Chapter 4
Independent

Component Analysis

Part Il: Algorithms

l l I I I max planck institut
informatik



ICA definition

* Glven n observations of m random variables in
matrix X, find n observations of m independent

components in $ and m-by-m invertible mixing
matrix A s.t. X = SA

- Components are statistically independent

At most one Is Gaussian

* We can assume A is orthogonal (by whitening X)

DMM, summer 2015 Pauli Miettinen



Maximal non-
Gaussian

Skillikorn chapter 7; Hyvarinen & Oja 2000
DMM, summer 2015 Pauli Miettinen


https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf

Central limit theorem

- Average of I.1.d. variables converges to normal
distribution

. ﬁ((%Z?=lX[)—u) A N(0, 0%)as n » o

« Hence (X7 + X5)/2 is “more Gaussian” than X; or X5
alone

« For i.i.d. zero-centered non-Gaussian X; and X5

- Hence, we can try to find components s that are
“maximally non-Gaussian”

DMM, summer 2015 Pauli Miettinen



Re-writing ICA

* Recall, inICAx =sA s =xA"
* Hence, s; Is a linear combination of Xx;

» Approximate s; = y = xb' (b to be
determined)

* Now y = sAb' so y is a lin. comb. of s

- Let @' = Ab" and writey = xb" = sq’

DMM, summer 2015 Pauli Miettinen



More re-writings

. Nowsjzy=be=qu

- If b" is a column of A™, si=yandgi=1landqisO

elsewhere

. CLT: sq' is least Gaussian when g looks correct
- We don’t know s, so we can't vary q
- But we can vary b and study xb'

- Approach: find b s.t. xb' is least Gaussian

DMM, summer 2015 Pauli Miettinen



Kurtosis

« One way to measure how Gaussian a random

variable is iIs its kurtosis
+ kurt(y) = E[(y - u)*1 - 3(E[(y - u)°])’

* Elyl =y

« Normalized version of the fourth central
moment E[(y - u)"]

« Ify ~ N(u, o), kurt(y) = 0, most other distributions
have non-zero kurtosis (positive or negative)

DMM, summer 2015 Pauli Miettinen



Computing with kurtosis

* If x and y are independent random variables:
» kurt(x + y) = kurt(x) + kurt(y)
- Homework
- If ais a constant:
» kurt(ax) = a*kurt(x)

+ E[(ax)*] - 3(E[(ax)?])* = o*E[x"] - a*3(E[x*])7

mmmmmmm 2015 Pauli Miettinen



Sub- and super-Gaussian
distributions

* Distributions with negative kurtosis are sub-

Gaussian (or platykurtic)
« Flatter than Gaussian

- Distributions with positive kurtosis are

super-Gaussian (or leptokurtic)

- Spikier than Gaussian

DMM, summer 2015 Pauli Miettinen



0

DMM, summer 2015

Examples

\S}

1 1 1
I RROORNW.

Ul

%)

w

g

o

-5 -4 -3 -2 -1 0 1 2 3 4 5
https://en.wikipedia.org/wiki/Kurtosis#/media/File:Standard symmetric_pdfs.png

Pauli Miettinen

10


https://en.wikipedia.org/wiki/Kurtosis#/media/File:Standard_symmetric_pdfs.png

Back to optimization

- Recall: with two components

y =xb' =sq' = qi151 + 925>

* S; have unit variance

- We want to find =b = argmax |kurt(xb')|
* We can’t determine the sign

- We want y to be either s; or s3, hence
E[y’] = g1° + g2° = 1

DMM, summer 2015 Pauli Miettinen

11



Whitening, again

 Generally, [|q]|? =1

» Recall: Z = U = XVE!is the whitened

version of X
+ Target becomes +w = argmax |kurt(zw")]
+ Now llgll5 = (wUT)(UWT) = [|w]|3

+ Hence we have constraint ||w||? = 1

DMM, summer 2015 Pauli Miettinen

12



Gradient-based algorithm

* Gradient is

a|kurt(zw’)|
ow

 E[(zw")?] = ||w]||* for whitened data

= 4 sign(kurt(zw”))(E[(zw")3z] — 3w lw/|?)

- We can optimize this using standard gradient
methods

» To satisfy the constraint ||w]||* = 1, we

divide w with its norm after every update

DMM, summer 2015 Pauli Miettinen

13



FastiCA for one IC

» Noticing that ||w||? = 1 by constraint and
taking infinite step update, we get

w < E[(zw')3z] - 3w
- Again set w « w/||w|| after every update

- Expectation has naturally to be estimated

* No theoretical guarantees but works In
practice

DMM, summer 2015 Pauli Miettinen

14



Multiple components

- So far we have found only one component

* To find more, remember that vectors w; are

orthogonal (whitening!)
- General idea:
* Find one vector w
- Find second that is orthogonal to the first one

- Find third that is orthogonal to the two previous ones,
etc.

