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Background: 
Eigendecompositions
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Eigenvectors and values
• Let A ∈ ℝn×n  

• v ∈ ℝn is an eigenvector of A if Av = λv  

• If Av = λv, λ is an eigenvalue associated to v  

• If there are k eigenvectors v1, v2, …, vk s.t. Avi = 
λvi for all i, then λ has (algebraic) multiplicity of k   

• n-by-n matrix has n eigenvectors and n 
eigenvalues (counting the multiplicity) 

• Some can be complex
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Spectrum of a matrix
• The characteristic polynomial of A ∈ ℝn×n 

is pA(λ) = det(A – λI) 

• The roots of pA(λ) are the eigenvalues of A  

• I.e. pA(λ) = 0 ⇔ λ is an eigenvalue of A  

• The collection of the eigenvalues of A is 
called the spectrum of A 
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Eigendecomposition
• The eigendecomposition of symmetric  

A ∈ ℝn×n is A = QΛQT  

• Q is orthogonal and has the eigenvectors as 
its columns 

• Λ is diagonal with the eigenvalues  

• The symmetry of A is sufficient but not 
necessary
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Properties of 
eigendecomposition

• AAT = UΣVTVΣUT = UΣ2UT  

• ATA = VΣUTUΣVT = VΣ2VT  

• If A = QΛQT then trace(A) = trace(Λ) = ∑i λi   

• The rank of A is the number of non-zero 
eigenvalues

6



DMM, summer 2015 Pauli Miettinen

Positive seminefinite 
matrix

• Matrix A ∈ ℝn×n is positive semidefinite if  
xTAx ≥ 0 for any x ∈ ℝn 

• A is positive definite if the inequality is strict for 
any non-zero x   

• If A = BBT for some B ∈ ℝn×m, A is positive 
semidefinite  

• If A is positive semidefinite, all its eigenvalues are 
non-negative
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Graphs and 
matrices
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Combinatorial structures
• We consider matrices that correspond to some 

combinatorial object  

• E.g. graph or set system 

• The matrices can be binary-valued, integer-valued, 
or real-valued 

• We use continuous and discrete decomposition 
methods to learn about the latent structures of 
these object 
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Fundamental matrices of  
graphs

• A graph G = (V, E) can be represented by its adjacency 
matrix A  

• aĳ = 1 if {vi, vj} ∈ E, o/w 0 

• Or by its incidence matrix P  

• pĳ = 1 if ej ∈ E starts from vi, pĳ = –1 if ej ∈ E ends in 
vi, and 0 o/w 

• Edges in undirected graphs can be oriented arbitrarily 

• aii = 0 (no self-loops)
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Similarity matrix
• The similarity matrix S of n elements is  

n-by-n symmetric nonnegative matrix 

• sĳ is the similarity between i and j  

• 0s at diagonal 

• Can be interpret as a weighted adjacency 
matrix of a (complete) similarity graph 
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Which similarity?
• Any distance metric (suitable for data) can be used as the 

similarity measure 

• sim(x, y) = M – ||x – y|| where M is the maximum distance 

• Euclidean, Hamming, Jaccard, mutual information, 
Hellinger, … 

• Often the similarities are scaled to emphasize high similarity 
(and de-emphasize low similarity) 

• Gaussian kernel is common:  
Ksim(x, y) = exp{–||x – y||

2
/(2σ

2
)}
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Sparsifying similarity 
graphs

• Similarity graphs are complete 

• But often we only need pairwise similarities 
of quite similar elements 

• To sparsify the similarity graph, we can 
remove edges between dissimilar pairs 

• This sets the corresponding values in the 
matrix to 0
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Getting non-complete 
graphs

• How to decide when vertices are too dissimilar? 

• In ε-neighbour graphs we add an edge between two vertices 
that are within distance ε to each other 

• Usually the resulting graph is considered unweighted as all 
weights would be roughly similar 

• In k-nearest neighbour graphs we connect two vertices if one 
is within the k nearest neighbours of the other 

• In mutual k-nearest neighbour graph we only connect two 
vertices if they’re both in each other’s k nearest neighbours
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Which similarity graph?
• With ε-graphs choosing the parameter is hard 

• No single correct answer if different clusters have different 
internal similarities 

• k-nearest neighbours can connect points with different similarities 

• But far-away high density regions become unconnected 

• The mutual k-nearest neighbours is somewhat in between 

• Good for detecting clusters with different densities 

• General recommendation: start with k-NN 

• Others if data supports that
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Even More Matrices
• The (weighted) adjacency matrix A has the weight of edge  

(i, j) at position aĳ  

• The degree matrix Δ of a graph is a diagonal n-by-n matrix 
with the (weighted) degree of vertex i at position Δii = di  

• Δii = di = ∑j aĳ  

• The normalized adjacency matrix M is the adjacency 
matrix where in every row i all values are divided by di  

