Chapter 4 Independent Component Analysis

Part I: Introduction and applications

Motivation

Cocktail party problem

Cocktail party problem

- Assume we have two microphones recording two speakers
 - We observe $x_1(t)$ and $x_2(t)$ where t is time
- Assume what the speakers say is statistically independent
 - Real signals are $s_1(t)$ and $s_2(t)$
 - $x_j(t) = a_{1j}s_1(t) + a_{2j}s_2(t) \Rightarrow x = sA$

Cocktail party question

- **Problem:** can we reconstruct the original signal and mixing coefficients knowing only the mixed signals?
 - I.e. can we build **A** and **s** knowing only **x**?
- If we know x and A, the problem is easy
 - But how to find A?
- Demo at http://research.ics.aalto.fi/ica/cocktail/ cocktail_en.cgi

The Definition

ICA definition

- Setting. Let $x_j \in \mathbb{R}$, j=1,...,n be observed random variables. Assume there exists nlatent random variables $s_i \in \mathbb{R}$ and latent coefficients a_{ij} such that $x_j = \sum_i a_{ij}s_i$ for all j.
 - x = sA and for T observations, X = SA
 where X and S have T rows
- Problem. Find A and s given x

ICA assumptions (important slide!)

- Original signals s_i are mutually statistically independent
- At most one original signal signa
- The mixing matrix A is square and invertible
 - This is not necessary but simplifies the theory

ICA is identifiable

- Under the above assumptions, we can estimate **A** and **s** up to
 - signs and scales of components
 - ordering of components
- In many applications this is good enough
 - And we can impose extra constraints for better stability

Constraints

- The input variables must have zero mean
 - Center the columns of X if needed
- Often, columns of S are fixed to unit variance
 - The factors are pushed to A

Statistical independency

- Two random variables x and y are **uncorrelated** if E[xy] = E[x]E[y] $E[\cdot]$ is expectation
 - Knowing E[x] tells us nothing of E[xy]
 - Recall: **covariance** cov(x, y) = E[xy] E[x]E[y]
- R.v.'s x and y are statistically independent if for any transformation f₁ and f₂
 E[f₁(x)f₂(y)] = E[f₁(x)]E[f₂(y)]

Example of independency

- Let x and y be s.t. Pr[(x, y) = (a, b)] = 1/4 for $(a, b) \in \{(0,1), (0,-1), (1,0), (-1,0)\}$
- cov(x, y) = E[xy] E[x]E[y] = 0 0.0 = 0
- Let $x \mapsto x^2$ and $y \mapsto y^2$
 - $E[x^2y^2] E[x^2][y^2] = 0 0.5 \cdot 0.5 = -0.25$ $\Rightarrow x$ and y are uncorrelated but not independent

Independency is strong

 IBAN account numbers and account holder's ability to pay bills are probably uncorrelated

Saldo: 99 999€

- But they might still be dependent
 - First 8 numbers (after DExx) are the bank and branch identifier

Whitening and SVD

- Whitening is a transformation of random variables x_i to new variables s_i s.t. $E[s_i s_i] = 0$ if $i \neq j$ and $E[s_i s_i] = 1$ if i = j
 - Zero mean is assumed
- Let **X** have \mathbf{x}_i as its columns and observations as its rows and let $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ be its SVD
 - Columns of U give the whitened variables

ICA and SVD

- SVD (or PCA) cannot solve ICA
 - Essentially: they find uncorrelated but not necessarily independent components
- Whitening gives us $XV\Sigma^{-1} = SAV\Sigma^{-1} = SB$
 - **B** is new mixing matrix
 - Whitening is a standard pre-processing technique in ICA

Why Gaussians are forbidden?

