Chapter 2 Non-Negative Matrix Factorization

Part 1: Introduction & computation

Motivating NMF

Reminder

The components of the SVD are not very interpretable

Non-negative factors

Forcing the factors to be non-negative can, and often will, improve the interpretability of the factorization

The definition

Definition of NMF

Given a non-negative matrix $\mathbf{A} \in \mathbb{R}_+^{n \times m}$ and integer k, find non-negative matrices $\mathbf{W} \in \mathbb{R}_+^{n \times k}$ and $\mathbf{H} \in \mathbb{R}_+^{k \times m}$ such that $\frac{1}{2} \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$ is minimized.

Non-negative rank

- The non-negative rank of matrix A,
 rank₊(A), is the size of the smallest exact
 non-negative factorization A = WH
 - rank(\mathbf{A}) \leq rank₊(\mathbf{A}) \leq min{n, m}

Some comments

- NMF is **not** unique
 - If X is nonnegative and with nonnegative inverse, then WXX⁻¹H is equivalent valid decomposition
- Computing NMF (and non-negative rank) is NP-hard
 - This was open until 2008

Example of nonuniqueness

+

+

NMF has no order

- The factors in NMF have no inherent order
 - The first component is no more important than the second is no more important...
- NMF is not hierarchical
 - The factors of rank-(k+1) decomposition can be completely different to those of rank-k decomposition

Example

8.0

Interpreting NMF

Parts-of-whole

- NMF works over anti-negative semiring
 - There is no subtraction
- Each rank-1 component $\mathbf{w}_i \mathbf{h}_i$ explains a part of the whole
 - This can yield to sparse factors

NMF example: faces

PCA/SVD

Row of original

X

Row of reconstruction

NMF example: faces

X

NMF example: digits

NMF factors correspond to patterns and background

H

Some NMF applications

- Text mining (more later)
- Bioinformatics
- Microarray analysis
- Mineral exploration
- Neuroscience
- Image understanding
- Air pollution research
- Weather forecasting

•

Figure 4.8 Illustration for (a) benchmark used in large-scale experiments with 10 nonnegative sources; (b) Typical 1000 mixtures; (c) Ten estimated components by using FAST HALS NMF from the observations matrix **Y** of dimension 1000×1000 . (d) Performance expressed via the PSNR using the Beta HALS NMF algorithm for $\beta = 0.5, 1, 1.5, 2$ and 3.

Computing NMF

General idea

- NMF is not convex, but it is biconvex
 - If **W** is fixed, $\frac{1}{2} ||\mathbf{A} \mathbf{W}\mathbf{H}||_F^2$ is convex
- Start from random W and repeat
 - Fix W and update H
 - Fix H and update W
- until the error doesn't decrease anymore

Notes on the general idea

- How to create a good random starting point?
 - Is the algorithm robust to initial solutions?
- How to update W and H?
- When (and how quickly) has the process converged?
 - Fixed number of iterations? Minimum change in error?

Alternating least squares

- Without the non-negativity constraint, this is the standard least-squares:
 - $w_i \leftarrow \operatorname{argmin}_{w} ||wH a_i||_F$
 - we can update $W \leftarrow AH^+$ and $H \leftarrow W^+A$
 - \boldsymbol{X}^{+} is the pseudo-inverse of \boldsymbol{X} which is LS-optimal
- The method is called alternating least-squares (ALS)
- This can introduce negative values

Enforcing non-negativity in ALS

- Least-squares optimal update of W (or H) with non-negativity constraints is convex optimization problem
 - In theory in P, in practice slow, but subject to much research
- Simple approach: truncate all negative values to 0
 - Update $W \leftarrow [AH^+]_+$

The NMF-ALS algorithm

- 1. $W \leftarrow \text{random}(n, k)$
- 2. repeat

2.1.
$$H \leftarrow [W^+A]_+$$

2.2. **W** ←
$$[AH^+]_+$$

3. **until** convergence

When has there been enough convergence?

When the error doesn't change too much

•
$$||A - W^{(k)}H^{(k)}||_F - ||A - W^{(k+1)}H^{(k+1)}||_F \le \epsilon$$

- After some number of maximum iterations has been achieved
- Usually, whichever of these two happens first

Gradient descent

 We can compute the gradient of the error function (with one factor matrix fixed)

•
$$f(H) = \frac{1}{2} ||A - WH||_F^2 = \frac{1}{2} \sum_i ||\alpha_i - Wh_i||_F^2$$

- We can move slightly towards the negative gradient
 - How much is the step size and deciding it is a big problem

The NMF gradient descent algorithm

- 1. $W \leftarrow \text{random}(n, k)$
- 2. $\mathbf{H} \leftarrow \text{random}(k, m)$
- 3. repeat

3.1.
$$\mathbf{H} \leftarrow \mathbf{H} - \varepsilon_{\mathbf{H}} \frac{\partial f}{\partial \mathbf{H}}$$

3.2.
$$\mathbf{W} \leftarrow \mathbf{W} - \varepsilon_{\mathbf{W}} \frac{\partial f}{\partial \mathbf{W}}$$

4. until convergence

Example

Notes on gradient descent

- Choosing the correct step size is crucial
 - Usually the shorter step sizes the closer the solution we are
- Can converge to local minimum
 - Wrong step size, and converges very close to the initial solution

The NMF multiplicative updates algorithm

- 1. $W \leftarrow \text{random}(n, k)$
- 2. $\mathbf{H} \leftarrow \operatorname{random}(k, m)$
- 3. repeat

3.1.
$$h_{ij} \leftarrow h_{ij} \frac{(\mathbf{W}^T \mathbf{A})_{ij}}{(\mathbf{W}^T \mathbf{W} \mathbf{H})_{ij} + \varepsilon}$$

3.2.
$$w_{ij} \leftarrow w_{ij} \frac{(\mathbf{A}\mathbf{H}^T)_{ij}}{(\mathbf{W}\mathbf{H}\mathbf{H}^T)_{ij} + \varepsilon}$$

4. until convergence

Notes on multiplicative updates

- Proposed by Lee & Seung (Nature, 1999)
- Equivalent to gradient descent with dynamic step size
- Zeros in initial solutions will never turn into non-zeros; non-zeros will never turn into zeros
 - Problems if the correct solution contains zeros