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Interpreting SVD

2
Skillicorn chapter 3.2
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Factor interpretation
• Let A be objects-by-attributes and UΣVT its 

SVD 

• If two columns have similar values in a row 
of VT, these attributes are similar (have 
strong correlation) 

• If two rows have similar values in a column 
of U, these objects are similar

3
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Example
• Data: people’s ratings on 

different wines 

• Scatterplot of first two LSV 

• SVD doesn’t know what 
the data is 

• Conclusion: winelovers like 
red and white alike, others 
are more biased
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3.2. Interpreting an SVD 55
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,
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red

white

likes wine doesn’t like



DMM, summer 2015 Pauli Miettinen

Geometric interpretation
• Let M = UΣVT 

• Any linear mapping y=Mx 
can be expressed as a 
rotation, stretching, and 
rotation operation  

• y1 = VTx is the first 
rotation 

• y2 = Σy1 is the stretching 

• y = Uy2 is the final rotation

5
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Direction of largest 
variances

• The singular vectors give the 
directions of the largest variances 

• First singular vector points to 
the direction of the largest 
variance 

• Second to the second-largest 

• Spans a hyperplane with the 
first 

• The projection distance to these 
hyperplanes is minimal over all 
hyperplanes (Eckart–Young)

6
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Figure 8.1: Iris Data: Optimal Basis

U matrix is an orthogonal matrix, whose columns, the basis vectors, are orthonormal,
i.e., they are pairwise orthogonal and have unit length

uTi uj =

{
1 if i = j

0 if i ̸= j
(8.5)

Since U is orthogonal, this means that its inverse equals its transpose

U−1 = UT (8.6)

which implies that UTU = I, where I is the d × d identity matrix.
Multiplying (8.3) on both sides by UT yields the expression for computing the

coordinates of x in the new basis

UT x = UTUa

a = UT x (8.7)
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variance uTΣΣΣu. Since we know that u1, the dominant eigenvector of ΣΣΣ maximizes the
projected variance, we have

MSE(u1) = var(D)− uT1 ΣΣΣu1 = var(D)− uT1 λ1u1 = var(D)− λ1

Thus, the principal component u1 which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

X1
X2

X3

u1

Figure 8.2: Best 1D or Line Approximation

Example 8.3: Figure 8.2 shows the first principal component, i.e., the best one di-
mensional approximation, for the three dimensional Iris dataset shown in Figure 8.1a.
The covariance matrix for this dataset is given as

ΣΣΣ =

⎛

⎜⎝
0.681 −0.039 1.265
−0.039 0.187 −0.320
1.265 −0.320 3.092

⎞

⎟⎠

The largest eigenvalue is λ1 = 3.662, and the corresponding dominant eigenvector
is u1 = (−0.390, 0.089,−0.916)T . The unit vector u1 thus maximizes the projected
variance, which is given as J(u1) = α = λ1 = 3.662. Figure 8.2 plots the principal
component u1. It also shows the error vectors ϵi , as thin gray line segments.
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Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =

⎛

⎜⎝
−0.390
0.089
−0.916

⎞

⎟⎠ u2 =

⎛

⎜⎝
−0.639
−0.742
0.200

⎞

⎟⎠

The projection matrix is given as

P2 = U2U
T
2 =

⎛

⎜⎝
| |
u1 u2
| |

⎞

⎟⎠

(
— uT1 —
— uT2 —

)

= u1u
T
1 + u2u

T
2

=

⎛

⎜⎝
0.152 −0.035 0.357
−0.035 0.008 −0.082
0.357 −0.082 0.839

⎞

⎟⎠+

⎛

⎜⎝
0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04

⎞

⎟⎠

=

⎛

⎜⎝
0.560 0.439 0.229
0.439 0.558 −0.230
0.229 −0.230 0.879

⎞

⎟⎠
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Component interpretation
• We can write A = UΣVT = ∑i σiuivi

T = ∑i Ai  

• This explains the data as a sum of rank-1 
layers 

• First layer explains the most, the second 
updates that, the third updates that, … 

• Each individual layer don’t have to be very 
intuitive

7
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Example
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Applications of SVD

9
Skillicorn chapter 3.5; Leskovec et al. chapter 11.3
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Removing noise
• SVD is often used as a pre-processing step to 

remove noise from the data 

• The rank-k truncated SVD with proper k

10
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Removing dimensions
• SVD can be used to project the data to 

smaller-dimensional subspace 

• Original dimensions can have complex 
correlations 

• Subsequent analysis is faster 

• Points seem close to each other in high-
dimensional space

11

Curse of dimensionality
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Karhunen–Loève transform
• The Karhunen–Loève transform (KLT) works as 

follows: 

• Normalize A ∈ ℝn×m to z-scores 

• Compute the SVD UΣVT = A  

• Project A ↦ AVk ∈ ℝn×k  

• Vk = top-k right singular vectors 

• A.k.a. the principal component analysis (PCA)

12
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More on KLT

• The columns of Vk show 
the main directions of 
variance in columns 

• The data is expressed in a 
new coordinate system 

• The average projection 
distance is minimized

13
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Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =
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0.089
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⎟⎠ u2 =

⎛
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−0.639
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⎟⎠

The projection matrix is given as

P2 = U2U
T
2 =

⎛

⎜⎝
| |
u1 u2
| |

⎞

⎟⎠

(
— uT1 —
— uT2 —

)

