
Chapter 1 
SVD, PCA & Pre-
processing

Part 1: Linear algebra and SVD
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Contents

• Linear algebra crash course 

• The singular value decomposition 

• Normalization 

• Selecting the rank 

• The principal component analysis
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Linear Algebra 
Crash Course
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Matrices and vectors

• A vector is  

• a 1D array of numbers 

• a geometric entity with 
magnitude and direction 

• a matrix with exactly one 
row or column
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Norms and angles
• The magnitude is measure 

by a (vector) norm 

• The Euclidean norm 

• General Lp norm  
(1 ≤ p ≤ ∞)  

• The direction is measured 
by the angle
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Basic vector operations
• The transpose of x, xT, transposes a row 

vector into a column vector and vice versa 

• A dot product of two vectors of the same 
dimension is 

•  A.k.a. scalar product or inner product 

• Same as ⟨x,y⟩, aTb (for column vectors), or 
abT (for row vectors)
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Orthogonality

• Orthogonality is a generalization of 
perpendicularity  

• x and y are orthogonal if x · y = 0 

• in Euclidean space: x · y = ||x|| ||y|| cos θ 

• θ is the angle between x and y 
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Matrix algebra

• Matrices in ℝn×n form a ring 

• Addition, subtraction, and multiplication 

• But usually no division 

• Multiplication is not commutative 

• AB ≠ BA in general
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Matrix multiplication
• The product of two matrices, A and B, is 

defined element-wise as  
 

• The number of columns in A and number of 
rows in B must agree 

• inner dimension
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Intuition for Matrix 
Multiplication

• Element (AB)ĳ is the inner product of row i of 
A and column j of B
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Intuition for Matrix 
Multiplication

• Column j of AB is the linear combination of 
columns of A with the coefficients coming 
from column j of B
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Intuition for Matrix 
Multiplication

• Matrix AB is a sum of k matrices albl
T 

obtained by multiplying the l-th column of A 
with the l-th row of B
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Matrix decompositions
• A decomposition of matrix A expresses it as 

a product of two (or more) factor matrices 

• A = BC  

• Every matrix has decomposition A = AI (or  
A = IA if n < m) 

• The size of the decomposition is the inner 
dimension of the product
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Matrices as linear maps
• Matrix A ∈ ℝn×m is a linear mapping from ℝm to ℝn 

• A(x) = Ax  

• If A ∈ ℝn×k and B ∈ ℝk×m, then AB is a mapping 
from ℝm to ℝn  

• The transpose AT is a mapping from ℝn to ℝm  

• (AT)ĳ = Aji  

• (AB)T = BTAT 
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Matrix inverse
• Square matrix A is invertible if there is a matrix 

B s.t. AB = BA = I  

• B is the inverse of A, denoted A–1  

• Usually the transpose is not the inverse 

• Non-square matrices don’t have general inverses 

• Can have left or right inverse:  
AR = I or LA = I 
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Linear independency
• Vector u is linearly dependent on a set of 

vectors V = {vi} if u is a linear combination of vi  

• u = ∑i aivi for some ai  

• If u is not linearly dependent, it is linearly 
independent  

• Set V of vectors is linearly independent if all 
vi are linearly independent of V \ {vi}
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Matrix ranks
• The column rank of a matrix A is the number of 

linearly independent columns of A  

• The row rank of A is the number of linearly 
independent rows of A  

• The Schein rank of A is the least integer k such 
that A can be expressed as a sum of k rank-1 
matrices 

• Rank-1 matrix is an outer product of two vectors
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Orthogonal matrices
• Set of vectors {vi} is orthogonal if all vi are mutually 

orthogonal, i.e. ⟨vi, vj⟩ = 0 for all i ≠ j  

• If ||vi||2 = 1 for all vi, the set is orthonormal 

• Square matrix A is orthogonal if its columns form a set 
of orthonormal vectors 

• Non-square matrices can be row- or column-
orthogonal 

• If A is orthogonal, then A–1 = AT  
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Properties of orthogonal 
matrices

• The inverse of orthogonal matrices is easy to 
compute 

• Orthogonal matrices perform a rotation 

• Only the angle of the vector is changed, the 
length stays the same
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Matrix norms
• Matrix norms measure the magnitude of the 

matrix 

• the magnitude of the values or the image  

• Operator norms:  
||A||p = max{||Mx||p : ||x||p = 1} for p ≥ 1 

• Frobenius norm: 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Singular Value 
Decomposition
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Skillicorn Chapter 3; Golub & Van Loan Chapters 2.4–2.6, Leskovec et al. Chapter 11.3



