web search Wiki-page Wiki-category Web search

MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG MRR nDCG

No-keyword + BM25 .15* .32* .17* .37* .11* .28* .16* .42* .13* .35* .06* .22*
RAKE + BM25 .16* .33* .19* .39* .11* .28* .17* .42* .14* .37* .07* .23*
RAKE + KNRM .16* .33* .13* .34* .15* .34* .12* .32* .12* .31* .06* .24*
TextRank + BM25 .21* .39* .26* .45* .15* .32* .21 .46 .20* .42* .10* .28*
TextRank + KNRM .21* .38* .18* .36* .20* .40* .15* .36* .16* .36* .11* .31*
BERT IR .30 .45 .28* .44* .26* .38* .22 .43* .18* .42* .15* .33*

CHARM BM25 .29 .46 .28* .47* .28* .45* .24 .47 .21* .43* .11* .30*
CHARM KNRM .27 .44 .35 .55 .41 .59 .22 .44* .27 .49 .19 .38

Table 2: Results for unseen values. Results marked with * significantly differ from the best method (in bold)
measured by a paired t-test (p < 0.05). As described in the experimental setup, BERT IR on Wiki-category and
Web search must consider a subset of documents.

Model Document profession hobby

collection MRR nDCG MRR nDCG

N-GrAM - .13* .43* .11* .40*
W2V-C - .09* .39* .08* .32*
CNN - .20* .52* .14* .43*
HAM 2attn - .32* .59* .33 .55
BERT - .50 .68 .35 .55

CHARM BM25 Wiki-page .42* .57* .31* .51*
Wiki-category .38* .56* .32 .50*
Web search .49 .65 .31* .51

CHARM KNRM Wiki-page .37* .54* .28* .46*
Wiki-category .43* .62* .31 .51*
Web search .49 .66 .31 .51

Table 3: Results for seen values. Results marked with *
significantly differ from the best method (in bold face)
measured by a paired t-test (p < 0.05).

tions, which contain 4,000-12,000 documents. In
order to run the baseline on these collections, we
sample three documents per label; even with this
change, BERT IR is 60x slower than CHARM.
More details on the models’ running time are in
Appendix B. We use the full document collection
with Wiki-page.

For the seen experimental setup, we compare
CHARM with both state-of-the-art supervised ap-
proaches for inferring attribute values and a fine-
tuned supervised BERT model that performs classi-
fication using its [CLS] representation. The Hid-
den Attribute Model (HAM 2attn) (Tigunova et al.,
2019) is an attention-based neural classification
model for inferring users’ attribute values. N-
GrAM (Basile et al., 2017) is a SVM classifier with
n-gram features. W2V-C (Preoţiuc-Pietro et al.,
2015) is a Gaussian Process (GP) classifier with
embedding clusters as features. Finally, we include
a neural CNN-based model (Bayot and Gonçalves,
2018). In this setup the baseline models are single-
value, therefore, we split every multi-value user

profession

barista screenwriter airplane pilot
(MRR=0.4, (MRR=0.65, (MRR=0.64,

#sample=73) #sample=52) #sample=14)

CHARM

coffee shop script story pilot flying
starbucks guitar screenplay film flight teacher
store student screenwriting films training fire
school customer scripts photo fly trading
manager college writing movie pilots military

TextRank

people amp first hollywood people american
first love people tomorrow first lots
coffee things thanks time things guy
today starbucks amp second today time
thanks work stuff one thanks guys

Table 4: CHARM KNRM’s top 10 terms per label for pro-
fession attribute, compared with TextRank keywords.

into several inputs through all their attribute values.

Evaluation metrics. Given the difficulty of infer-
ring the correct attribute values for an attribute with
many possible values, ranking metrics are the most
informative and have been used in prior work (Ti-
gunova et al., 2019; Preoţiuc-Pietro et al., 2015).
We consider MRR (Mean Reciprocal Rank) and
nDCG (normalized Discounted Cumulative Gain).
Given that MRR assumes there is only one correct
attribute value for each user, we calculate MRR
independently for each attribute value before aver-
aging. We average nDCG over users.

