
D5: Databases and Information Systems
Data Mining and Matrices, SS 2015
Homework #5: ICA
Due: 30 June 2015 at 12:15 CEST

You can discuss these problems with other students, but everybody must hand in their own answers. You can use

computers etc. to perform the algebraic operations, but you must show the intermediate steps (and “computer

said so” is never a valid answer). You can return either computer-typeset solutions by email (but no scanned or

photographed solutions are accepted), or legibly hand-written or computer-typeset solutions personally to the lecture.

Notice that the DL is strict. Remember to write your name and matriculation number to every answer sheet! If

you want to discuss the solutions with the tutor, the tutorial meeting is the time to do that. If you cannot attend

the tutorial meeting but want to discuss with the tutor, you must schedule a meeting with the tutor via email.

Problem 1 (Correlation matrix). Let x = (xi)
n
i=1 be a (column) vector of n zero-centered

random variables. The covariance cov(xi, xj) is defined as

cov(xi, xj) = E[xixj ] , (1.1)

The correlation matrix Σ is defined as

Σ = E[xxT ] =
(
cov(xi, xj)

)
i,j
. (1.2)

What are the requirements for random variables xi that ensure that the covariance matrix is
an identity matrix? Give the requirements, and prove that if all xi satisfy them, Σ is an identity
matrix.

Hint: consider what Σi,i = cov(xi, xi) tells about random variable xi.

Problem 2 (Kurtosis of a sum). Recall that the kurtosis of a random variable X with zero
mean is

kurt(X) = E[X4]− 3(E[X2])2 . (2.1)

One way to understand the importance of the factor 3 in (2.1) is to consider a sum of two
independent random variables. Let X and Y be two independent random variables with zero
mean and unit variance, i.e.

E[X] = 0 E[X2] = 1 (2.2)

E[Y ] = 0 E[Y 2] = 1 . (2.3)

Show that
kurt(X + Y ) = kurt(X) + kurt(Y ) . (2.4)

Can you see the importance of factor 3?
Hint: Use binomial formula and linearity of expectation.

Problem 3 (Kurtosis of normal distribution). Another way to see the importance of the factor
3 is to consider the kurtosis of normal distribution. We will prove that if X is normally distributed
with 0 mean, then kurtX = 0. To compute the kurtosis, we need the fourth moment E[X4]. To
compute it, we use very powerful and general technique of moment-generating functions. The
moment-generating function of random variable Y is

MY (t) = E[exp(tX)] = E[etX ] , t ∈ R . (3.1)
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One important feature of moment-generating functions is that if we know MY , we can easily
compute the nth moment of Y by differentiating MY n times and evaluating the derivative at
origin. In other words,

dnMY

dtn
(0) = E[Y n] , (3.2)

where dnMY
dtn (0) is the nth derivative of MY evaluated at origin. (Here we assume that the

derivative exists.)
The moment-generating function for normally distributed X with 0 mean and variance σ2 is

MX(t) = exp(σ2t2/2) . (3.3)

Use (3.3) to compute E[X4] and conclude that kurt(X) = 0.

Problem 4 (Kurtosis of various distributions). Plot the probability density functions (or
probability mass functions) and compute the kurtosis of the following probability distributions
(the probability density (or mass) function and moment-generating function are given below the
distribution). Are the distributions sub- or super-Gaussian? Notice that all of the distributions
have zero mean.

1. Continuous uniform from a = −1 to b = 1
f(x; a, b) = 1/(b− a) for x ∈ [a, b] and M(t) = etb−eta

t(b−a) for t 6= 0 and M(t) = 1 for t = 0.

2. Centered binomial with n = 100 and p = 1/2 (i.e. Y ∼ X − np where X ∼ Binomial(n, p))
f(k;n, p) =

(
n

k+np

)
pk+np(1−p)n−(k+np) for k ∈ {−np, 1−np, 2−np, . . . , n−1−np, n−np}

and M(t) = (1− p)ne−npt
(
−etp+p−1

p−1

)n
3. Laplace distribution for µ = 0 and b = 1

f(x;µ, b) = 1
2b exp

(
− |x−µ|b

)
and M(t) = exp(µt)/(1− b2t2) for |t| < 1/b

Your solution must contain printed plots (even if your solutions are otherwise hand-written)
and the values of the second and fourth moment and the kurtosis. You can use computers to
evaluate the second and fourth moment and you do not need to report, e.g. the fourth derivative
of the moment-generating function (only the value of it when evaluated at zero). You must
return the final outcomes, that is, the plots and the values of the moments, not only scripts that
would plot the plots or evaluate the moments.

Your solution is acceptable if you solve it for two out of the three distributions. You can gain
an extra point if you return solutions for all three distributions.

Problem 5 (Whitening). Most textbooks (and Wikipedia) explain the whitening process as
follows: Given data matrix A (where rows are observations and columns variables), compute
the correlation matrix C = ATA. Then, compute the eigendecomposition of C, C = Q∆QT ,
where Q is an orthogonal matrix and ∆ is diagonal matrix with non-negative entries. To whiten
A, we multiply A from right with Q∆−1/2, where (∆−1/2)ii = 1/

√
(∆)ii if (∆)ii 6= 0 and

(∆−1/2)ii = 0 otherwise.
In the lectures it was claimed that if UΣV T is the SVD of A, then the whitened A is U .

Prove that these two processes yield the same solution, that is

U = AQ∆−1/2 . (5.1)
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Hint: eigendecomposition is unique, that is, if C = Q∆QT for some orthogonal Q and
diagonal ∆ with nonnegative entries, then Q∆QT is the eigendecomposition of C. Use the SVD
of A to express C and find a definition of Q and ∆ in terms of SVD of A.

Problem 6 (− log cosh). In the MLE ICA, logarithms of super-Gaussian distribution’s
probability density functions are estimated with

log p(x) = α− 2 log cosh(x) . (6.1)

The gradient algorithm for MLE uses function g(x), defined as the first derivative of log p(x),
denoted (log p(x))′. Show that

(log p(x))′ = −2 tanh(x) . (6.2)
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