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Linear Algebra
Crash Course
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Matrices and vectors

* A vector is

* a 1D array of numbers

* a geometric entity with

magnitude and direction
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- a matrix with exactly one

row or column
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Norms and angles

- The magnitude is measure

by a (vector) norm

* The Euclidean norm b (19 0.8)
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 The direction is measured

by the angle
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Basic vector operations

- The transpose of x, x', transposes a row

vector into a column vector and vice versa

- A dot product of two vectors of the same
dimensionis x-y =3>" Xy,

* A.k.a. scalar product or inner product

- Same as (x,y), a’b (for column vectors), or

ab’ (for row vectors)
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Orthogonality

* Orthogonality is a generalization of
perpendicularity

* X and y are orthogonal if x -y =0
* in Euclidean space: x -y = [|x]|| ||y]|| cos &

* 0 Is the angle between x and y
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Matrix algebra

» Matrices in R"*"” form a ring
- Addition, subtraction, and multiplication
- But usually no division
- Multiplication is not commutative

- AB = BA In general
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Matrix multiplication

* The product of two matrices, A and B, Is
defined element-wise as

k
(AB); = > apby;
=1

* The number of columns in A and number of

rows in B must agree

* Inher dimension
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Intuition for Matrix
Multiplication

* Element (AB); is the inner product of row / of

A and columnj of B

K
Cij=2,,_,Qubyj
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Intuition for Matrix
Multiplication

* Columnj of AB is the linear combination of

columns of A with the coefficients coming

from column j of B _
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Intuition for Matrix
Multiplication

+ Matrix AB is a sum of kK matrices ab,”
obtained by multiplying the /-th column of A
with the /-th row of B

]
O

C = Zle azbz-
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Matrix decompositions

- A decomposition of matrix A expresses it as

a product of two (or more) factor matrices
- A =BC

- Every matrix has decomposition A = Al (or
A=IAIfn<m)

» The size of the decomposition is the inner
dimension of the product
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Matrices as linear maps

- Matrix A € R"*" is a linear mapping from R" to R"
- A(Xx) = Ax

- IfA € R"”“and B € R, then AB is a mapping
from R to R"

+ The transpose A’ is a mapping from R” to R”
- (A)j = A
- (AB) =B'A’
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Matrix inverse

* Square matrix A is invertible if there is a matrix
B s.t. AB =BA =1

+ B is the inverse of A, denoted A™
* Usually the transpose is not the inverse
- Non-square matrices don’'t have general inverses

- Can have left or right inverse:
AR =1orLA =1
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Linear independency

* Vector u is linearly dependent on a set of

vectors V = {v;} if uis a linear combination of v;
* U = >;ajv;for some a;

* If u is not linearly dependent, it is linearly

independent

- Set V of vectors is linearly independent if all

v; are linearly independent of V \ {v;}
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Matrix ranks

 The column rank of a matrix A is the number of

linearly independent columns of A

* The row rank of A Is the number of linearly

iIndependent rows of A

- The Schein rank of A is the least integer k such

that A can be expressed as a sum of k rank-1
matrices

- Rank-1 matrix is an outer product of two vectors
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Orthogonal matrices

- Set of vectors {v;} is orthogonal if all v; are mutually

orthogonal, i.e. (v;, v;) = 0 forall i =
- If ||vi|]|[> = 1 for all v;, the set is orthonormal

- Square matrix A is orthogonal if its columns form a set
of orthonormal vectors

* Non-square matrices can be row- or column-
orthogonal

- |If A is orthogonal, then A=A
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Properties of orthogonal
matrices

- The inverse of orthogonal matrices is easy to
compute

- Orthogonal matrices perform a rotation

- Only the angle of the vector is changed, the
length stays the same
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Matrix norms

- Matrix norms measure the magnitude of the

matrix

- the magnitude of the values or the image

* Operator norms:
[|A]lp = max{[|Mx]|[p : [|x[|[p =1} forp =1

 Frobenius norm:
_ n m 2
HA”F — (Zi=1 Zj=1 a[j
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Singular Value
Decomposition

