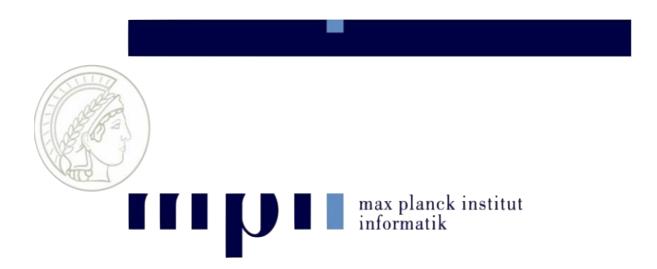
Chapter 1 SVD, PCA & Preprocessing

Part 1: Linear algebra and SVD



Contents

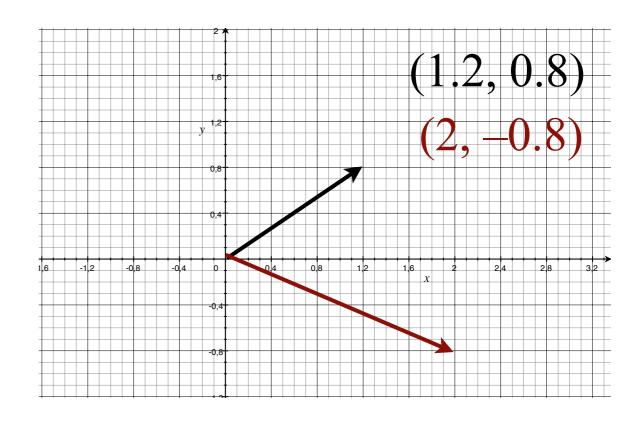
- Linear algebra crash course
- The singular value decomposition
- Normalization
- Selecting the rank
- The principal component analysis

Linear Algebra Crash Course

Matrices and vectors

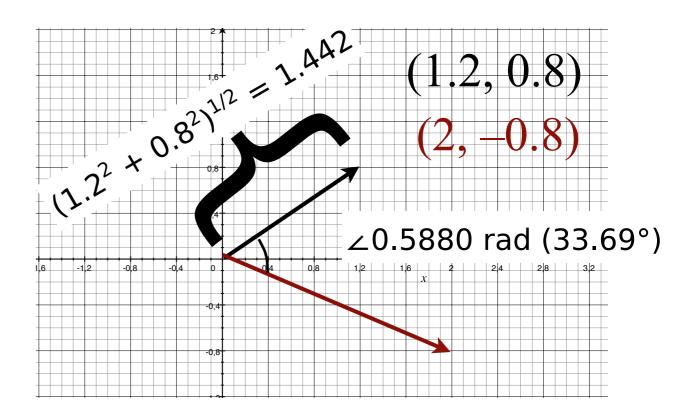
• A **vector** is

- a 1D array of numbers
- a geometric entity with magnitude and direction
- a matrix with exactly one row or column



Norms and angles

- The magnitude is measure by a (vector) norm
 - The Euclidean norm $\|\boldsymbol{x}\| = \|\boldsymbol{x}\|_2 = \left(\sum_{i=1}^n x^2\right)^{1/2}$
 - General L_p norm $(1 \le p \le \infty)$ $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |\mathbf{x}|^p\right)^{1/p}$
- The direction is measured by the **angle**



Basic vector operations

- The **transpose** of **x**, \mathbf{x}^{T} , transposes a row vector into a column vector and vice versa
- A **dot product** of two vectors of the same dimension is $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$
 - A.k.a. scalar product or inner product
 - Same as $\langle \mathbf{x}, \mathbf{y} \rangle$, $\mathbf{a}^T \mathbf{b}$ (for column vectors), or $\mathbf{a}\mathbf{b}^T$ (for row vectors)

Orthogonality

- Orthogonality is a generalization of perpendicularity
 - **x** and **y** are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$
 - in Euclidean space: $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$
 - θ is the angle between x and y

Matrix algebra

- Matrices in $\mathbb{R}^{n \times n}$ form a ring
 - Addition, subtraction, and multiplication
 - But usually no division
 - Multiplication is not commutative
 - **AB** ≠ **BA** in general