6 Results and Discussion

6.1 Quantitative Results

Unseen values (zero-shot mode). The models’
performance evaluated only on values that were
not observed during training is shown in Table 2.
Both CHARM variants significantly outperform
all unsupervised keyword-extraction baselines for
both attributes on all document collections. This
suggests the importance of training the cue detector
to identify terms related to the attribute, instead of



hobby

baking quilting model aircraft
(MRR=0.46, (MRR=0.26, (MRR=0.11,
#sample=64) #sample=27) #sample=2)

CHARM

cake bread sewing way cat dimensions
food cream quilting game plane pilots
recipe cooking quilt metal construction song
cheese pasta fabric design planes steam
baking cook music playing energy music

TextRank

thanks things thanks today thanks work
first work first science german elyrion
amp food things kids steam time
people time people time tapjoy purchase
recipes second amp lots motorola air

Table 5: CHARM KNRM’s top 10 terms per label for
hobby attribute, compared with TextRank keywords.

the more general keywords usually given by unsu-
pervised keyword extractors. BERT IR performs
similarly to CHARM for the Wiki-page dataset,
but performs significantly worse for the remain-
ing datasets while taking approximately 60x longer
than CHARM KNRM to perform inference.

For both attributes, CHARM KNRM always out-
performs the BM25 variant with Wiki-category and
Web search collections. This may be related to
the size of document collections which allow for
more variations in the vocabularies that are cap-
tured well by embeddings with KNRM. Another
observation is that for CHARM KNRM, while Web
search yields the best result for profession, Wiki-
category is the best collection for hobby, possibly
due to the noisy hobby-related documents from
web search. CHARM BM25 on Wiki-page does not
require any additional inputs and consistently per-
forms as well as or better than the baselines across
both attributes. Wiki-category performs signifi-
cantly better than all baselines for both attributes,
making it a reasonable choice when Wikipedia cat-
egories are available.

To demonstrate that the collections are resilient
to inaccuracies in their automatic construction, we
conducted an experiment where some percentage
of the documents’ attribute values were randomly
changed. We found that randomly changing 20%
of the documents’ labels resulted in approximately
a 15% MRR decrease for CHARM KNRM on Web-
search and Wiki-category. The performance de-
crease on these collections was roughly linear. This
indicates that noise in the document collection does
not severely damage CHARM’s performance.

Seen values (supervised mode). In this experi-
ment we evaluate CHARM’s performance in the
fully supervised setting (i.e., all labels are seen dur-
ing training). In Table 3 we observe that CHARM’s
performance is competitive compared to HAM 2attn

(i.e., the best-performing attribute value prediction
method from prior work) and the state-of-the-art
BERT model. The fully supervised BERT model
consistently performs the best for both attributes,
though these increases are not statistically signifi-
cant over all CHARM configurations. Furthermore,
BERT and HAM 2attn are trained with full supervi-
sion in this experimental setting, whereas CHARM
still uses a policy gradient. In this experiment, the
Web search collection consistently performs best,
suggesting that the collection’s shortcomings are
mitigated when all labels are observed.

6.2 Qualitative Analysis

Analysis of selected terms For each attribute
value, we gathered all query terms that were se-
lected for the users predicted as having the attribute
value, together with the scores given by the cue de-
tector. We then averaged the scores for each term
within an attribute value, and selected top 10 terms
as the representative ones. Terms were extracted
using CHARM KNRM with Wiki-category on un-
seen experiments. We performed the same method
for TextRank keywords, because this was the best
performing keyword-based baseline in the unseen
experiments. The comparison of selected terms by
CHARM vs TextRank is reported in Table 4 and
Table 5 for selected attribute values of profession
and hobby, respectively.

