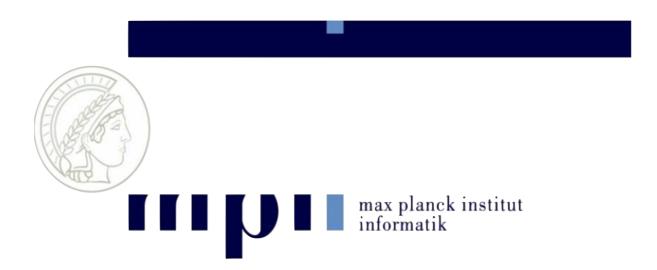
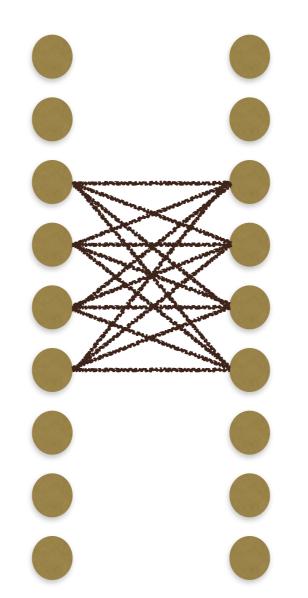
Chapter 5 Decompositions for Combinatorial Structures

Part III: Finding planted patterns



Motivation

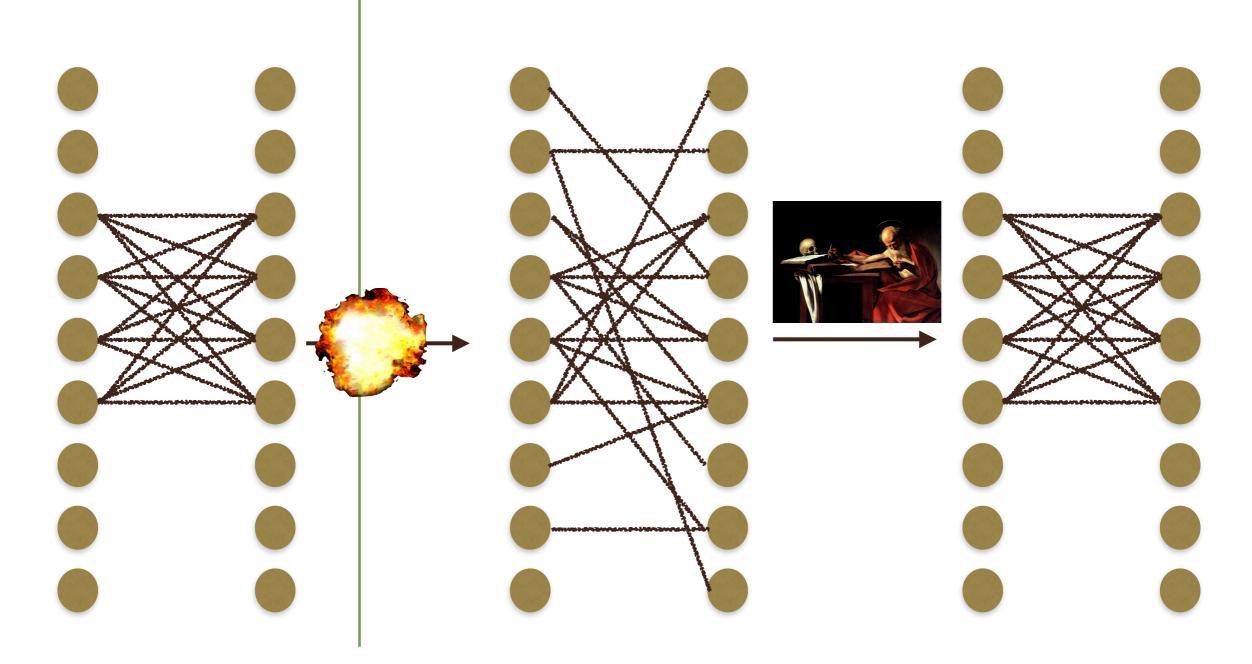
Assume a perfect pattern



X

Detail from *The Creation of Adam* Michelangelo c. 1512

Can we find the original pattern?