= u1u
T
1 + u2u

T
2

=

⎛

⎜⎝
0.152 −0.035 0.357
−0.035 0.008 −0.082
0.357 −0.082 0.839
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⎟⎠+

⎛
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0.408 0.474 −0.128
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Visualization

14
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,
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Latent Semantic Analysis 
& Indexing

• Latent semantic analysis (LSA) is a latent topic model  

• Documents-by-terms matrix A  

• Typically normalized (e.g. tf/idf) 

• Goal is to find the “topics” doing SVD 

• U associates documents to topics 

• V associates topics to terms 

• Queries can be answered by projecting the query vector q 
to q’ = qVΣ–1 and returning rows of U that are similar to q’ 

15



DMM, summer 2015 Pauli Miettinen

And many more…

• Determining the rank, finding the least-
squares solution, recommending the movies, 
ordering results of queries, …

16
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Computing the SVD

17
Golub & Van Loan chapters 5.1, 5.4.8, and 8.6
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Very general idea
• SVD is unique 

• If U and V are orthogonal s.t. UTAV = Σ, then 
UΣVT is the SVD of A  

• Idea: find orthogonal U and V s.t. UTAV is as desired 

• Iterative process: find orthogonal U1, U2, … and 
set U = U1U2U3…  

• Still orthogonal

18
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First attempt
• Recall: U are the eigenvectors of AAT and σi

2 are 
the associated eigenvalues 

• Idea: Compute the eigenvectors and values of AAT 
and ATA to get the SVD of A  

• Not the most optimal idea because it requires 
AAT and ATA  

• We need a way to build orthogonal matrices that 
make matrices more diagonal

19
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Rotations and reflections

20

Å
cos(�) sin(�)
� sin(�) cos(�)

ã Å
cos(�) sin(�)
sin(�) � cos(�)

ã
2D rotation 2D reflection

Rotates counterclockwise  
through an angle θ

Reflects across the line spanned 
by (cos(θ/2), sin(θ/2))T 
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Example

21

x = (√2, √2)TQ =
Å
cos(�/4) sin(�/4)
� sin(�/4) cos(�/4)

ã

Qx = (2, 0)T

This coordinate is now 0!
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Householder reflections
• A Householder reflection is n-by-n matrix  
 

• If we set v = x – ||x||2e1, then Px = ||x||2e1  

• e1 = (1, 0, 0, …, 0)T  

• Note: PA = A – (βv)(vTA) where β = 2/(vTv)   

• We never have to compute matrix P 

22

P = � � ���T where � =
2

�T�
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Example

23

Wikimedia commons

http://commons.wikimedia.org/wiki/File:Householdertransformation.svg
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Almost there: 
bidiagonalization

• Given n-by-m (n ≥ m) A, we can 
bidiagonalize it with Householder 
transformations 

• Fix A[1:n,1], A[1,2:m], A[2:n,2], A[2,3:m], 
A[3:n,3], A[3,4:m]… 

• The results has non-zeros in main diagonal 
and the one above it

24
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Example

25
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Givens rotations
• Householder is too crude to give identity 

• Givens rotations are rank-2 corrections to 
the identity of form

26

G(�, k,�) =

0
BBBBBBBBBB@

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(�) · · · sin(�) · · · 0
...

...
. . .

...
...

0 · · · � sin(�) · · · cos(�) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

1
CCCCCCCCCCA

i k

i

k
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Applying Givens
• Set θ s.t.                            

                           and  

• Now 

• N.B. G(i, k, θ)TA only affects to the 2 rows 
A[c(i, k),] 

• Also, no inverse trig. operations are needed

27

cos(�) = ��«
�2� +�

2
k

sin(�) = ��k«
�2� +�

2
k

Å
cos(�) sin(�)
� sin(�) cos(�)

ãT Å��
�k

ã
=
Å
r
0

ã
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Givens in SVD
• We use Givens transformations to erase the 

superdiagonal 

• Consider principal 2-by-2 submatrices  
A[k:k+1,k:k+1] 

• Rotations can introduce unwanted non-
zeros to A[k+2,k] (or A[k,k+2]) 

• Fix them in the next sub-matrix

28
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Example

29
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Putting it all together

1. Compute the bidiagonal matrix B from A 
using Householder transformations 

2. Apply the Givens rotations to B until it is 
fully diagonal 

3. Collect the required results

30
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Time complexity

31

Output Time

Σ 4nm2 - 4m3/3

Σ, V 4nm2 + 8m3

Σ, U 4n2m - 8nm2 

Σ, U1 14nm2 - 2m3 

Σ, U, V 4n2m + 8nm2 + 9m3

Σ, U1, V 14nm2 + 8m3 
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Summary of computing 
SVD

• Rotations and reflections allow us to selectively 
zero elements of a matrix with orthogonal 
transformations 

• Used in many, many decompositions 

• Fast and accurate results require careful 
implementations 

• Other techniques are faster for truncated SVD in 
large, sparse matrices

32
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Summary of SVD
• Truly the workhorse of numerical linear algebra 

• Many useful theoretical properties 

• Rank-revealing, pseudo-inverses, scalar 
norm computation, … 

• Reasonably easy to compute 

• But it also has some major shortcomings in 
data analysis… stay tuned!
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