We can observe that, regardless of the small
sample size for some values like airplane pilot,
CHARM can still detect meaningful words. For
barista, CHARM did not even consider the term
‘barista’, but rather focuses on words such as ‘cof-
fee’ and ‘starbucks’. Choosing terms like ‘screen-
play’, ‘scripts’ and ‘screenwriting’ helps the model
to distinguish screenwriter from other film-related
professions like director.

Picking the terms like ‘cake’, ‘baking’ and
‘bread’, helps the model to distinguish between
baking and cooking hobbies more effectively. Note,
that even for rare unusual hobbies like quilting,
CHARM manages to pick indicative terms. This
essentially shows that the model can easily be used
for large lists of attribute values, with long tail.

Finally, as opposed to CHARM, TextRank key-
words rarely make sense. This suggests that un-
supervised keyword detectors are not capable of
producing useful attribute-value-related keywords
from users’ utterances.

Misclassification Study To conduct error analysis,



(a) profession (b) hobby
Figure 3: Confusion matrix for profession and hobby with CHARM KNRM on unseen experiments, with some values
removed for brevity. Unseen values are aggregated across folds. Darker cells indicate more misclassifications. The
lines illustrate misclassifications of interest.

profession hobby

firefighter (MRR=0.46) investor (MRR=0.52) knitting (MRR=0.68) ice hockey (MRR=0.68)

Firefighter Index fund Yarn over Extra attacker
Firefighter assist and search team Venture capital Brioche knitting Ice hockey rules
Calvert County Fire-Rescue-EMS Treasury management Combined knitting Neutral zone trap
Firefighter arson Buy side Flat knitting Playoff beard
Fire captain Sovereign wealth fund Tunisian crochet Line (ice hockey)

Table 6: CHARM KNRM’s top 5 retrieved documents per attribute value.

we plotted confusion matrices of CHARM KNRM
on unseen experiments, which are shown in Figure
3a and 3b for profession and hobby, respectively.

We observe that medical professions such as
dentist, nurse, pharmacist and surgeon are often
confused to doctor in general. Professions associ-
ated with studying (academic, teacher and student),
beauty (hairdresser and tattoo artist) and art (musi-
cian and poet) are often confused with each other.
Salesman and accountant are confused to broker,
because of the common financial terms used.

Hobbies associated with music (dancing, singing
and music) and images (painting, graphic design
and photography) are often mixed up. Hobbies
in which the term ‘game’ is profusely used like
chess and baseball are confused to board games;
similarly, fishing and fish keeping, as well as skiing
and snowboarding are confused due to the common
lexicon used.

Analysis of top ranked documents For each at-
tribute value, we collected all documents that were
returned for a user with the given value as the
ground-truth label. We then averaged the scores
for each page and select the top 5 retrieved pages

from Wiki-category, shown in Table 6 for selected
profession and hobby attribute values.

It is interesting to observe, that in spite of the
common lexicon for some similar values, the model
manages to retrieve documents which are relevant
to a particular value, e.g., documents for investor
are distinct from other financial-related professions,
like broker or salesman. It is also worth mentioning
that the retrieved pages for investor and ice hockey
are rather the pages for related lexicon (venture
capital, playoff beard), which shows the power of
CHARM’s cue detection.

7 Conclusion

We presented the CHARM method for inferring
personal traits from conversations. CHARM dif-
fers from prior work by its zero-shot ability to
predict attribute values that are not present in the
training samples at all. We demonstrated the vi-
ability of CHARM for inferring users’ unseen at-
tribute values by comprehensive experiments with
Reddit conversations, leveraging document collec-
tions from Wikipedia and web search results for
CHARM’s retrieval component.
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Appendices

A Data

All datasets used in the experiments are available at
https://github.com/Anna146/CHARM. We pro-
vide IDs and texts of the posts used as training and
test data for CHARM. All users are anonymized
by replacing usernames with IDs. Additionally,
we provide the posts containing explicit personal
assertions, which have been used for ground truth
labeling with the Snorkel framework.