Pauli Miettinen

To find *a* pattern or To find *the* pattern

That is the question

Planted patterns

- Most data mining algorithms promise to find some pattern(s)
 - Or exhaustively list all of them
- Few can promise to find the pattern, even if we're promised there's one
 - Data mining concentrates on **discovery**, not **recovery**

Planted Partitions

Random graph models with planted partitions

- Bisection: Include every intra-part edge with probability q and each inter-part edge with probability p < q
- k-Coloring: Include each edge with probability
 p and then remove all intra-color edges
- Clique: Include each edge with probability p and complete the clique

Planted partition model

- Let $G(\varphi, \mathbf{P})$ be a random graph distribution where $\varphi: V \rightarrow \{1, ..., k\}$ partition the vertices to k classes and $\mathbf{P} = (p_{ij})$ is a k-by-k matrix with $p_{ij} \in [0,1]$. Include edge (i, j) with probability $p_{\varphi(i)\varphi(j)}$.
- **Example**: planted clique. Let $\varphi(v) = 1$ iff v is in the clique. Set $p_{11} = 1$ and $p_{ij} = p$ elsewhere
- **Problem**. Given a sample **G**' from $G(\varphi, \mathbf{P})$, find a partition φ' s.t. $\varphi'(\mathbf{v}) = \varphi'(\mathbf{u})$ iff $\varphi(\mathbf{v}) = \varphi(\mathbf{u})$

Approach to planted partition

- If we know $\mathbf{G} = E[\mathbf{G}']$, finding φ is easy
 - Cluster the columns \boldsymbol{g}_u of \boldsymbol{G}
- We do not have G but we have the following
 - Matrix G has rank k
 - If P_G is the projection on the column space of G, then $||P_G(g_u) - g_u|| = 0$ and $||P_G(g_u - g'_u)||$ is small
 - By the triangle inequality $P_G(g'_u)$ is almost g_u

More on projections

- Recall: If the columns of *Q* are the orthonormal basis of a subspace *S*, *P*_S = *QQ*^T is the orthogonal projection onto S
 - **P**_S**x** is the closest vector of **x** that's in S
- We do not know P_G , but any projection P suffices if it satisfies
 - $||\mathbf{P}(\mathbf{g}_u) \mathbf{g}_u||$ is small and $||\mathbf{P}(\mathbf{g}_u \mathbf{g'}_u)||$ is small
 - Now $P(g'_u) \approx g_u$, and we can find φ

SVD gives projections

- Let **P** be the projection onto the first k left singular vectors, $\mathbf{P} = \mathbf{U}_k \mathbf{U} k^T$
- With probability at least 1δ
 - $||\boldsymbol{P}(\boldsymbol{g}_u) \boldsymbol{g}_u|| \leq 8\sigma(nk/s_u)^{1/2}$
 - $||\boldsymbol{P}(\boldsymbol{g}_u \boldsymbol{g}'_u)|| \leq (2k \log(n/\delta))^{1/2}$
 - σ is an upper bound on the variance of the entries in G,
 n is the number of vertices, k is the number of classes,
 and s_u is the size of the class vertex u belongs to

Better projections

- Now if $||\mathbf{g}_u \mathbf{g}_v||$ is large enough when $\varphi(v) \neq \varphi(u)$, we can find φ
 - Depends on the above error bounds
- With more complicated error bounds we get:
 - If *s* is the size of a planted clique, then there is a constant *c* s.t. for sufficiently large *n* we can recover φ with probability 1δ if