- Let s_1 and s_2 be original independent components whose joint distribution is Gaussian $p(s_1, s_2) = \frac{1}{2\pi} \exp\left\{-\frac{s_1^2 + s_2^2}{2}\right\} = \frac{1}{2\pi} \exp\left\{-\frac{\|\mathbf{s}\|^2}{2}\right\}$
- Let A be orthogonal
 - $\mathbf{x} = \mathbf{sA}$ is Gaussian with covariance matrix equal to identity and $p(x_1, x_2) = \frac{1}{2\pi} \exp\left\{-\frac{\|\mathbf{s}\|^2}{2}\right\}$
 - No A in the pdf, the original and mixed distributions are identical

More on Gaussians

- Two uncorrelated Gaussians are necessarily independent
 - With Gaussian distributions, we loose the strength of the independency
 - Equivalently, the joint distribution of independent Gaussians is rotationally invariant
- But we can do ICA with **at most one** Gaussian distribution

ICA and other matrix factorizations

- ICA does not reduce the rank of the matrix
 - But we can apply the whitening first
- ICA does not have noise in the model
 - Some components express noise (c.f. SVD)
 - Noise is often Gaussian, and hence, if one factor is Gaussian, it is considered the noise

Interpreting an ICA

Factor interpretation

- Most natural interpretation in many applications
- Columns of S give the independent components
 - People in cocktail party
- Rows of A explain how the components are mixed
 - Placement of the microphones

Geometric interpretation

- Independent components are not (necessarily) orthogonal
 - They are not axes, per se
- We can still treat the columns of **A** as coordinates in some space and plot the first two rows (say)
 - But two points that are close in the plot might not be close in reality

Component interpretation

- The rank-1 components can be studied to understand how the columns of *S* are used to create the data
 - But their ordering is not fixed
- If one column has Gaussian histogram, it can be considered to be noise
 - Columns of *S* can be ordered based on how non-Gaussian they are (more on that next week)

Applications of ICA

Blind source separation from ECG data

- Electrocardiograms (ECG) have many types of noise and artefacts
 - Electrode movement, muscle movement, etc.
 - Might confuse the interpretation
- ICA can be used to clean the data

ECG example #1

He, Clifford & Tarassenko 2006

DMM, summer 2015

ECG example #2

He, Clifford & Tarassenko 2006

DMM, summer 2015

Pauli Miettinen

Detecting suspicious messages

- Assume an inmate tries to communicate with criminals outside the prison
 - His communication is statistically monitored and he wants to "fly under the radar"
 - No encryption and no "hot" terms
- Plan: replace hot terms with random terms
 - "Put the file inside the cake" → "Put the asparagus inside the cake"
 - These discussions can be identified as they have anomalous term frequencies

Skillicorn chapter 7.5.1 DMM, summer 2015

Suspicious message example #1

Scatterplot of first three rows of A

Figure 7.1. 3-dimensional plot from an ICA of messages with correlated unusual word use. The messages of interest are circled.

ICA finds messages with correlated unusual word use

Skillicorn chapter 7.5.1 DMM, summer 2015

Scatterplot of first three rows of **A**

Figure 7.2. 3-dimensional plot from an ICA of messages with correlated ordinary word use. The messages of interest are circled.

ICA doesn't identify messages with usual word use

 $\ensuremath{\mathbb{C}}^{\ensuremath{\mathbb{C}}\xspace{2007}\ by Taylor and Francis Group, LLC}$ Skillicorn chapter 7.5.1 DMM, summer 2015

Pauli Miettinen

Suspicious message example #3

Scatterplot of first three rows of **A**

Figure 7.3. 3-dimensional plot from an ICA of messages with unusual word use. The messages of interest are circled.

ICA doesn't identify messages with uncorrelated unusual word use

Skillicorn chapter 7.5.1 DMM, summer 2015

Pauli Miettinen

Direction of causality

- Assume we observe x₁ and x₂ and we know
 one is the cause and the other the effect
 - Which one is which?
- Assume linear regression model
 - Either $x_2 = b_1 x_1 + e_1$ or $x_1 = b_2 x_2 + e_2$
- If x_1 and x_2 are Gaussian, both models will be equally good

Hyvärinen 2012 DMM, summer 2015

Causality and ICA

- If x₁ and x₂ are non-Gaussian, we have
 - Model 1: $\binom{x_1}{x_2} = \binom{1 \ 0}{b_1 \ 1} \binom{s}{e_1}$
 - Model 2: $\binom{x_1}{x_2} = \binom{b_2 \ 1}{1 \ 0} \binom{s}{e_2}$
- We can solve ICA on the data and decide if mixing matrix **A** is closer to model 1 or model 2