DMM, summer 2015 Pauli Miettinen

15



Symmetric
orthogonalization

* We can compute wjs in parallel
- Update wjs independently

- Run orthogonalization after every update
step

e W (WwT)—1/2W

- |terate until convergence

DMM, summer 2015 Pauli Miettinen

16



Maximum Likelihood

Skillikorn chapter 7; Hyvarinen & Oja 2000
DMM, summer 2015 Pauli Miettinen

17


https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf

Maximume-likelihood
algorithms

* ldea: We are given observations X that are drawn
from some parameterized family of distributions
D(©)

* The likelihood of X given O, L(O; X) = pp(X; O),
where pp(-; @) Is the probability density function
of D with parameters O

 |n maximum-likelihood estimation (MLE) we

try to find © that maximizes the likelihood given X

DMM, summer 2015 Pauli Miettinen

18



ICA as MLE

* If px(x) Is the pdf of x = sA, then

px(x) = ps(s) |det B| = |det B|[]; pi(s:) = |[det B|[]; pi(xb])
- B=A"

* For t observations xi1, X2, ..., X7 the log-

likelihood of B given X is
log L(B; X) =ZtT=1 Zgl Iogpi(xtb[.T)+ T log |det B|

DMM, summer 2015 Pauli Miettinen

19



Problems with MLE

* The likelihood is expressed as a function of B
- But we also need to estimate the pdfs pi()

- Non-parametric problem, infinite number of
different pdfs

- Very hard problem...

DMM, summer 2015 Pauli Miettinen 20



If we know the pdfs

* Sometimes we know the pdfs of the components

* We only need to estimate their parameters
and B

» Sometimes we know only that the pdfs are
super-Gaussian (for example)

* We can use log pi(s;) = -log cosh(s;)

» Requires normalization

DMM, summer 2015 Pauli Miettinen 21



-log cosh(x) = -|x|

A

4

0“ » -
W, i ) * 0
" 4 Py -0,4 N Ny
f' ‘-5
14 'S
Y, " ‘g G
// ’ o ‘s \\
pd ! ’ s N
,// & 5" \\\
/ . . N,

1.6 »
o ’ »
P * \
* -
. a \
Py -
’ »
o 2 s
¢ 'S
’ -
¢ N
¢ »
P -
’ 'S
o’ 24 *
<4

¢ ’ ’s

DMM, summer 2015 Pauli Miettinen 22



Nothing on the pdfs is
known
- We might not know whether the pdfs of the

components are sub- or super-Gaussian
* It Is enough to estimate which one they are!

- For super-Gaussian,
a; are only needed to make

log pi+(5i) = o1 — 2log cosh(sj) these logs of pdfs —

not in optimization

* For sub-Gaussian,
log pi(si)) = a2 - (si%/2 - log cosh(s;))

DMM, summer 2015 Pauli Miettinen 23



Log-likelihood gradient

+ The gradient is a';g" =(B")"1 + Z;l g(x:B')" x;

+ Here g(y) = (9i(yi));_; with
gi(yi) = (log pi(yi)) = pi'(vi/piyi)

+ This givesus B « B + 6((B")™"* + S: g(x:B") x:)

» Multiplying from right with B'B and defining
Yt = XtBT giVGS BB+ 6(1 + Zt g(yt)Tyt)B

- So-called infomax algorithm

DMM, summer 2015 Pauli Miettinen

24



Setting g()

- We compute E[-tanh(s)si + (1 — tanh(s;)?)]
- If positive, set g(y) = —2tanh(y)
- If negative (or zero), set g(y) = tanh(y) -y

 Use current estimates of s;

DMM, summer 2015 Pauli Miettinen

25



Putting it all together

 Start with random B and 7y, choose learning rates 6 and
5Y

* |terate until convergence
* y <« Bx and normalize y to unit variance
* ¥i« (1 -96,)yi1 + 6yEl-tanh(y))y; + (1 - tanh()/i)z)]
* If v; > 0, use super-Gaussian g; o/w sub-Gaussian g

- B<B+65+5:9(y) y:)B

DMM, summer 2015 Pauli Miettinen 26



ICA summary

» |CA can recover independent source signhals
» If they are non-Gaussian
» Does not reduce rank

- Many applications, special case of blind source
separation

- Standard algorithmic technigue is to maximize
non-Gaussianity of the recovered components

DMM, summer 2015 Pauli Miettinen

27



ICA literature

* Hyvarinen & Oja (2000): Independent
Component Analysis: Algorithms and
Applications. Neural networks 13(4), 411-430

- Hyvarinen (2013): Independent component
analysis: recent advances. Phil. Trans. R. Soc.
A 371:20110534

DMM, summer 2015 Pauli Miettinen

28