• Every row sums up to 1 

• M = Δ
–1

A  
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Graph Laplacians
• The Laplacian matrix L of a graph is the adjacency matrix 

subtracted from the degree matrix 
 
 
 

• The Laplacian is symmetric and positive semi-definite 

• Undirected graphs 

• Has n real, non-negative, orthogonal eigenvalues  
λ1 ≥ λ2 ≥ λ3 ≥ … ≥ λn ≥ 0
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The normalized, 
symmetric Laplacian

• The normalized, symmetric Laplacian matrix L
s
 of a 

graph is defined as 
 
 
 
 

• Also positive semi-definite 

• The normalized, asymmetric Laplacian L
a 
(a.k.a random 

walk Laplacian) is L
a
 = Δ

–1
L
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Spectral clustering

19
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Clustering as Graph Cuts

• A cut of a connected graph G = (V, E) divides the set of 
vertices into two partitions S and V \ S and removes the 
edges between them 

• Cut can be expressed by giving the set S  

• Or by giving the cut set F= {(v, u) ∈ E : |{v, u} ∩ S| = 1} 

• Graph cut clusters graph’s vertices into two clusters 

• A k-way cut cuts the graph into k disjoint set of vertices  
C1, C2, …, Ck and removes the edges between them
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What is a good cut?
• Just any cut won’t cut it 

• In minimum cut the goal is to find any set of vertices 
such that cutting them from the rest of the graph 
requires removing the least number of edges 

• Least sum of weights for weighted graphs 

• The minimum cut can be found in polynomial time 

• The max-flow min-cut theorem 

• But minimum cut isn’t very good for clustering purposes
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What cuts would cut it? (1)
• We want a cut that penalizes imbalanced cluster 

sizes 

• In ratio cut, the goal is to minimize the ratio of the 
weight of the edges in the cut set and the size of the 
clusters Ci  

• Let  

• wĳ is the weight of edge (i, j)
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What cuts would cut it? (2)
• The volume of a set of vertices A is the 

weight of all edges connected to A  

•   

• In normalized cut we measure the size of Ci 
not by |Ci| but by vol(Ci)   
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Clusterings and matrices 
redux

• Recall that we can express a clustering using a binary cluster 
assignment matrix 

• Let the i-th column of this matrix be ci  

• Clusters are disjoint so ci
T
cj = 0 

• Cluster has ci
T
ci = ||ci||

2
 elements 

• We can get the vol(Ci) and W(Ci, V) using ci’s 

•   

•    

•   
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Cuts using matrices
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Finding approximate cuts
• Re-writing the objective functions doesn’t make them any easier 

• The complexity comes from the binary clustering assignments 

• Relax! 

• Let ci’s take any real value 

• Relaxed RatioCut:  
 
 

• ui = ci/||ci|| i.e. the unit vector in the direction of ci 
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Solving the relaxed 
version

• We want to minimize the function Jrc over ui’s 

• We have a constraint that ui
T
ui = 1 

• To solve, derive w.r.t. ui’s and find the roots 

• Add Lagrange multipliers to incorporate the constraints: 
 
 

• Hence, Lui = λiui  

• ui is an eigenvector of L corresponding to the eigenvalue λi 
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Which eigenvectors to 
choose

• We know that Lui = λiui  

• Hence λi = ui
T
Lui  

• As we’re minimizing the sum of ui
T
Lui’s we should choose 

the ui’s corresponding to the k smallest eigenvalues 

• They are our relaxed cluster indicators 

• Note that we know that λn = 0 and that the corresponding 
eigenvector is (n

–1/2
, n

–1/2
, …, n

–1/2
) (the graph is connected!) 

• No help on clustering...
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The Fiedler vector and 
value

• The Fiedler value f of graph G = (V, E) is the second-
smallest eigenvalue λn–1 of LG    

• The Fiedler vector is the corresponding eigenvector 

• If we want to remove minimum number of vertices s.t. 
we cut the graph, we have to remove at least f vertices 

• The edge boundary ∂U of subset U ⊆ V is  
∂U = {(u, v) ∈ E : u ∈ U, v ∉ U} 

• |∂U| ≥ f|U||V \ U|/n 

29
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Normalized cut and choice 
of Laplacians

• For normalized cut similar procedure shows that we should 
select the k smallest eigenvectors of L

s
 (or L

a 
) instead of L  

• Which one we should choose? 

