Chapter 2
Non-Negative Matrix

Factorization

Part 1: Introduction & computation
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Motivating NMF

Skillicorn chapter 8; Berry et al. (2007)
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http://www.public.asu.edu/~jye02/CLASSES/Fall-2007/NOTES/aNMF-rev-06.pdf
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The components of the SVD

are not very interpretable




Non-negative factors

A W W:iH, H W:H
1 1 1 1 1 1 1 1 1 1|1 0 0 0 0 0
0 1 0 1 0 — 0 0 0 0 0 |04 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

Forcing the factors to be non-negative can, and often will,
improve the interpretability of the factorization
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The definition



Definition of NMF

Given a non-negative matrix A € R7*™
and integer k, find non-negative matrices

W e [R'l"k and H e Ri"m such that
ZlA— WH]|?

IS mMinimized.
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Non-negative rank

* The non-negative rank of matrix A,
rank+(A), iIs the size of the smallest exact

non-negative factorization A = WH

* rank(A) < rank+(A) < min{n, m}
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Some comments

* NMF Is not unique

* If X Is nonnegative and with nonnegative
inverse, then WXX1H is equivalent valid
decomposition

« Computing NMF (and non-negative rank) is
NP-hard

- This was open until 2008
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Example of non-
unigqueness

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 1 0 1 0 — 0 0 0 0 0 _l_ 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

1 0.5 1 0.5 1 0 0.5 0 0.5 0
— 0 0 0 0 0 I 0 1 0 1 0
0 0 0 0 0 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0
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NMF has no order

 The factors in NMF have no inherent order

* The first component is no more important
than the second is no more important...

* NMF is not hierarchical

- The factors of rank-(k+1) decomposition
can be completely different to those of
rank-k decomposition
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Example

0 1 0 1 0 ~ 0.5
0 1 0 1 0 0.5
1 0 1 1 1 1 1
— 0 1 0 1 0 1 0
0 1

DMM, summer 2015 Pauli Miettinen



DMM, summer 2015

Interpreting NMF



Parts-of-whole

* NMF works over anti-negative semiring
* There is no subtraction

* Each rank-1 component w;h; explains a part
of the whole

- This can yield to sparse factors
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faces

NMF example

PCA/SVD

Row of original

Row of reconstruction

DMM, summer 2015

14

Pauli Miettinen



faces

NMF example
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NMF example: digits

ABCIEEGH ,
JKEHNOPORS |3
TUKHSYZ 8] .
23956a8908 |\ [
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Some NMF applications

Text mining (more later)
Bioinformatics
Microarray analysis
Mineral exploration
Neuroscience

Image understanding
Air pollution research

Weather forecasting
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(a) Original 10 sources
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(c) Ten estimated components by using Fast-HALS (d) PSNR using Beta HALS for various values of

Figure 4.8 Illustration for (a) benchmark used in large-scale experiments with 10 nonnegative sources;
(b) Typical 1000 mixtures; (c) Ten estimated components by using FAST HALS NMF from the observations
matrix Y of dimension 1000 x 1000. (d) Performance expressed via the PSNR using the Beta HALS NMF
algorithm for =0.5, 1, 1.5, 2 and 3.
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Computing NMF



General idea

* NMF is not convex, but it is biconvex
+ If W is fixed, 3 ||[A — WH]||Z is convex
+ Start from random W and repeat
* Fix W and update H
* Fix H and update W

* until the error doesn’t decrease anymore
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Notes on the general idea

- How to create a good random starting point?

* |s the algorithm robust to initial solutions?
* How to update W and H?

* When (and how quickly) has the process
converged?

* Fixed number of iterations? Minimum change

N error?
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Alternating least squares

- Without the non-negativity constraint, this is the
standard least-squares:

* w; < argmin,, ||wH - aj||r
. we can update W « AH and H « W'A
+ X" is the pseudo-inverse of X which is LS-optimal
* The method is called alternating least-squares (ALS)

- This can introduce negative values
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Enforcing non-negativity
in ALS

* Least-squares optimal update of W (or H) with
non-negativity constraints is convex optimization

problem

- In theory Iin P, in practice slow, but subject to

much research

* Simple approach: truncate all negative values to O

- Update W « [AH "],
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The NMF-ALS algorithm

1. W < random(n, k)
2. repeat
2.1. H« [WTA]+
2.2. W« [AH "]+

3. until convergence
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When has there been
enough convergence?

- When the error doesn’t change too much
. HA _ W(k)H(k)HF _ HA _ W(k+1)H(l<+1)HF < €

« After some number of maximum iterations
has been achieved

- Usually, whichever of these two happens first
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Gradient descent

* We can compute the gradient of the error function
(with one factor matrix fixed)

f(H)=35lA—WH|Z =33 lla;— Wh||?
. VHUf(H) — (WTA)U— (WTWH)U
- We can move slightly towards the negative gradient

- How much is the step size and deciding it is a big
problem
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The NMF gradient descent
algorithm

1. W < random(n, k)

2. H < random(k, m)
3. repeat
3.1. H— H— EH 35 L/
32. W — W—gy
4. until convergence
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Notes on gradient descent

- Choosing the correct step size is crucial

- Usually the shorter step sizes the closer the
solution we are

- Can converge to local minimum

- Wrong step size, and converges very close
to the initial solution
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The NMF multiplicative
updates algorithm

1. W < random(n, k)

2. H < random(k, m)

3. repeat
e h. (WTA);
3.1. hy hlj(WTWH)ij+£
(AH');

3.2. Wi

(_ W..
Y (WHH");+¢

4. until convergence
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Notes on multiplicative
updates
* Proposed by Lee & Seung (Nature, 1999)

- Equivalent to gradient descent with dynamic

step size

« Zeros In iInitial solutions will never turn into

non-zeros: non-zeros will never turn into zeros

* Problems if the correct solution contains

Z2eros
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