Skillicorn Chapter 3; Golub & Van Loan Chapters 2.4-2.6, Leskovec et al. Chapter 11.3
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“The SVD Is the Swiss Army knife of
matrix decompositions”

— Diane O’Leary, 2006



The definition

* Theorem. For every A € R™™ there exists an
n-by-n orthogonal matrix U and an m-by-m
orthogonal matrix V such that U'AV is an
n-by-m diagonal matrix £ that has values

01 =02 = ... = Omin{nm} = 0 In its diagonal
* |.e. every A has decomposition A = UZV’

* The singular value decomposition of A
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In picture

v; are the right singular vectors

|
o; are the singular values

u; are the left singular vectors
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Some useful equations

c A=UZV' =53, ouyv/
* Expresses A as a sum of rank-1 matrices
+ A = (UZV')t = VEIU' (if A is invertible)
- A’Av; = g/°v; (for any A)

+ AA'u; = o/u; (for any A)
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Truncated SVD

 The rank of the matrix is the number of its

non-zero singular values (write A = 5; ouv;’)

- The truncated SVD takes the first kK columns
of U and V and the main k-by-k submatrix of £

- A, = UZ V]

- Ut and Vi are column-orthogonal
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Full

Truncated

Truncated SVD

.
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Why is SVD important?

* It gives us the dimensions of the fundamental

subspaces
* It lets us compute various norms
- It tells about sensitivity of linear systems

* It gives us optimal solutions to least-squares linear

systems
* It gives us the least-error rank-k decomposition

* Every matrix has one
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Fundamental theorem of
linear algebra

* Theorem. Every n-by-m matrix A induces four
fundamental subspaces

* The range of dimension rank(A) =r

* The set of all linear combinations of columns of A
* The kernel of dimension m -r

* The set of all vectors x for which Ax =0
 The coimage of dimension r

 The cokernel of dimension n—-r
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Fundamental subspaces

- The bases for the fundamental subspaces

are:
* Range: the first r columns of U

* Kernel: the last (m - r) columns of V
* Coimage: the first r columns of V

* Cokernel: the last (n —r) columns of U
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SVD and norms

- Let A = ULV’ be the SVD of A.

- A7 =227 o

(=1
- ||A]l> =01

» Therefore ||A|l> <

|

Al < vVmin{n, m} ||A]l,
kK

» For truncated SVD, HAkHﬁ =2107
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Sensitivity of linear
systems
* The solution for system Ax = bisx = A'b
* Requires that A is invertible
- Hence x = (UEVT) "b =" 1o

* Small changes in A or b yield large changes

N X If o, IS small

- Can we characterize this sensitivity?
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Condition number

* The condition number k,(A) of a square matrix
Ais ||A]lp [|A7],

 Particularly k2(A) = 01(A)/on(A)
* K2(A) = oo for singular A
- If K Is large, the matrix is ill-conditioned

* The solution is sensible for small perturbations
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Least-squares linear
systems

* Problem. Given A € R"™ and b €R", find

x € R™ minimizing ||Ax - b||>.
* If A is invertible, x = A™lb is an exact solution

e For non-invertible A we have to find other

solution
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The Moore-Penrose
pseudo-inverse

* n-by-m matrix B is the Moore-Penrose pseudo-

inverse of n-by-m matrix A if
- ABA = A (but possibly AB = I)
- BAB =B
- (AB)" = AB (AB is symmetric)
- (BA)' = BA
+ Pseudo-inverse of A is denoted by A"
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Pseudo-inverse and SVD

- If A = UXV' is the SVD of A, then
At =vEZ iU’

- =1 replaces non-zero o;'s with 1/0; and
transposes the result

 N.B. not a real inverse

+ Theorem. Setting x = A"y gives the optimal

solution to ||Ax - y|
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The Eckart-Young theorem

* Theorem. Let Ax = U Z V" be the rank-k
truncated SVD of A. Then Ak is the closest
rank-k matrix of A in the Frobenius sense, that
IS,
||A — A«||F = ||A — B||F for all rank-k matrices B

» Holds for any unitarily invariant norm
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That’s all for today

- Next week: normalization and selecting the
rank

- Lecture starts at 12:00 sharp
* Will end earlier as well

 But SVD will return...
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