Matrix multiplication

 The product of two matrices, A and B, is defined element-wise as

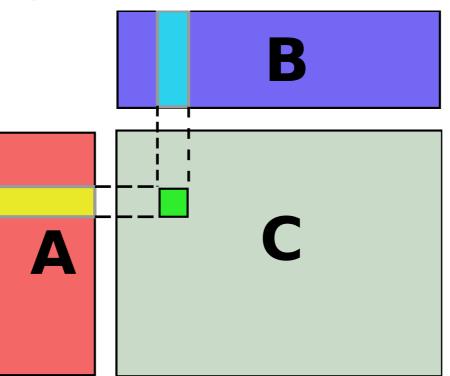
$$(\boldsymbol{AB})_{ij} = \sum_{\ell=1}^{k} a_{i\ell} b_{\ell j}$$

- The number of columns in **A** and number of rows in **B** must agree
 - inner dimension

Intuition for Matrix Multiplication

• Element $(\mathbf{AB})_{ij}$ is the inner product of row *i* of

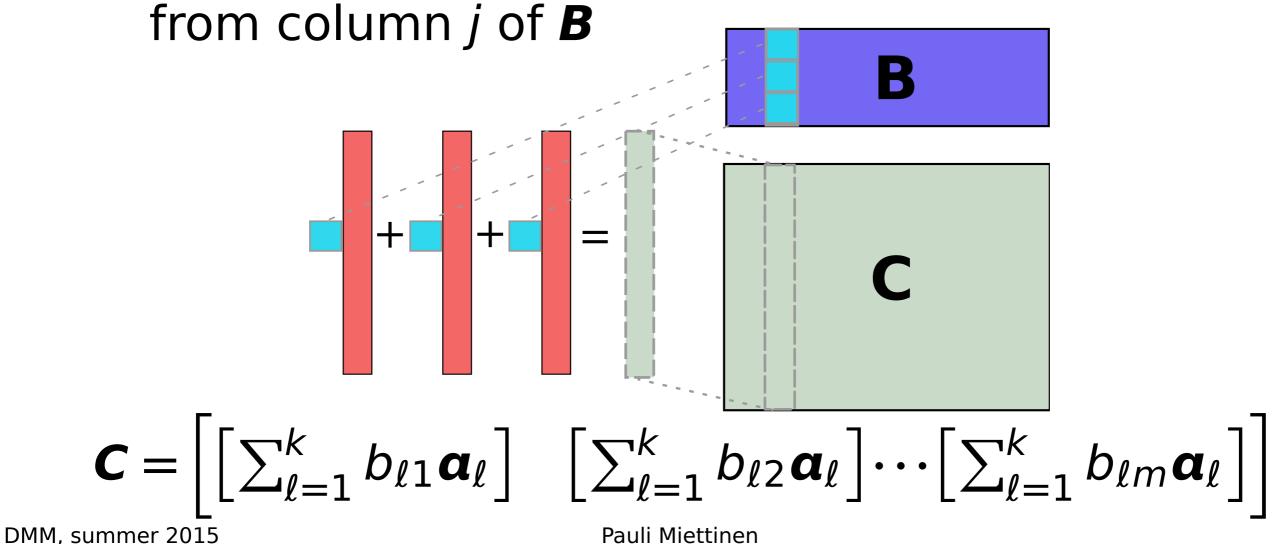
A and column *j* of **B**



 $\boldsymbol{C}_{ij} = \sum_{\ell=1}^{k} \alpha_{i\ell} b_{\ell j}$

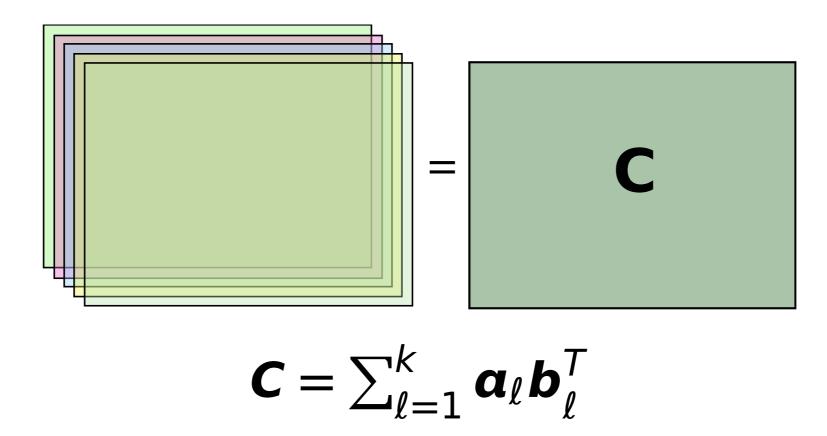
Intuition for Matrix Multiplication

 Column *j* of **AB** is the linear combination of columns of **A** with the coefficients coming