$$\frac{1-p}{p} > C\left(\frac{n}{s^2} + \frac{\log(n/\delta)}{s}\right)$$

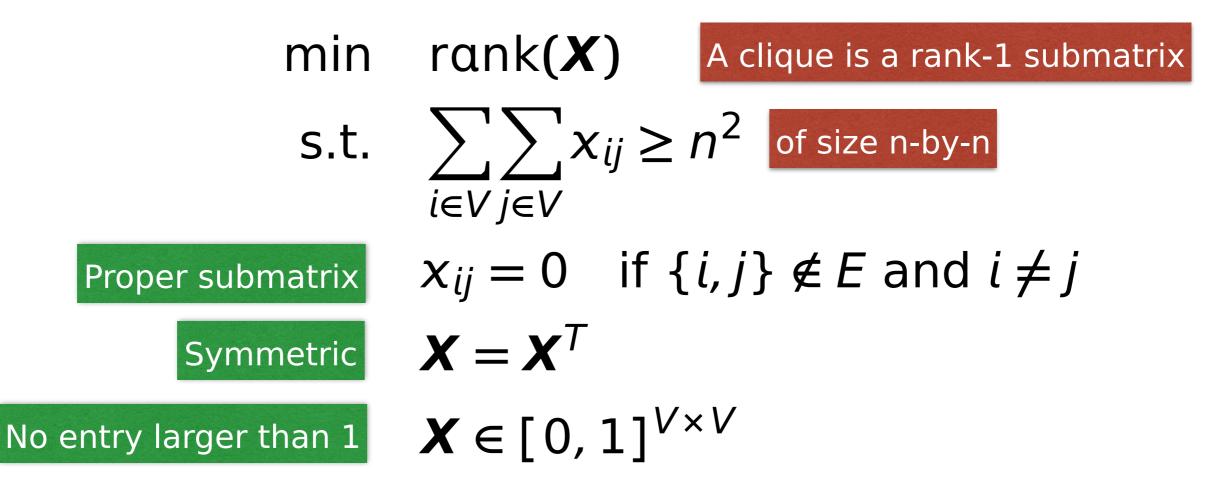
Planted Bicliques and Nuclear Norms

Schatten norms

- The Schatten matrix norms for $p \ge 1$ are defined as $\left(\sum_{i=1}^{\min\{n,m\}} \sigma_i^p\right)^{1/p}$
 - σ_i are the singular values of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
- $p = 2 \Rightarrow$ Frobenius norm
- $p = \infty \Rightarrow$ operator norm
- $p = 1 \Rightarrow$ nuclear norm $||\mathbf{A}||_*$
 - Also $||\mathbf{A}||_* = tr(\mathbf{\Sigma}) = tr(\sqrt{(\mathbf{A}^T \mathbf{A})})$

Maximum clique as rank minimization

• Maximum *n*-vertex clique in graph G = (V, E)can be found with the following program



Nuclear norm relaxation

- The rank minimization problem is NP-hard
- We can relax it to nuclear norm minimization:

$$\begin{array}{l} \min & \|\boldsymbol{X}\|_{*} \\ \text{s.t.} & \sum_{i \in V} \sum_{j \in V} x_{ij} \geq n^{2} \leftarrow \text{can be replaced with 1} \\ & x_{ij} = 0 \quad \text{if } \{i, j\} \notin E \text{ and } i \neq j \end{array}$$

- The maximum clique is a valid solution and the unique optimizer under certain conditions
 - When this is the case, we can find the clique

Adversarial case

- Assume we have a graph that contains only a clique of n nodes
 - Adversary adds up to ϵn^2 edges, $\epsilon < 1/2$

o/w there's a larger clique

• The vertices not in the clique are adjacent to at most δn vertices in the clique for some

 $0 < \delta < 1$ o/w the clique is enlarged

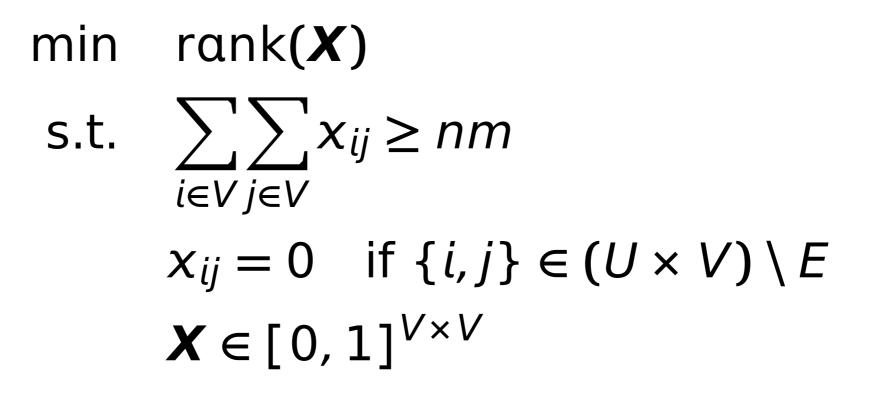
The original clique is still the unique optimizer

Randomized case

- Assume the extra edges are added i.i.d. with probability $p \in [0, 1)$
- **Thm**. There exists an $\alpha > 0$ s.t. with $n \ge \alpha \sqrt{N}$, the planted clique is the unique optimizer with probability tending exponentially to 1 as $N \rightarrow \infty$
 - α depends on p, n is the size of the clique,
 and N is the size of the graph

Bipartite graphs and bicliques

- Recall: A biclique is a binary rank-1 submatrix of the binary bi-adjacency matrix
 - Biclique of size n-by-m can be found solving



Nuclear norm relaxation

min
$$\|X\|_*$$

s.t. $\sum_{i \in V} \sum_{j \in V} x_{ij} \ge nm$

 $x_{ij} = 0 \quad \text{if } \{i, j\} \in (U \times V) \setminus E$

- The maximum biclique is again the (unique) minimizer under certain conditions
 - Problem is, when can we show the conditions hold