• Both ratio and normalized cut aim at minimizing intra-
cluster similarity 

• But only normalized cut considers inter-cluster similarity  
⇒ Either L

s
 or L

a
  

• The asymmetric Laplacian is better 

• With symmetric one further normalization is needed
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Spectral clustering
• To do the clustering, we need to move our real-

valued eigenvectors ui to binary cluster indicator 
vectors 

• First, create a matrix U with ui’s as its columns 

• Optionally, normalize the rows to sum up to 1 
(esp. if using Ls)  

• Cluster the rows of this matrix using k-means (or 
any other clustering method)
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Computational complexity

• Solving the eigenvectors is O(n3) in general 
or O(n2) if the similarity graph has as many 
edges as vertices 

• The k-means on the U matrix takes O(tnk2)  

• t is the number of iterations in k-means
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Spectral clustering 
pseudo-code

33
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where λi =
cTi Lci
cTi ∆ci

is the eigenvalue corresponding to the i-th eigenvector ci of the

asymmetric Laplacian matrix La. To minimize the normalized cut objective we
therefore choose the k smallest eigenvalues of La, namely, 0 = λn ≤ · · · ≤ λn−k+1.

To derive the clustering, for La, we can use the corresponding eigenvectors
un, · · · ,un−k+1, with ci = ui representing the real-valued cluster indicator vectors.
However, note that for La, we have cn = un = 1√

n
1. Furthermore, for the normal-

ized symmetric Laplacian Ls, the real-valued cluster indicator vectors are given as
ci = ∆−1/2ui, which again implies that cn = 1√

n
1. This means that the eigenvector

un corresponding to the smallest eigenvalue λn = 0 does not contain any useful
information for clustering.

16.2.2 Spectral Clustering Algorithm

Algorithm 16.1: Spectral Clustering Algorithm

Spectral Clustering (D, k):
Compute the similarity matrix A ∈ Rn×n

1

if ratio cut then B← L2

else if normalized cut then B← Ls or La
3

Solve Bui = λiui for i = n, . . . , n− k + 1, where λn ≤ λn−1 ≤ · · · ≤ λn−k+14

U←
(
un un−1 · · · un−k+1

)
5

Y ← normalize rows of U using (16.19)6

C ← {C1, . . . , Ck} via K-means on Y7

Algorithm 16.1 gives the pseudo-code for the spectral clustering approach. We
assume that the underlying graph is connected. The method takes a dataset D as
input, and computes the similarity matrix A. Alternatively, the matrix A may be
directly input as well. Depending on the objective function, we choose the corre-
sponding matrix B. For instance, for normalized cut B is chosen to be either Ls

or La, whereas for ratio cut we choose B = L. Next, we compute the k smallest
eigenvalues and eigenvectors of B. However, the main problem we face is that the
eigenvectors ui are not binary, and thus it is not immediately clear how we can as-
sign points to clusters. One solution to this problem is to treat the n× k matrix of
eigenvectors as a new data matrix

U =

⎛

⎝
| | |
un un−1 · · · un−k+1

| | |

⎞

⎠ =

⎛

⎜⎜⎝

un,1 un−1,1 · · · un−k+1,1

un2 un−1,2 · · · un−k+1,2

| | · · · |
un,n un−1,n · · · un−k+1,n

⎞

⎟⎟⎠ (16.18)

Assume connected graph

Sparsify if needed
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Example

34
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Further, the similarity matrix A gives the weight on each edge, i.e., aij denotes the
weight of the edge (xi,xj). If all affinities are zero or one, then A represents the
regular adjacency relationship between the vertices.

For a vertex xi, let di denote the degree of the vertex, defined as

di =
n∑

j=1

aij

Define the degree matrix ∆ of graph G as the n× n diagonal matrix

∆ =

⎛

⎜⎜⎜⎝

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

∑n
j=1 a1j 0 · · · 0
0

∑n
j=1 a2j · · · 0

...
...

. . .
...

0 0 · · ·
∑n

j=1 anj

⎞

⎟⎟⎟⎠

∆ can be compactly written as ∆(i, i) = di for all 1 ≤ i ≤ n.

Figure 16.1: Iris Similarity Graph
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For instance the first point is computed as

y1 =
1√

(−0.378)2 + (−0.2262)
(−0.378,−0.226)T = (−0.859,−0.513)T

Figure 16.3 plots the new dataset Y. Clustering the points into k = 2 groups
using K-means yields the two clusters C1 = {1, 2, 3, 4} and C2 = {5, 6, 7}.

Figure 16.4: Normalized Cut on Iris Graph

iris-setosa iris-virginica iris-versicolor

C1 (triangle) 50 0 4
C2 (square) 0 36 0
C3 (circle) 0 14 46

Table 16.1: Contingency Table: Clusters versus Iris Types

Example 16.8: We apply spectral clustering on the Iris graph in Figure 16.1;
we used the normalized cut objective with the asymmetric Laplacian matrix La.

ZM Figures 16.1 and 16.4
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Is spectral clustering 
optimal?

• Spectral clustering is not always a good approximation of 
the graph cuts 

• In so-called cockroach graphs, spectral clustering always 
horizontally, when optimal is to cut vertically 

• Approximation ratio of O(n) 
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