Intuition for Matrix Multiplication

Matrix **AB** is a sum of k matrices **a**_l**b**_l^T
 obtained by multiplying the *l*-th column of **A** with the *l*-th row of **B**



Matrix decompositions

 A decomposition of matrix A expresses it as a product of two (or more) factor matrices

 $\cdot \mathbf{A} = \mathbf{B}\mathbf{C}$

- Every matrix has decomposition $\mathbf{A} = \mathbf{AI}$ (or $\mathbf{A} = \mathbf{IA}$ if n < m)
- The size of the decomposition is the inner dimension of the product

Matrices as linear maps

• Matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ is a **linear mapping** from \mathbb{R}^m to \mathbb{R}^n

• A(x) = Ax

- If $\mathbf{A} \in \mathbb{R}^{n \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times m}$, then \mathbf{AB} is a mapping from \mathbb{R}^m to \mathbb{R}^n
- The transpose \mathbf{A}^T is a mapping from \mathbb{R}^n to \mathbb{R}^m
 - $(\mathbf{A}^{T})_{ij} = \mathbf{A}_{ji}$
 - $(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$

Matrix inverse

- Square matrix A is invertible if there is a matrix
 B s.t. AB = BA = I
 - **B** is the inverse of **A**, denoted **A**⁻¹
 - Usually the transpose is **not** the inverse
- Non-square matrices don't have general inverses
 - Can have left or right inverse:

AR = **I** or **LA** = **I**

Linear independency

- Vector *u* is linearly dependent on a set of vectors *V* = {*v_i*} if *u* is a linear combination of *v_i*
 - $\boldsymbol{u} = \sum_i a_i \boldsymbol{v}_i$ for some a_i
 - If *u* is not linearly dependent, it is linearly independent
- Set V of vectors is linearly independent if all
 v_i are linearly independent of V \ {v_i}

Matrix ranks

- The column rank of a matrix A is the number of linearly independent columns of A
- The row rank of A is the number of linearly independent rows of A
- The Schein rank of A is the least integer k such that A can be expressed as a sum of k rank-1 matrices
 - Rank-1 matrix is an outer product of two vectors

Orthogonal matrices

- Set of vectors $\{v_i\}$ is **orthogonal** if all v_i are mutually orthogonal, i.e. $\langle v_i, v_j \rangle = 0$ for all $i \neq j$
 - If $||\mathbf{v}_i||_2 = 1$ for all \mathbf{v}_i , the set is **orthonormal**
- Square matrix A is orthogonal if its columns form a set of orthonormal vectors
 - Non-square matrices can be row- or columnorthogonal
- If **A** is orthogonal, then $\mathbf{A}^{-1} = \mathbf{A}^{T}$

Properties of orthogonal matrices

- The inverse of orthogonal matrices is easy to compute
- Orthogonal matrices perform a rotation
 - Only the angle of the vector is changed, the length stays the same

Matrix norms

- Matrix norms measure the magnitude of the matrix
 - the magnitude of the values or the image
- Operator norms:

 $||\mathbf{A}||_{p} = \max\{||\mathbf{M}\mathbf{x}||_{p} : ||\mathbf{x}||_{p} = 1\} \text{ for } p \ge 1$

• Frobenius norm:

$$\|\mathbf{A}\|_{F} = \left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}^{2}\right)^{1/2}$$

Singular Value Decomposition

Skillicorn Chapter 3; Golub & Van Loan Chapters 2.4–2.6, Leskovec et al. Chapter 11.3

Pauli Miettinen

"The SVD is the Swiss Army knife of matrix decompositions"