A.1 Labeling users’ utterances with Snorkel
Our data consists of submissions on Reddit, which
are: (1) authored by users having 10-50 posts, (2)
10-40 words long, and (3) containing a personal
pronoun (except for 3rd person ones. Requirements
(1) and (2) were derived from observing the distri-
butions on the full dataset. Requirement (3) comes
from the assumption that posts containing personal
pronouns are most likely to contain personal asser-
tions. These restrictions allow us to select posts
that look more similar to the real conversation (i.e.,
relatively short and containing references to the
speakers with personal pronouns). In addition, we
did not consider the following subreddit types: (i)
dating, which may provide plenty of personal in-
formation but no real conversation to infer from,
and (ii) fantasy/video games (for the profession
attribute), because users may refer to gaming per-
sonalities. We took only users whose utterances
contain at least one mention of attribute values, re-
sulting in around 250K and 500K candidate users
for profession and hobby, respectively.

We used the Snorkel framework (Ratner et al.,
2017) that allows data labeling using weak supervi-
sion, relying on the inference that combines multi-
ple labeling functions, which are manually speci-
fied and can be potentially noisy. Given a user’s ut-
terance set U , an attribute a and a possible attribute
value v, Snorkel will decide on positive/negative
label–denoting the user as having/not having per-
sonal trait a:v–or abstain label. We have separate
labeling models for each attribute a, and defined
two labeling functions which consider: (LF1) the
existence of attribute-specific patterns, and (LF2)
the weighted count of the words belonging to the
value-specific lexicon.

LF1: Attribute-specific patterns. We compiled
a list of positive and negative patterns for each
attribute (see Table 7), e.g., “my hobby is 〈hobby-

value〉” vs “I hate 〈hobby-value〉” as positive vs
negative patterns for hobby. LF1 labels a user with
a positive/negative label for each attribute value v
if there exist at least one positive/negative pattern
in the user’s utterances U , and abstain otherwise.

LF2: Value-specific lexicon. For each attribute-
value pair, we used Empath (Fast et al., 2016)–
pre-trained on the Reddit corpus–to build a lexi-
con of typical words (e.g., ‘cider’ and ‘yeast’ for
hobby:brewing). Given seed words, Empath builds
lexical categories by means of an embedding model.
As our value-specific lexicon, we took the union
of Empath terms for a specific attribute value and
all its synonyms; each typical word is weighted
by embedding similarity to the seed words. Given
a user’s utterance set U and an attribute value v,
LF2 yields a positive label if the weighted count of
typical words of v is above an empirically-chosen
threshold, and abstain otherwise.

Given a pair of user’s utterance set U and a pos-
sible attribute value v, the Snorkel probabilistic
labeling model utilizes our labeling functions to
predict a confidence score for the positive label, i.e.,
the user is labeled with attribute value v. As our
labeled dataset, we took only the user-value pairs
with confidence scores above a specific threshold.

To determine the threshold of confidence scores,
we manually annotated a held-out validation set
containing 100 users per attribute. Given a post
and a set of attribute values mentioned explicitly in
the post, the annotators must identify whether the
candidate user traits truly hold. For instance, from

“My dad bought me a chess board even though I
enjoy video games more”, hobby:video games is
correct while hobby:chess is not applicable. The
final annotation for each post consists of attribute
values agreed by at least two out of three judges.
The selected confidence threshold corresponds to
the 0.9 precision of the model on the validation set.
After thresholding, we obtained 13.5k users labeled
with profession values and 11.7k users with hobby
values.