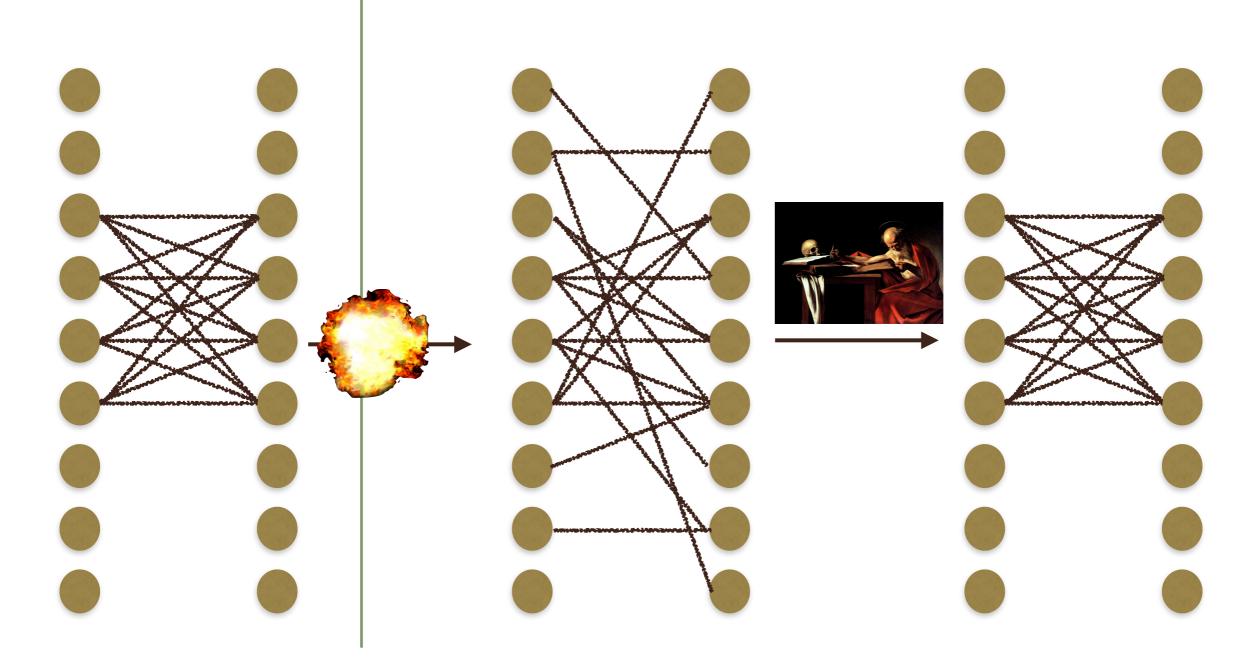
Results

- Adversary can add at most O(nm) edges
 - No new vertex can touch too many vertices in the biclique
- We can add edges i.i.d. as long as the biclique is $\alpha \sqrt{N}$ for some α depending on p and the relation of n and m and |V| and |U|

Bicliques with Destructive Noise

Ramon, Miettinen & Vreeken 2013 DMM, summer 2015

Can we find the original pattern?



Pauli Miettinen

Destructive noise

- So far we've only considered the case where new edges are added
 - New 1s in to the (bi-)adjacency matrix
 - We observe $\mathbf{A}' = \mathbf{A} \cup \mathbf{N}$
- But in reality the noise can also destroy existing edges
 - Now we have the original biclique matrix **A**, noise matrix **N**, and observed matrix $\mathbf{A}' = \mathbf{A} \oplus \mathbf{N}$

Rebuilding the biclique

- We consider the maximum-similarity/ minimum-dissimilarity quasi-biclique
 - I.e. rank-1 binary *B* minimizing ||*A' B*||_F
- Finding such **B** is NP-hard
 - 2-approximation algorithms for minimum dissimilarity
 - PTAS for maximum similarity

Noise models

- So far we've added each edge independently with probability p
 - Erdős–Rényi random graph model
- We can also follow the preferential attachment model
 - Barabási–Albert random graph model
 - Some vertices have big changes on neighbors, others less
 - If the noise follows the B–A model, it can't have large bicliques ⇒ easy

