Chapter 1 SVD, PCA & Preprocessing

Part 3: Interpreting and computing the SVD

Interpreting SVD

Skillicorn chapter 3.2 DMM, summer 2015

Pauli Miettinen

Factor interpretation

- Let **A** be objects-by-attributes and $U\Sigma V^T$ its SVD
 - If two columns have similar values in a row of V^T, these attributes are similar (have strong correlation)
 - If two rows have similar values in a column of *U*, these objects are similar

Example

- Data: people's ratings on different wines
- Scatterplot of first two LSV
 - SVD doesn't know what the data is
- Conclusion: winelovers like red and white alike, others are more biased

Figure 3.2. The first two factors for a dataset ranking wines.

Geometric interpretation

- Let $\boldsymbol{M} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$
- Any linear mapping y=Mx
 can be expressed as a
 rotation, stretching, and
 rotation operation
 - $y_1 = V^T x$ is the first rotation
 - $y_2 = \Sigma y_1$ is the stretching
 - $y = Uy_2$ is the final rotation

Direction of largest variances

- The singular vectors give the directions of the largest variances
 - First singular vector points to the direction of the largest variance
 - Second to the second-largest
 - Spans a hyperplane with the first
- The projection distance to these hyperplanes is minimal over all hyperplanes (Eckart–Young)

Component interpretation

- We can write $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sum_i \mathbf{A}_i$
- This explains the data as a sum of rank-1 layers
 - First layer explains the most, the second updates that, the third updates that, ...
- Each individual layer don't have to be very intuitive

Example

Applications of SVD

Skillicorn chapter 3.5; Leskovec et al. chapter 11.3 DMM, summer 2015 Pauli Miettinen

Removing noise

- SVD is often used as a pre-processing step to remove noise from the data
 - The rank-k truncated SVD with proper k

Removing dimensions

- SVD can be used to project the data to smaller-dimensional subspace
 - Original dimensions can have complex correlations Curse of dimensionality
 - Subsequent analysis is faster
 - Points seem close to each other in highdimensional space

Karhunen-Loève transform

- The Karhunen–Loève transform (KLT) works as follows:
 - Normalize $\mathbf{A} \in \mathbb{R}^{n \times m}$ to z-scores
 - Compute the SVD $U\Sigma V^T = A$
 - Project $\mathbf{A} \mapsto \mathbf{AV}_k \in \mathbb{R}^{n \times k}$
 - $V_k = \text{top-}k$ right singular vectors
- A.k.a. the principal component analysis (PCA)

More on KLT

- The columns of V_k show
 the main directions of
 variance in columns
- The data is expressed in a new coordinate system
- The average projection distance is minimized

Visualization

Figure 3.2. The first two factors for a dataset ranking wines.

Latent Semantic Analysis & Indexing

- Latent semantic analysis (LSA) is a latent topic model
 - Documents-by-terms matrix A
 - Typically normalized (e.g. tf/idf)
- Goal is to find the "topics" doing SVD
 - **U** associates documents to topics
 - **V** associates topics to terms
- Queries can be answered by projecting the query vector \boldsymbol{q} to $\boldsymbol{q}' = \boldsymbol{q} \boldsymbol{V} \boldsymbol{\Sigma}^{-1}$ and returning rows of \boldsymbol{U} that are similar to \boldsymbol{q}'

And many more...

 Determining the rank, finding the leastsquares solution, recommending the movies, ordering results of queries, ...

Computing the SVD

Golub & Van Loan chapters 5.1, 5.4.8, and 8.6 DMM, summer 2015

Pauli Miettinen

Very general idea

- SVD is unique
 - If **U** and **V** are orthogonal s.t. $U^T A V = \Sigma$, then $U \Sigma V^T$ is the SVD of **A**
- Idea: find orthogonal **U** and **V** s.t. $U^T A V$ is as desired
 - Iterative process: find orthogonal U_1 , U_2 , ... and set $U = U_1U_2U_3$...
 - Still orthogonal

First attempt

- Recall: **U** are the eigenvectors of $\mathbf{A}\mathbf{A}^{T}$ and σ_{i}^{2} are the associated eigenvalues
- Idea: Compute the eigenvectors and values of $\mathbf{A}\mathbf{A}^{T}$ and $\mathbf{A}^{T}\mathbf{A}$ to get the SVD of \mathbf{A}
 - Not the most optimal idea because it requires $\mathbf{A}\mathbf{A}^{T}$ and $\mathbf{A}^{T}\mathbf{A}$
- We need a way to build orthogonal matrices that make matrices more diagonal