Finally, for practical reasons, for each attribute
we sorted the labeled users by confidence scores
and cropped the set to maximum 500 users per
attribute value and 6000 users in total. Note that
users might have multiple values for each attribute
(e.g., having brewing and swimming as hobbies);
there are 605 such users for profession and 245 for
hobby.

https://github.com/Anna146/CHARM


positive negative

profession i am/i’m a(n)
my profession is
i work as
my job is
my occupation is
i regret becoming a(n)

(no/not/don’t
within pos. patterns)

hobby i am/i’m obsessed with
i am/i’m fond of
i am/i’m keen on
i like
i enjoy
i love
i play
i take joy in
i adore
i appreciate
i am/i’m fan of
i am/i’m fascinated by
i am/i’m interested in
i fancy
i am/i’m mad about
i practise
i am/i’m into
i am/i’m sucker for
my interest is
my hobby is
my passion is
my obsession is

i hate
i dislike
i detest
i can’t stand
(never/not/don’t
within pos. patterns)

Table 7: Positive and negative patterns used in the label-
ing function LF1 of the Snorkel labeling model. Each
pattern must be followed by possible attribute values
within a context window of 2 terms.

B Training details and hyperparameters

In our experiments we used the server with 32 cores
(2x Intel Xeon Gold 6242, 16C/32T 22MB) and 2
GPU NVIDIA Corporation GV100 [Tesla V100].
On this server the running time of our models was
fast, compared to the baseline BERT IR architec-
ture as shown in Table 8. BERT IR inference is
slow because for a single utterance-document pair
it makes several passes through BERT for each
chunk combination, which is repeated for every
document. CHARM runs BERT once on each ut-

train test
(10.000 instances) (100 instances)

CHARM KNRM 31.8 1.2
CHARM BM25 54.4 10.9
BERT IR 56.2 72.7

Table 8: Running time of the models given in minutes.
The train time is a sum of the times across all training
epochs, all times are averaged across folds in the un-
seen experiment.

terance only, independent of the number of docu-
ments. Using BM25 as a ranker is slower because
it requires iteration through the query-document in-
puts to calculate term frequencies, whereas KNRM
uses efficient vectorized representations of the in-
puts. However, it is possible to speed up BM25
inference, by providing a precomputed inverted
index.

The numbers of parameters in CHARM KNRM
model are shown in Table 9. We used manual
tuning to search for the hyperparameters, running
about 280 search trials per attribute and collection
combination. Several hyperparameters were fixed
across different setups (across attributes, document
collections and rankers) and some we tuned to each
setup individually. The bounds for each hyperpa-
rameter and the best parameters are in Tables 11,
10. The best parameters were chosen based on the
MRR score. Additionally we performed some ex-
periments on changing the policy gradient training
setup, adding discounting factor to the reward after
each sampled query term and changing the reward
from nDCG to MRR. We found that the results after
these modifications did not significantly change.

Number of parameters (e+3)

BERT embeddings 23,832.6
word2vec embeddings 882,366
BERT parameters 43,118.6
KNRM parameters 0.4

Table 9: Number of model parameters. CHARM KNRM
uses all parameters mentioned in the table, while
CHARM BM25 and BERT IR use only parameters re-
lated to BERT.



Parameter Options
hobby profession

CHARM BM25 CHARM KNRM CHARM BM25 CHARM KNRM

Wiki-page Wiki-category Web search Wiki-page Wiki-category Web search Wiki-page Wiki-category Web search Wiki-page Wiki-category Web search

aggregation type avg, max avg avg max avg avg avg avg max avg max avg avg
training epochs 1-50, step 2 19 23 21 23 21 21 17 23 15 43 27 17
query length 10-25 step 5 15 25 10 10 15 15 10 15 15 10 15 10

Table 10: Hyperparameter search for specific configurations.

Parameter Search bounds Best configuration
(low; high; step)

BM25: k1 (0.75; 2.0; 0.25) 2.0
BM25: b (0.25; 1.0; 0.25) 0.75
batch size (2; 4; 1) 4
negative labels sampled (5; 15; 5) 15
documents sampled per label (3; 9; 2) 5

Table 11: Common parameters across all attributes and
document collections. The last two parameters refer
to the number of negative labels used during training
for one instance and number of documents sampled for
each selected label.


