
D5: Databases and Information Systems
Data Mining and Matrices, SS 2015
Homework #4: NMF & CUR
Due: 16 June 2015 at 12:15 CEST

You can discuss these problems with other students, but everybody must hand in their own answers. You can use

computers etc. to perform the algebraic operations, but you must show the intermediate steps (and “computer

said so” is never a valid answer). You can return either computer-typeset solutions by email (but no scanned or

photographed solutions are accepted), or legibly hand-written or computer-typeset solutions personally to the lecture.

Notice that the DL is strict. Remember to write your name and matriculation number to every answer sheet! If

you want to discuss the solutions with the tutor, the tutorial meeting is the time to do that. If you cannot attend

the tutorial meeting, you must schedule a meeting with the tutor via email.

Problem 1 (NMF as k-means). The k-means algorithm tries to optimize the function

k∑
j=1

∑
i∈Cj

∥∥ai − µj∥∥22 , (1.1)

where ai ∈ Rd, i = 1, . . . , n are the input (row) vectors, Cj ⊂ {1, 2, . . . , n}, j = 1, . . . , k, Ci∩Cj =
∅ if i 6= j, and ∪jCj = {1, 2, . . . , n} define the k clusters of ai, and µj ∈ Rd, j = 1, . . . , k, are the
centroids for the clusters. Given a clustering, the centroid µj is computed as the element-wise

average, µj = 1
|Cj |

∑
i∈Cj

ai (summation and division are element-wise).

Show that if all ai are non-negative, we can write (1.1) as a special type of semi-orthogonal
NMF

‖A−GM‖2F , GTG = I . (1.2)

That is, show how to transform (1.1) into (1.2) and verify that all matrices stay non-negative
and that G is column-orthogonal.

Problem 2 (Pseudo-inverse for full column rank matrices). Let n > m and let X ∈ Rn×m be
such that rank(X) = m. Show that in this case the Moore–Penrose pseudo-inverse of X can be
computed as

X+ = (XTX)−1XT . (2.1)

Remember to make sure that (XTX)−1 exists.

Problem 3 (NMF and pLSA). In the lectures the pLSA was presented as NMF optimizing
the generalized KL divergence. In this problem we aim at proving why GKL is used instead of
the Frobenius norm.

Recall that in pLSA, the joint probability of a document di and term tj using K topics
(zk)

K
k=1 is defined as

Pr[di, tj ] =
K∑
k=1

Pr[zk] Pr[di | zk] Pr[tj | zk] . (3.1)

Using the NMF formulation with document-term matrix A that is normalized to sum to unity
and NMF factor matrices W , Σ, and H, where columns of W , diagonal of Σ, and rows of H
sum to unity, we can write (3.1) as

Pr[di, wj ] =
K∑
k=1

σkkwikhkj = (WΣH)ij . (3.2)
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Now, the likelihood of observing A when drawing the data from the distribution (3.2) is
proportional to

L = L(A |W ,Σ,H) =
∏
i

∏
j

Pr[di, wj ]
Aij . (3.3)

Show that NMF with GKL divergence as the error metric is maximizing the likelihood L by
showing that maximizing the log-likelihood logL(A |W ,Σ,H) is equivalent to minimizing the
(generalized) KL divergence

DGKL(A‖WΣH) =
∑
i

∑
j

(
Aij ln

Aij

(WΣH)ij
−Aij + (WΣH)ij

)
. (3.4)

Problem 4 (CX and RRQR). Recall that an RRQR decomposition of a matrix A ∈ Rn×m is
of form

AΠ = QR = Q

(
R11 R12

0 R22

)
, (4.1)

where Π ∈ {0, 1}m×m is a permutation matrix, Q ∈ Rn×n is an orthogonal matrix, R11 ∈ Rk×k is
upper-triangular with positive values in diagonal, and R12 ∈ Rk×(m−k) and R22 ∈ R(n−k)×(m−k)

are arbitrary.
Let Πk{0, 1}n×k be the first k columns of Π and set C = AΠk ∈ Rn×k. Show that∥∥A−CC+A

∥∥
ξ

= ‖R22‖ξ , (4.2)

where ξ is either F or 2 (i.e. we compute either the Frobenius or spectral norm).
Hint: Use the fact that R11 is guaranteed to be invertible and that both of the studied norms

are orthogonally invariant.

Problem 5 (CX and RRQR again). Let AΠ = QR be the RRQR factorization of A as above.
Assume the factorization admits the following inequalities for some polynomials p1 and p2 over k
and m:

σk(A)

p1(k,m)
≤ σmin(R11) ≤ σk(A) (5.1)

σk+1(A) ≤ σmax(R22) ≤ p2(k,m)σk+1(A) . (5.2)

Using (4.2) from Problem 4 and the above inequalities, show that∥∥A−CC+A
∥∥
2
≤ p2(k,m) ‖A−Ak‖2 , (5.3)

where Ak = UkΣkV
T
k is the rank-k truncated SVD of A.
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Problem 6 (Generating CUR data). A standard practise when validating that a proposed
matrix factorization algorithm works in practice is to generate random data that has the kind of
structure the factorization aims at finding, add some random, structure-less noise, and use the
resulting matrix as an input for the algorithm. For example, for NMF, we would first choose
some n, m, and k, then we would generate random matrices W ∈ Rn×k+ and H ∈ Rk×m+ , multiply
them to obtain A = WH, and add some noise to A.

Design a method that creates random synthetic matrices for CUR decomposition. That is,
explain how to generate matrices C ∈ Rn×k, U ∈ Rk×k, and R ∈ Rk×m (k < n,m) such that
matrix A = CUR has k columns that are exactly the columns of C and k rows that are exactly
the rows of R. The factor matrices cannot be completely random, but try to have as much
randomness as possible.
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