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Existing positive-only KBs are unaware of negation.
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Wolf Prize in Physics

Albert Einstein Medal

Oskar Klein Medal

Adams Prize

Pius XI Medal

Royal Society Science Books Prize

Hughes Medal
MichelsonïMorley Award

42 awards, 30000 awards

Nobel Prize in Physics

Academy Award

NBA Most Valuable Player Award

Wikidata - Awards won by Stephen Hawking

Problem

Existing positive-only KBs are unaware of negation.

Set of negative statements is quasi-infinite!
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Å Edit history
Å Collaborative KBs, e.g., Wikidata

Å Deleted statements

Å 82% ontology modifications
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Å Edit history
Å Collaborative KBs, e.g., Wikidata

Å Deleted statements

Å 82% ontology modifications

Å Count predicates
Å instance-based predicates?

Å Negated predicates

Å DBpedia e.g., never exceed alt (for airplanes)

Å Knowlife e.g., not caused by, not healed by

Å Object = No-value

Å Deprecated rank

Å statements that are known to include errors

Advantages: formalizes syntax for explicit negation addition, & 

some allows querying them (e.g., Wikidata SPARQL with o = no-value)

Limitations: inherit same challenges from positive KBC, covers 

small domains, no active collection of useful negations

State-of-the-art: KBs that include negative statements 12



Problem:

Existing positive-only KBs are unaware of negation.

Input:

Open-world KB.

Task:

Explicitly add salient negative statements to KB. 
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Problem:

Existing positive-only KBs are unaware of negation.

Input:

Open-world KB.

Task:

Explicitly add salient negative statements to KB. 

Identify Interesting Negative Knowledge 16

negative

positive

unknown

¬ (award; Nobel Prize in Physics)

¬ (award; Academy Awards for Best Actress)

¬ (headquarters location; Silicon Valley)
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PART1: Statistical Inferences

Infer from existing positive statements:
Peer-based negation inference method.
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PART3: Pretrained Language Models
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Input:

Given entity e from KB.

Steps:

1. Peer-based candidate retrieval

2. Correctness filtering by local completeness 

assumption

3. Supervised ranking for higher saliency

Output:

Top interesting negative statements about e.

Arnaout, Razniewski, and Weikum, ñEnriching KBs with interesting negative statementsò, AKBCô20

PART1: Statistical Inferences

Peer-based Negation Inference
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What is a similar entity (peer) ?
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Å Stephen Hawking: Physicist

Jaccard-similarity

Å predicate-object pairs shared by entities:

Hawking AND Einstein = 423/750

Embedding-based similarity
Å Cosine of low-dimensional latent representations

Wikipedia embeddings

Confounding factors:

Å Popularity

Å Sequences
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What is a similar entity (peer) ?

Arnaout, Razniewski, and Weikum, ñEnriching KBs with interesting negative statementsò, AKBCô20

Class-based

Å Stephen Hawking: Physicist

Jaccard-similarity

Å predicate-object pairs shared by entities:

Hawking AND Einstein = 423/750

Embedding-based similarity
Å Cosine of low-dimensional latent representations

Wikipedia embeddings

Confounding factors:

Å Popularity

Å Sequences

Interpretable     Accurate
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(award; Copley Medal)

(hobby; sailing)
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(award; Nobel Prize in Physics)
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Every statement that applies to at least one peer is a candidate negation.

entity peer

(award; Nobel Prize in Physics)

Challenge: correctness of inferred negations.
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Every statement that applies to at least one peer is a candidate negation.

entity peer

(award; Nobel Prize in Physics)

Challenge: correctness of inferred negations.

Retain candidate only in presence of other values
(Hawking, award, {Copley Medal, é})  Ṻ ¬ (award, Nobel Prize in Physics)

(Hawking, hobby, )ɲ ṿ¬ (sailing, reading)
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(hobby; sailing)

(hobby; reading)

Arnaout, Razniewski, and Weikum, ñEnriching KBs with interesting negative statementsò, AKBCô20

Every statement that applies to at least one peer is a candidate negation.

entity peer

(award; Nobel Prize in Physics)

Challenge: correctness of inferred negations.

Retain candidate only in presence of other values
(Hawking, award, {Copley Medal, é})  Ṻ ¬ (award, Nobel Prize in Physics)

(Hawking, hobby, )ɲ ṿ¬ (sailing, reading)

Significantly boosts correctness of deductions: 57 to 84%.
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(hobby; sailing)

(hobby; reading)

Retrieve Candidate Negations & Correctness Filter 
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Candidates =  [ ¬ (handedness; left); ¬ (citizen; U.S.); ¬ (award; Nobel Prize in Physics)] 
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Arnaout, Razniewski, and Weikum, ñEnriching KBs with interesting negative statementsò, AKBCô20

Supervised Learning-to-rank Model 33

A. Scoring features include: 

peer frequency, object and predicate importance, and text signals.

B. Pointwise L2R: Obtain annotator judgments for statement interestingness [0..1]

Is it interesting that Stephen Hawking never received a Nobel in Physics?

.. is not left-handed?

C. Train supervised model to predict annotator scores

Linear Regression

D. Rank assertions by predicted score

Candidates =  [ ¬ (handedness; left); ¬ (citizen; U.S.); ¬ (award; Nobel Prize in Physics)] 
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A. Scoring features include: 

peer frequency, object and predicate importance, and text signals.

B. Pointwise L2R: Obtain annotator judgments for statement interestingness [0..1]

Is it interesting that Stephen Hawking never received a Nobel in Physics?