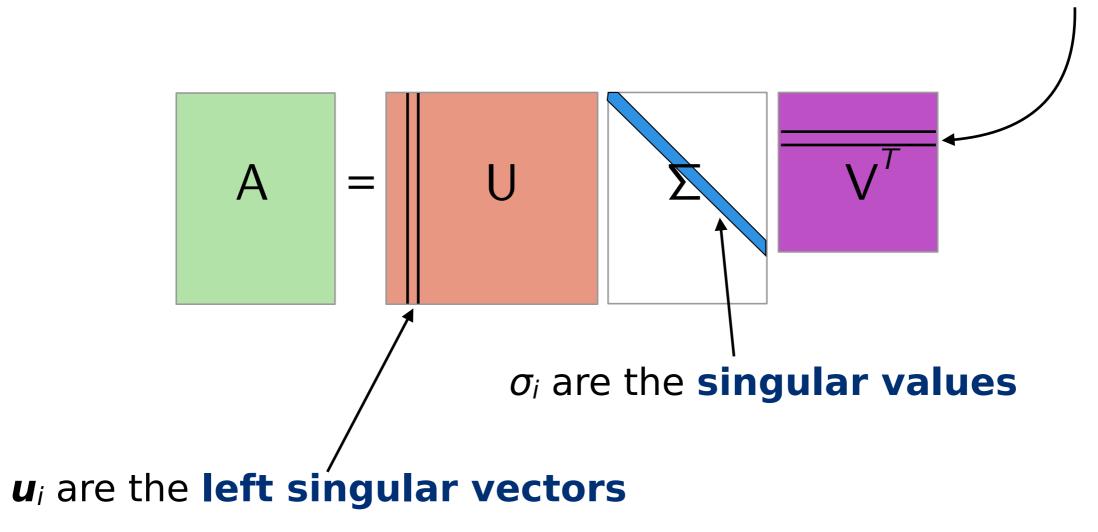
– Diane O'Leary, 2006

The definition

- **Theorem**. For every $\mathbf{A} \in \mathbb{R}^{n \times m}$ there exists an *n*-by-*n* orthogonal matrix \mathbf{U} and an *m*-by-*m* orthogonal matrix \mathbf{V} such that $\mathbf{U}^T \mathbf{A} \mathbf{V}$ is an *n*-by-*m* diagonal matrix $\boldsymbol{\Sigma}$ that has values $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_{\min\{n,m\}} \geq 0$ in its diagonal
 - I.e. every **A** has decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$
 - The singular value decomposition of A

In picture

v_i are the **right singular vectors**

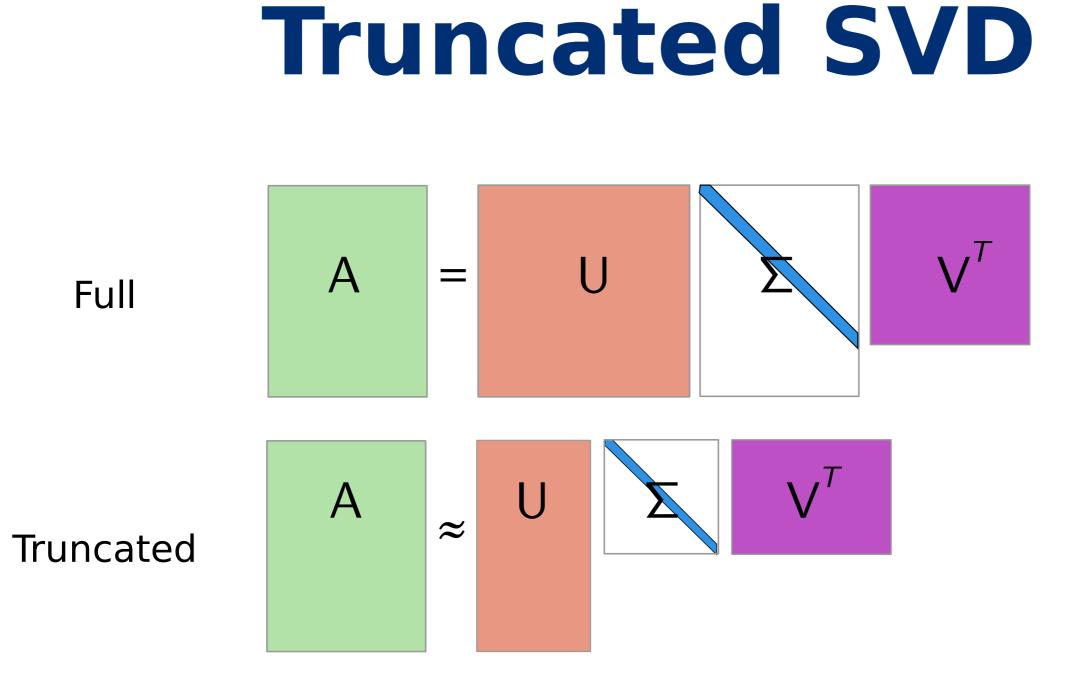


Some useful equations

- $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T} = \sum_{i} \sigma_{i}\mathbf{u}_{i}\mathbf{v}_{i}^{T}$
 - Expresses A as a sum of rank-1 matrices
- $\mathbf{A}^{-1} = (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T)^{-1} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$ (if \mathbf{A} is invertible)
- $\mathbf{A}^T \mathbf{A} \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i$ (for any \mathbf{A})
- $\mathbf{A}\mathbf{A}^T \mathbf{u}_i = \sigma_i^2 \mathbf{u}_i$ (for any \mathbf{A})

Truncated SVD

- The rank of the matrix is the number of its non-zero singular values (write $\mathbf{A} = \sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$)
- The truncated SVD takes the first k columns
 of U and V and the main k-by-k submatrix of Σ
 - $\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$
 - U_k and V_k are column-orthogonal



Why is SVD important?