Rotations and reflections

2D rotation

 $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$

Rotates counterclockwise through an angle θ

2D reflection

$$(\cos(\theta) \quad \sin(\theta))$$

 $(\sin(\theta) \quad -\cos(\theta))$

Reflects across the line spanned by $(\cos(\theta/2), \sin(\theta/2))^{T}$

Example

Householder reflections

• A Householder reflection is *n*-by-*n* matrix

$$\boldsymbol{P} = \boldsymbol{I} - \beta \boldsymbol{v} \boldsymbol{v}^T$$
 where $\beta = \frac{2}{\boldsymbol{v}^T \boldsymbol{v}}$

• If we set $v = x - ||x||_2 e_1$, then $Px = ||x||_2 e_1$

•
$$\boldsymbol{e}_1 = (1, 0, 0, ..., 0)^T$$

- Note: $\mathbf{PA} = \mathbf{A} (\beta \mathbf{v})(\mathbf{v}^T \mathbf{A})$ where $\beta = 2/(\mathbf{v}^T \mathbf{v})$
 - We never have to compute matrix *P*

Almost there: bidiagonalization

- Given *n*-by-*m* (*n* ≥ *m*) **A**, we can
 bidiagonalize it with Householder
 transformations
 - Fix A[1:n,1], A[1,2:m], A[2:n,2], A[2,3:m],
 A[3:n,3], A[3,4:m]...
- The results has non-zeros in main diagonal and the one above it

Example

$$\boldsymbol{U}_{4}^{T}\boldsymbol{U}_{3}^{T}\boldsymbol{U}_{2}^{T}\boldsymbol{U}_{1}^{T}\boldsymbol{A}\boldsymbol{V}_{1}\boldsymbol{V}_{2} = \begin{pmatrix} * & * & \textcircled{O} & \textcircled{O} \\ \textcircled{O} & * & * & \textcircled{O} \\ \textcircled{O} & \textcircled{O} & * & * \\ \textcircled{O} & \textcircled{O} & & * & * \\ \textcircled{O} & \textcircled{O} & \textcircled{O} & & * \\ \textcircled{O} & \textcircled{O} & \textcircled{O} & & \swarrow \end{pmatrix}$$

Givens rotations

- Householder is too crude to give identity
- Givens rotations are rank-2 corrections to the identity of form

$$\boldsymbol{G}(i,k,\theta) = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & \cos(\theta) & \cdots & \sin(\theta) & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & -\sin(\theta) & \cdots & \cos(\theta) & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix} k$$

Pauli Miettinen

Applying Givens

• Set *θ* s.t.

$$\cos(\theta) = \frac{x_i}{\sqrt{x_i^2 + x_k^2}} \text{ and } \sin(\theta) = \frac{-x_k}{\sqrt{x_i^2 + x_k^2}}$$

- Now $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}^T \begin{pmatrix} x_i \\ x_k \end{pmatrix} = \begin{pmatrix} r \\ 0 \end{pmatrix}$
- N.B. $G(i, k, \theta)^T A$ only affects to the 2 rows A[c(i, k),]
 - Also, no inverse trig. operations are needed

Givens in SVD

- We use Givens transformations to erase the superdiagonal
 - Consider principal 2-by-2 submatrices
 A[k:k+1,k:k+1]
 - Rotations can introduce unwanted nonzeros to A[k+2,k] (or A[k,k+2])
 - Fix them in the next sub-matrix

Example

Putting it all together

- Compute the bidiagonal matrix **B** from **A** using Householder transformations
- Apply the Givens rotations to **B** until it is fully diagonal
- 3. Collect the required results

Time complexity

Output	Time
Σ	4nm² - 4m³/3
Σ, V	4nm ² + 8m ³
Σ, U	4n²m - 8nm²
Σ, U 1	14nm² - 2m³
Σ, U, V	$4n^2m + 8nm^2 + 9m^3$
Σ, U 1, V	$14nm^2 + 8m^3$

Summary of computing SVD

- Rotations and reflections allow us to selectively zero elements of a matrix with orthogonal transformations
 - Used in many, many decompositions
- Fast and accurate results require careful implementations
- Other techniques are faster for truncated SVD in large, sparse matrices

Summary of SVD

- Truly the workhorse of numerical linear algebra
 - Many useful theoretical properties
 - Rank-revealing, pseudo-inverses, scalar norm computation, ...
 - Reasonably easy to compute
- But it also has some major shortcomings in data analysis... stay tuned!