– Diane O’Leary, 2006

“The SVD is the Swiss Army knife of 
matrix decompositions”
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The definition
• Theorem. For every A ∈ ℝn×m there exists an 

n-by-n orthogonal matrix U and an m-by-m 
orthogonal matrix V such that UTAV is an  
n-by-m diagonal matrix Σ that has values  
σ1 ≥ σ2 ≥ … ≥ σmin{n,m} ≥ 0 in its diagonal 

• I.e. every A has decomposition A = UΣVT  

• The singular value decomposition of A 
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In picture

24

=A U V
T
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vi are the right singular vectors

σi are the singular values 

ui are the left singular vectors



DMM, summer 2015 Pauli Miettinen

Some useful equations

• A = UΣVT = ∑i σiuivi
T  

• Expresses A as a sum of rank-1 matrices 

• A–1 = (UΣVT)–1 = VΣ–1UT (if A is invertible) 

• ATAvi = σi
2vi (for any A) 

• AATui = σi
2ui (for any A)
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Truncated SVD
• The rank of the matrix is the number of its 

non-zero singular values (write A = ∑i σiuivi
T) 

• The truncated SVD takes the first k columns 
of U and V and the main k-by-k submatrix of Σ  

• Ak = UkΣkVk
T  

• Uk and Vk are column-orthogonal
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Truncated SVD
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Why is SVD important?
• It gives us the dimensions of the fundamental 

subspaces 

• It lets us compute various norms  

• It tells about sensitivity of linear systems  

• It gives us optimal solutions to least-squares linear 
systems  

• It gives us the least-error rank-k decomposition  

• Every matrix has one 
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Fundamental theorem of 
linear algebra

• Theorem. Every n-by-m matrix A induces four 
fundamental subspaces 

• The range of dimension rank(A) = r  

• The set of all linear combinations of columns of A 

• The kernel of dimension m – r 

• The set of all vectors x for which Ax = 0   

• The coimage of dimension r  

• The cokernel of dimension n – r 
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Fundamental subspaces

• The bases for the fundamental subspaces 
are: 

• Range: the first r columns of U  

• Kernel: the last (m – r) columns of V  

• Coimage: the first r columns of V  

• Cokernel: the last (n – r) columns of U 
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SVD and norms

• Let A = UΣVT be the SVD of A. 

•   

•   

• Therefore  

• For truncated SVD, 
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Sensitivity of linear 
systems

• The solution for system Ax = b is x = A–1b  

• Requires that A is invertible 

• Hence 

• Small changes in A or b yield large changes 
in x if σn is small 

• Can we characterize this sensitivity?
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Condition number
• The condition number κp(A) of a square matrix 

A is ||A||p ||A–1||p  

• Particularly κ2(A) = σ1(A)/σn(A) 

• κ2(A) = ∞ for singular A   

• If κ is large, the matrix is ill-conditioned  

• The solution is sensible for small perturbations

33



DMM, summer 2015 Pauli Miettinen

Least-squares linear 
systems

• Problem. Given A ∈ ℝn×m and b ∈ℝn, find  
x ∈ ℝm minimizing ||Ax – b||2. 

• If A is invertible, x = A–1b is an exact solution 

• For non-invertible A we have to find other 
solution
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The Moore–Penrose 
pseudo-inverse

• n-by-m matrix B is the Moore–Penrose pseudo-
inverse of n-by-m matrix A if 

• ABA = A (but possibly AB ≠ I) 

• BAB = B  

• (AB)T = AB (AB is symmetric) 

• (BA)T = BA  

• Pseudo-inverse of A is denoted by A+ 
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Pseudo-inverse and SVD
• If A = UΣVT is the SVD of A, then  

A+ = VΣ–1UT  

• Σ–1 replaces non-zero σi’s with 1/σi and 
transposes the result 

• N.B. not a real inverse 

• Theorem. Setting x = A+y gives the optimal 
solution to ||Ax – y||

36



DMM, summer 2015 Pauli Miettinen

The Eckart–Young theorem

• Theorem. Let Ak = UkΣkVk
T be the rank-k 

truncated SVD of A. Then Ak is the closest 
rank-k matrix of A in the Frobenius sense, that 
is, 
||A – Ak||F ≤ ||A – B||F for all rank-k matrices B 

• Holds for any unitarily invariant norm
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That’s all for today

• Next week: normalization and selecting the 
rank 

• Lecture starts at 12:00 sharp 

• Will end earlier as well 

• But SVD will return…

38


