
Chapter 4 
Independent 
Component Analysis

Part II: Algorithms
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ICA definition
• Given n observations of m random variables in 

matrix X, find n observations of m independent 
components in S and m-by-m invertible mixing 
matrix A s.t. X = SA  

• Components are statistically independent 

• At most one is Gaussian 

• We can assume A is orthogonal (by whitening X) 
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Maximal non-
Gaussian
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Skillikorn chapter 7; Hyvärinen & Oja 2000

https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf
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Central limit theorem
• Average of i.i.d. variables converges to normal 

distribution 

•                                                        as n → ∞ 

• Hence (X1 + X2)/2 is “more Gaussian” than X1 or X2 
alone  

• For i.i.d. zero-centered non-Gaussian X1 and X2  

• Hence, we can try to find components s that are 
“maximally non-Gaussian”
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Re-writing ICA
• Recall, in ICA x = sA ⇔ s = xA–1   

• Hence, sj is a linear combination of xi  

• Approximate sj ≈ y = xbT (b to be 
determined) 

• Now y = sAbT so y is a lin. comb. of s  

• Let qT = AbT and write y = xbT = sqT 
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More re-writings
• Now sj ≈ y = xbT = sqT  

• If bT is a column of A–1, sj = y and qj = 1 and q is 0 
elsewhere 

• CLT: sqT is least Gaussian when q looks correct 

• We don’t know s, so we can’t vary q  

• But we can vary b and study xbT  

• Approach: find b s.t. xbT is least Gaussian
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Kurtosis
• One way to measure how Gaussian a random 

variable is is its kurtosis 

• kurt(y) = E[(y – μ)4] – 3(E[(y – μ)2])2  

• E[y] = μ 

• Normalized version of the fourth central 
moment E[(y – μ)4]  

• If y ~ N(μ, σ2), kurt(y) = 0, most other distributions 
have non-zero kurtosis (positive or negative)
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Computing with kurtosis

• If x and y are independent random variables: 

• kurt(x + y) = kurt(x) + kurt(y) 

• Homework 

• If α is a constant: 

• kurt(αx) = α4kurt(x) 

• E[(αx)4] – 3(E[(αx)2])2 = α4E[x4] – α43(E[x2])2 
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Sub- and super-Gaussian 
distributions

• Distributions with negative kurtosis are sub-
Gaussian (or platykurtic) 

• Flatter than Gaussian 

• Distributions with positive kurtosis are 
super-Gaussian (or leptokurtic) 

• Spikier than Gaussian
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Examples
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https://en.wikipedia.org/wiki/Kurtosis#/media/File:Standard_symmetric_pdfs.png

https://en.wikipedia.org/wiki/Kurtosis#/media/File:Standard_symmetric_pdfs.png


DMM, summer 2015 Pauli Miettinen

Back to optimization
• Recall: with two components  

y = xbT = sqT = q1s1 + q2s2 

• si have unit variance    

• We want to find ±b = argmax |kurt(xbT)| 

• We can’t determine the sign 

• We want y to be either s1 or s2, hence  
E[y2] = q1

2 + q2
2 = 1
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Whitening, again
• Generally, ||q||2 = 1 

• Recall: Z = U = XVΣ–1 is the whitened 
version of X  

• Target becomes ±w = argmax |kurt(zwT)| 

• Now  

• Hence we have constraint ||w||2 = 1
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Gradient-based algorithm
• Gradient is  

• E[(zwT)2] = ||w||2 for whitened data 

• We can optimize this using standard gradient 
methods 

• To satisfy the constraint ||w||2 = 1, we 
divide w with its norm after every update
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FastICA for one IC
• Noticing that ||w||2 = 1 by constraint and 

taking infinite step update, we get 
w ← E[(zwT)3z] – 3w  

• Again set w ← w/||w|| after every update 

• Expectation has naturally to be estimated 

• No theoretical guarantees but works in 
practice  
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Multiple components
• So far we have found only one component 

• To find more, remember that vectors wi are 
orthogonal (whitening!) 

• General idea: 

• Find one vector w  

• Find second that is orthogonal to the first one 

• Find third that is orthogonal to the two previous ones, 
etc. 
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Symmetric 
orthogonalization

• We can compute wis in parallel 

• Update wis independently 

• Run orthogonalization after every update 
step 

• W ← (WWT)–1/2W  

• Iterate until convergence
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Maximum Likelihood
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Skillikorn chapter 7; Hyvärinen & Oja 2000

https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf
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Maximum-likelihood 
algorithms

• Idea: We are given observations X that are drawn 
from some parameterized family of distributions 
D(Θ) 

• The likelihood of X given Θ, L(Θ; X) = pD(X; Θ), 
where pD(·; Θ) is the probability density function 
of D with parameters Θ  

• In maximum-likelihood estimation (MLE) we 
try to find Θ that maximizes the likelihood given X
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ICA as MLE
• If px(x) is the pdf of x = sA, then  

• B = A–1  

• For t observations x1, x2, …, xT the log-
likelihood of B given X is  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Problems with MLE

• The likelihood is expressed as a function of B 

• But we also need to estimate the pdfs pi() 

• Non-parametric problem, infinite number of 
different pdfs 

• Very hard problem…
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If we know the pdfs
• Sometimes we know the pdfs of the components 

• We only need to estimate their parameters 
and B  

• Sometimes we know only that the pdfs are 
super-Gaussian (for example) 

• We can use log pi(si) = –log cosh(si)  

• Requires normalization
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–log cosh(x) ≈ –|x|
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Nothing on the pdfs is 
known

• We might not know whether the pdfs of the 
components are sub- or super-Gaussian 

• It is enough to estimate which one they are! 

• For super-Gaussian,  
log pi

+(si) = α1 – 2log cosh(si) 

• For sub-Gaussian,  
log pi

–(si) = α2 – (si
2/2 – log cosh(si))
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αi are only needed to make  
these logs of pdfs –  
not in optimization
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Log-likelihood gradient
• The gradient is 

• Here                                with  
gi(yi) = (log pi(yi))’ = pi’(yi)/pi(yi) 

• This gives us B ← B + δ((BT)–1 + ∑t g(xtBT)Txt) 

• Multiplying from right with BTB and defining  
yt = xtBT gives B ← B + δ(I + ∑t g(yt)Tyt)B  

• So-called infomax algorithm 

24

g(y) = (g�(y�))n�=1

� log L
�B = (BT )�1 +

PT
t=1 g(�tB

T )T�t



DMM, summer 2015 Pauli Miettinen

Setting g()

• We compute E[–tanh(si)si + (1 – tanh(si)2)] 

• If positive, set g(y) = –2tanh(y) 

• If negative (or zero), set g(y) = tanh(y) – y  

• Use current estimates of si 
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Putting it all together
• Start with random B and γ, choose learning rates δ and 
δγ   

• Iterate until convergence 

• y ← Bx and normalize y to unit variance 

• γi ← (1 – δγ)γi–1 + δγE[–tanh(yi)yi + (1 – tanh(yi)
2)] 

• if γi > 0, use super-Gaussian g; o/w sub-Gaussian g 

• B ← B + δ(I + ∑t g(yt)
Tyt)B
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ICA summary
• ICA can recover independent source signals 

• if they are non-Gaussian 

• Does not reduce rank 

• Many applications, special case of blind source 
separation 

• Standard algorithmic technique is to maximize 
non-Gaussianity of the recovered components
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