Intimidating Math

Let
$$\operatorname{dist}(G, \widetilde{G}) = \max\{|U \oplus \widetilde{U}|, |V \oplus \widetilde{V}|\}$$

where $A \oplus B = (A \setminus B) \cup (B \setminus A)$

If $\forall X, Y \colon \Pr[q(X, Y) < q(U', V')] \le \exp\{-|(X, Y) - (U', V')|c\}$

then

 $\forall \varepsilon > 0 \forall U', V'(\min\{|U'|, |V'|\} \ge \zeta) \colon \Pr(\operatorname{dist}(G, G^*) \le \varepsilon) \ge 1 - \delta_1 - \delta_2$

with $\delta_2 = T(\epsilon, |U'|, |V'|, |U'|, |V'|)T(\epsilon, N, M, |U'|, |V'|)$

where

$$T(\epsilon, a, b, c, d) = \frac{\exp(\epsilon (\log(a+1) + \log(b+1) - \min(c, d)) c_{p,q})}{1 - \exp((\log(a+1) + \log(b+1) - \min(c, d)) c_{p,q})}$$

Results

- Erdős–Rényi: The minimum size of the original biclique $\zeta = \log(NM)$
- Barabási–Albert: log $N \ll \zeta \ll \sqrt{N}$

e results

What is the underlying structure

	- 11 - 14 - 14 - 14 - 14 - 14 - 14 - 14				
1.11.11	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	Sec. 5. 19	(1) Sec.	1.1.1
	(1) 1	1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	14 A. 14 A.	1 - E	
· · · · ·	····	in the second	1	1.12	
1 A 1 A 1	1.5		1.1.1.1.1.1	1.1	1.1
1.1	41 . 41	1	1 i (M 1 i),		
1.5	1. C. C. L.			· · · ·	
1.1.1.1.1.1.1.1	1 - A - A -	11. at 11. at	1.181.19	- 11 A.	1.1
12.00	14 A	10 CH 10 C	610 J. M. M.		
1.00	19 C. C. S.	5 Hereite	1. S.		14 A C
	1. A. A. A. A. A.	8 I. C. M.	1.1 1.1	1.1.1	1.1
1.11	- N. M. M. M.	10 C 10 C 10 C	 Control (1998) 	1.1	- 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14. State 18.	6. St. 19	1.12	1.6
	Sec. 2010	11 - DA -		1.1.1	
1.11				1997 - S.	
1.1.1	· · · ·				· · ·
1.1.1.1	1 A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00	1.	 1
1. S.	 Contract (1) 		S. 4. 1917	10.00	
	10 C - C - C - C - C - C - C - C - C - C			1.	:
1.1.1.1	teres a de	and the second	23 A 14		. • .
	5 I. S. A. S. A.	- 1.1 March 4	11 - E E	i sa sa sa sa	- N.
	Sec. 1993	1.12 1.12	9 an 19 an	14 - D. S.	· ·
20 A 19	1.	10 A 10 A	1.1.1.1.1.1	- 18 - 18 - 18 1	
 • 	· () . ()	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	11111	an she	
1 A 18				1 Sec. 1.	· • •
1.1.1.1	Sec. 1.		·	14 C	
1111	1.05 10	· · · · ·	11.000	1.1	1.14
1.11.11	10 A 64	 Sec. 1 		1.1.1	1.1
1. The	- 20 ° - 20		(a.a. a. 14)	1.1.1	N 24 N
1.1.1.1	26 C 16	2010 - 1916 1	1.11		1 M B
		-		-	

What the algorithm finds

								_	
. • •									
				· ·-·					
			;	: ::::	::				
· · · ·			:			!!			
									:
1.4									•
· .									:
									•
		••	•		••	• •	•		
. '	••	••	•		•••	• •	•		· :
. 5 1									. :
: ' '		••	•						
		::	:	: :=:	::	: :	:		
									•
	.:	::	:	: :=:	::	: :	:		
···· .		••							Ι.
									•
	••	••	·	· ·-·	•••	• •	•		· ':
•									•

Pauli Miett

.

Summary

- We can find planted cliques and bicliques (and other patterns)
 - Under certain conditions
- Spectral methods can be proven to work
- Nuclear norm relaxes rank
- Sometimes we might have to solve NP-hard problems

Literature

- McSherry, F., 2001. Spectral partitioning of random graphs. In 24th IEEE Symposium on Foundations of Computer Science, pp. 529–537.
- Ames, B.P.W. & Vavasis, S.A., 2011. Nuclear norm minimization for the planted clique and biclique problems.
 Mathematical Programming, Series B, 129(1), pp.69–89.
- Ramon, J., Miettinen, P. & Vreeken, J., 2013. *Detecting Bicliques in GF[q]*. In 2013 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 509–524.

Next week: Ask Me Anything

- Next week's lecture: wrap up, random thoughts, and Ask Me Anything
 - Related to the course or not
 - I don't promise to answer to everything
 - Questions sent beforehand by email have higher changes of getting (sensible) answers