.. is not left-handed?
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Linear Regression
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Supervised Learning-to-rank Model 35

1. ¬ (award; Nobel Prize in Physics)

2. ¬ (citizen; U.S.)

3. ¬ (handedness; left)

A. Scoring features include: 

peer frequency, object and predicate importance, and text signals.

B. Pointwise L2R: Obtain annotator judgments for statement interestingness [0..1]

Is it interesting that Stephen Hawking never received a Nobel in Physics?

.. is not left-handed?

C. Train supervised model to predict annotator scores

Linear Regression

D. Rank assertions by predicted score

Candidates =  [ ¬ (handedness; left); ¬ (citizen; U.S.); ¬ (award; Nobel Prize in Physics)] 

Advantages: recall, canonicalization

Limitations: correctness
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Order-oriented peer-based inference.



Å Instead of binary peer relation, exploit order on peers:

Å Real-valued similarity functions (JS, Cosine distance, etc..)

Å Spatial/temporal data provided in KBs. 

Arnaout, Razniewski, Weikum, and Pan ñNegative Statements Considered Usefulò, JWSô21

PART1: Statistical Inferences

Negation Inference using Ordered Peers

37
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Å Instead of binary peer relation, exploit order on peers:
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2019201820172016201520142013

Group= Best Picture Award winners

epeers

¬ (country; U.S.)

¬ (language; English)

Unlike previous 6 winnersPreviously

Group= films

e

¬ (country; U.S.)

¬ (language; English)

Unlike 80% of the films in peer group
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40 out of 100 similar films are 3 out of the last 6 Best Picture 
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2019201820172016201520142013

Group= Best Picture Award winners

e

peers

Group= films

e

peers

statement= based on a true story

¬

40 out of 100 similar films are 3 out of the last 6 Best Picture 

winners are

Advantages: interpretability, canonicalization

Limitations: recall?
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PART1: Statistical Inferences

PART2: Text Extraction

PART3: Pretrained Language Models

How to identify interesting negation?

Pattern-based query log extraction.
Mining common factual mistakes from Wikipedia updates.
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Arnaout, Razniewski, and Weikum, ñEnriching KBs with interesting negative statementsò, AKBCô20

PART2: Text Extraction

Mine Negations from User Query Logs

Romero et al., ñCommonsense Properties from Query Logs and Question Answering Forumsò, CIKMô19
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ÅWisdom of the crowd: 
Search engine autocompletion provides access to salient user assertions
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ÅWisdom of the crowd: 
Search engine autocompletion provides access to salient user assertions

ÅProbing with negated prefixes

ÅWhy didnôt <e>

ÅWhy hasnôt <e>

ÅWhy wasnôt <e>

Åé
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Advantages: relevance, correctness

Limitations: recall
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PART1: Statistical Inferences

PART2: Text Extraction

PART3: Pretrained Language Models

How to identify interesting negation?

Pattern-based query log extraction.
Mining common factual mistakes from Wikipedia updates.

57



PART2: Text Extraction

Mine Text Revisions

Karagiannis et al., ñMining an ñAnti-Knowledge Baseò from Wikipedia Updates with Applications to Fact 

Checking and Beyondò, PVLDBô19

58

http://www.vldb.org/pvldb/vol13/p561-karagiannis.pdf


ÅAnti-knowledge base (AKB)
Create a knowledge base of common factual mistakes
Complement the positive-only KB

PART2: Text Extraction

Mine Text Revisions

Karagiannis et al., ñMining an ñAnti-Knowledge Baseò from Wikipedia Updates with Applications to Fact 

Checking and Beyondò, PVLDBô19

59

http://www.vldb.org/pvldb/vol13/p561-karagiannis.pdf


ÅAnti-knowledge base (AKB)
Create a knowledge base of common factual mistakes
Complement the positive-only KB

ÅMain idea:
Exploit entity/number swaps in Wikipedia update logs
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Advantages: correctness 

Limitations: relevance, updates occur for a variety 

of reasons (60% not factual corrections

controversial, synonyms, spelling mistake, etc.)
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PART1: Statistical Inferences

PART2: Text Extraction

PART3: Pretrained Language Models

Generating meaningful commonsense negative knowledge:
Generate corruptions & estimate contradictions.

How to identify interesting negation? 62



PART3: Pretrained Language Models

Generating Meaningful Negative Commonsense Knowledge

Safavi and Koutra, ñGenerating Negative Commonsense Knowledgeò, KR2ML at NeurIPSô20
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source: ConceptNet
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Advantages: recall 

Limitations: correctness (LM as source knowledge?)
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Wikinegata (online platform)

Browse interesting negations about Wikidata entities

Projects

Neguess (online quiz-game)

Entity guessing game with negative clues

Anti-KB (dataset)

Ranked common factual mistakes from Wikipedia 

ANION (dataset)

Commonsense KB focusing on negated events

Google Hotel Search (online platform)

Hotel booking with negative features asserted
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ÅBuilt upon the peer-based negation inference.

ÅInteresting negations about 0.5M Wikidata entities.

Arnaout et al., ñWikinegata: A Knowledge Base with Interesting Negative Statementsò, VLDBô21

Entity summarization
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ÅEntity-guessing game with interesting negations as clues.

neguess.mpi-inf.mpg.de

Biswas Bikram et al., ñNeguess: Wikidata-entity guessing game withnegative cluesò, ISWCô21

Clue1: was not educated at Trinity College.

Clue2: did not win Nobel Prize in Physics.

Clue3: is not German.

Can you 80
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