- It gives us the dimensions of the fundamental subspaces
- It lets us compute various norms
- It tells about sensitivity of linear systems
- It gives us optimal solutions to least-squares linear systems
- It gives us the least-error rank-k decomposition
- Every matrix has one

Fundamental theorem of linear algebra

- Theorem. Every *n*-by-*m* matrix *A* induces four fundamental subspaces
 - The range of dimension rank(A) = r
 - The set of all linear combinations of columns of ${\boldsymbol A}$
 - The kernel of dimension m r
 - The set of all vectors x for which Ax = 0
 - The **coimage** of dimension *r*
 - The cokernel of dimension n r

Fundamental subspaces

- The bases for the fundamental subspaces are:
 - Range: the first r columns of U
 - Kernel: the last (m r) columns of **V**
 - Coimage: the first r columns of V
 - Cokernel: the last (n r) columns of **U**

SVD and norms

• Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ be the SVD of \mathbf{A} .

•
$$\|\mathbf{A}\|_{F}^{2} = \sum_{i=1}^{\min\{n,m\}} \sigma_{i}^{2}$$

- $\|{\bf A}\|_2 = \sigma_1$
- Therefore $\|\mathbf{A}\|_{2} \leq \|\mathbf{A}\|_{F} \leq \sqrt{\min\{n, m\}} \|\mathbf{A}\|_{2}$
- For truncated SVD, $\|\mathbf{A}_k\|_F^2 = \sum_{i=1}^k \sigma_i^2$

Sensitivity of linear systems

- The solution for system Ax = b is $x = A^{-1}b$
 - Requires that A is invertible

• Hence
$$\mathbf{x} = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T)^{-1}\mathbf{b} = \sum_{i=1}^n \frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \mathbf{v}_i$$

- Small changes in A or b yield large changes
 in x if σ_n is small
- Can we characterize this sensitivity?

Condition number

- The condition number $\kappa_p(\mathbf{A})$ of a square matrix \mathbf{A} is $||\mathbf{A}||_p ||\mathbf{A}^{-1}||_p$
 - Particularly $\kappa_2(\mathbf{A}) = \sigma_1(\mathbf{A})/\sigma_n(\mathbf{A})$
 - $\kappa_2(\mathbf{A}) = \infty$ for singular \mathbf{A}
- If *κ* is large, the matrix is **ill-conditioned**
 - The solution is sensible for small perturbations

Least-squares linear systems

- **Problem.** Given $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$, find $\mathbf{x} \in \mathbb{R}^m$ minimizing $||\mathbf{A}\mathbf{x} \mathbf{b}||_2$.
- If **A** is invertible, $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ is an exact solution
- For non-invertible A we have to find other solution

The Moore–Penrose pseudo-inverse

- *n*-by-*m* matrix *B* is the Moore–Penrose pseudoinverse of *n*-by-*m* matrix *A* if
 - **ABA** = **A** (but possibly **AB** \neq **I**)
 - $\cdot BAB = B$
 - $(\mathbf{AB})^T = \mathbf{AB} (\mathbf{AB} \text{ is symmetric})$
 - $(\mathbf{B}\mathbf{A})^{\mathsf{T}} = \mathbf{B}\mathbf{A}$
- Pseudo-inverse of A is denoted by A⁺

Pseudo-inverse and SVD

- If $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ is the SVD of \mathbf{A} , then $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$
 - Σ^{-1} replaces non-zero σ_i 's with $1/\sigma_i$ and transposes the result
 - N.B. not a real inverse
- **Theorem**. Setting $\mathbf{x} = \mathbf{A}^+ \mathbf{y}$ gives the optimal solution to $||\mathbf{A}\mathbf{x} \mathbf{y}||$

The Eckart-Young theorem

- Theorem. Let A_k = U_kΣ_kV_k^T be the rank-k truncated SVD of A. Then A_k is the closest rank-k matrix of A in the Frobenius sense, that is,
 - $||\mathbf{A} \mathbf{A}_k||_F \leq ||\mathbf{A} \mathbf{B}||_F$ for all rank-k matrices **B**
 - Holds for any unitarily invariant norm

That's all for today

- Next week: normalization and selecting the rank
 - Lecture starts at 12:00 sharp
 - Will end earlier as well
- But SVD will return...