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Interpreting SVD

Skillicorn chapter 3.2
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Factor interpretation

» Let A be objects-by-attributes and UZV' its
SVD

* |If two columns have similar values in a row
of V', these attributes are similar (have
strong correlation)

* If two rows have similar values in a column

of U, these objects are similar

DMM, summer 2015 Pauli Miettinen



Example
- Data: people’s ratings on
[ '

different wines
re
- Scatterplot of first two LSV .
* SVD doesn’t know what oo " e, T
the data is ot e
» Conclusion: winelovers like | :

U1

red and white alike, others

Figure 3.2. The first two factors for a dataset ranking wines.

are more biased
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Geometric interpretation

- LetM = ULV’

M
- Any linear mapping y=Mx “ f
can be expressed as a
A

rotation, stretching, and
rotation operation

U

\J

+ y1 = V'x is the first .
rotation e

* Y2 = &Yy Is the stretching

>
V*
>

M=U-%-V~
* y = Uy is the final rotation

DMM, summer 2015 Pauli Miettinen



Direction of largest
variances

- The singular vectors give the
directions of the largest variances

 First singular vector points to
the direction of the largest

variance

- Second to the second-largest

- Spans a hyperplane with the
first

- The projection distance to these

hyperplanes is minimal over all
hyperplanes (Eckart-Young)
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Component interpretation

+ We can write A = UZV' = 5, ouwv’ = 5, A,

- This explains the data as a sum of rank-1
layers

- First layer explains the most, the second
updates that, the third updates that, ...

- Each individual layer don’t have to be very
intuitive
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Example
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Applications of SVD

Skillicorn chapter 3.5; Leskovec et al. chapter 11.3
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Removing noise

- SVD is often used as a pre-processing step to

remove noise from the data

- The rank-k truncated SVD with proper k
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Removing dimensions

- SVD can be used to project the data to
smaller-dimensional subspace

- Original dimensions can have complex
correlations

* Subsequent analysis is faster

- Points seem close to each other in high-
dimensional space
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Karhunen-Loeve transform

 The Karhunen-Loeve transform (KLT) works as
follows:

+ Normalize A € R"*"™ to z-scores
. Compute the SVD UEV' = A
- Project A » AV, € R"*¥
- V, = top-k right singular vectors

- A.k.a. the principal component analysis (PCA)
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More on KLT

* The columns of Vi show
the main directions of
variance in columns

* The data is expressed in a
new coordinate system

- The average projection N
distance is minimized
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Figure 3.2. The first two factors for a dataset ranking wines.
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Visualization

2D or 3D KLT
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Latent Semantic Analysis
& Indexing

* Latent semantic analysis (LSA) is a latent topic model
* Documents-by-terms matrix A
* Typically normalized (e.q. tf/idf)
* Goal Is to find the “topics” doing SVD
* U associates documents to topics
* V associates topics to terms

* Queries can be answered by projecting the query vector q

-1 . .
toq’ = qVEX and returning rows of U that are similar to g’

DMM, summer 2015 Pauli Miettinen

15



And many more...

- Determining the rank, finding the least-
squares solution, recommending the movies,
ordering results of queries, ...
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Computing the SVD

Golub & Van Loan chapters 5.1, 5.4.8, and 8.6
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Very general idea

» SVD Is unique

* If U and V are orthogonal s.t. U'AV = £, then
UZV' is the SVD of A

* |dea: find orthogonal U and V s.t. U'AV is as desired

* lterative process: find orthogonal U,, U>, ... and
set U = U1U2U3---

» Still orthogonal
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First attempt

- Recall: U are the eigenvectors of AA' and o/ are

the associated eigenvalues

- |ldea: Compute the eigenvectors and values of AA'
and A'A to get the SVD of A

* Not the most optimal idea because it requires
AA and A'A

* We need a way to build orthogonal matrices that
make matrices more diagonal
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Rotations and reflections

2D rotation 2D reflection
cos(8) sin(6) cos(B8) sin(6)
—sin(@) cos(6) sin(8) —cos(6)
Rotates counterclockwise Reflects across the line spanned
through an angle 6 by (cos(6/2), sin(6/2))"
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o-|

cos(m/4) sin(m/4)
—sin(n/4) cos(mn/4)

)

Example

x = (V2, Vv2)"

/ -
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This coordinate is now 0!

21



Householder reflections

A Householder reflection is n-by-n matrix
2

viv

P=I—Bvv' where B=

* If we set v = x - ||x]||.e:, then Px = ||x]||.e:1
e, =(1,0,0,..0)

» Note: PA = A - (Bv)(v'A) where B = 2/(v'v)
* We never have to compute matrix P
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http://commons.wikimedia.org/wiki/File:Householdertransformation.svg

Almost there:
bidiagonalization
* Given n-by-m (n = m) A, we can

bidiagonalize it with Householder
transformations

* Fix A[l:n,1], A[1,2:m], A[2:n,2], A[2,3:m],
A[3:n,3], A[3,4:m]...

- The results has non-zeros in main diagonal
and the one above it
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Givens rotations

- Householder is too crude to give identity

* Givens rotations are rank-2 corrections to

the identity of form

(1 . 0
6 -: coé(e)
G(i,k,8)=] : 5
O ..+ —sin(6)
0 o

/
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Applying Givens

 Set 6 s.t.
cos(0) = —=L—_ and sin(Q) = ==k
O)= g ond sn@=125
* Now

cos(6) sin(6) T Xi\ (T
(—sin(e) COS(G)) (Xk) - (0)
* N.B. G(i, k, 6)'A only affects to the 2 rows
Alc(/, k),]

- Also, no inverse trig. operations are needed
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Givens i1n SVD

 We use Givens transformations to erase the
superdiagonal

» Consider principal 2-by-2 submatrices
Alk:k+1,k:k+1]

« Rotations can introduce unwanted non-
zeros to Alk+2,k] (or Alk,k+2])

* Fix them In the next sub-matrix

DMM, summer 2015 Pauli Miettinen

28



DMM, summer 2015

Pauli Miettinen

29



Putting it all together

1. Compute the bidiagonal matrix B from A
using Householder transformations

2. Apply the Givens rotations to B until it is
fully diagonal

3. Collect the required results
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Time complexity

4nm? - 4m3/3

4nm? + 8m?3

4n’m - 8nm?

14nm? + 8m?>
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Summary of computing
SVD

- Rotations and reflections allow us to selectively
zero elements of a matrix with orthogonal
transformations

» Used in many, many decompositions

- Fast and accurate results require careful
iImplementations

» Other techniques are faster for truncated SVD In
large, sparse matrices
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Summary of SVD

 Truly the workhorse of numerical linear algebra
- Many useful theoretical properties

* Rank-revealing, pseudo-inverses, scalar

norm computation, ...
- Reasonably easy to compute

- But it also has some major shortcomings in

data analysis... stay tuned!
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