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Assume a perfect pattern
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Detail from
‘ The Creation of Adam
£ Michelangelo c. 1512,




Can we find the original
pattern?
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To find a pattern
or
To find the pattern

That Is the question
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Planted patterns

- Most data mining algorithms promise to find

some pattern(s)

- Or exhaustively list all of them

* Few can promise to find the pattern, even if

we’'re promised there’s one

* Data mining concentrates on discovery,

not recovery
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Planted Partitions

McSherry 2001
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http://www.cc.gatech.edu/~mihail/D.8802readings/mcsherrystoc01.pdf

Random graph models
with planted partitions

* Bisection: Include every intra-part edge with
probability g and each inter-part edge with
probability p < g

* k-Coloring: Include each edge with probability
p and then remove all intra-color edges

* Clique: Include each edge with probability p
and complete the clique
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Planted partition model

* Let G(¢, P) be a random graph distribution where
o:V->{1,... k} partition the vertices to k classes
and P=(pj) Is a k-by-k matrix with p; € [0,1].
Include edge (/, j) with probability pee)-

- Example: planted clique. Let ¢(v) = 1 iff vis in the
clique. Set p1; = 1 and p; = p elsewhere

* Problem. Given a sample G’ from G(¢, P), find a
partition ¢’ s.t. ¢’(v) = ¢’(u) Iff p(v) = ¢o(u)
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Approach to planted
partition

- |If we know G = E[G’], finding ¢ Is easy
* Cluster the columns g, of G

- We do not have G but we have the following
* Matrix G has rank k

* If Pg is the projection on the column space of G,

then [|Pg(gu) — gul| = 0 and ||Ps(g. - g'u)

| Is small

- By the triangle inequality Pg(g’,) Is almost g,
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More on projections

« Recall: If the columns of Q are the orthonormal basis
of a subspace S, Ps = QQT Is the orthogonal

projection onto S
* P.x Is the closest vector of x that'sin S

- We do not know Pg, but any projection P suffices if it

satisfies

| Is small

* ||P(gy) - gul| is small and ||[P(g. - g'u)

- Now P(g’,) = g,, and we can find ¢
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SVD gives projections

* Let P be the projection onto the first k left singular vectors,
T
P = UkUk

* With probability at least 1 -6

1/2

* ||P(g.) - 9.|| = 8a(nk/s,)

1/2

* [IP(g. - g’ = (2k log(n/6))

* 0 iIs an upper bound on the variance of the entries in G,
n is the number of vertices, k is the number of classes,
and s, is the size of the class vertex u belongs to
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Better projections

* Now if ||g, — g.]| Is large enough when ¢(v) # ¢@(u), we
can find ¢

- Depends on the above error bounds
- With more complicated error bounds we get:

- If s is the size of a planted clique, then there is a
constant c s.t. for sufficiently large n we can recover ¢
with probability 1 -6 if

1—p n  log(n/é)
p >C(52 T S )
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Planted Bicliques
and Nuclear Norms

Ames & Vavasis 2011
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http://www.math.uwaterloo.ca/~vavasis/amesvavasisnuclearnorm.pdf
http://www.cc.gatech.edu/~mihail/D.8802readings/mcsherrystoc01.pdf

Schatten norms

* The Schatten matrix norms forp = 1 are
| | 1
defined as (Zmln{n,m} GP) /p

(=1 (
+ g; are the singular values of A = USV'
- p = 2 = Frobenius norm
* p = 00 = operator norm
* p = 1= nuclear norm ||A||+

+ Also [|A]]+ = tr(£) = tr(V(A'A))
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Maximum clique as rank
minimization

- Maximum n-vertex clique in graph G = (V, E)

can be found with the following program

min rank(X) A clique is a rank-1 submatrix

st ), ) Xj=n?

eVvjeVv
xij=0 if{Lj}¢Eandi#j
X=xT
Xe[0,1]"*Y
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Nuclear norm relaxation

* The rank minimization problem is NP-hard

« We can relax it to nuclear norm minimization:

min || X]| ,
)| \
S.t. LLXU 2@ « can be replaced with 1
eV jev

xij=0 if{Lj}¢Eandi#j
- The maximum clique is a valid solution and the unique
optimizer under certain conditions

- When this is the case, we can find the clique
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Adversarial case

- Assume we have a graph that contains only a
cligue of n nodes

- Adversary adds up to en® edges, € < 1/2

o/w there’s a larger cligue

* The vertices not in the cligue are adjacent

to at most é6n vertices in the clique for some

O<d<1l e clique is enlarged

- The original clique is still the unique optimizer

DMM, summer 2015 Pauli Miettinen 19



Randomized case

» Assume the extra edges are added I.i.d. with
probability p € [0, 1)

* Thm. There exists an a > 0 s.t. with n = avN,
the planted clique is the unique optimizer with
probability tending exponentiallyto 1 as N —» oo

* a depends on p, n iIs the size of the clique,
and N Is the size of the graph
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Bipartite graphs and
bicligues

* Recall: A biclique is a binary rank-1

submatrix of the binary bi-adjacency matrix

- Bicligue of size n-by-m can be found solving

min rank(X)
S.t. ZZXU > nm
eV jeVv

xij=0 if{i,j}e(UxV)\E
Xe[0,1]V*V
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Nuclear norm relaxation

min || X]| .
S.t. ZZXU > Nnm
eV jeVv

xiji=0 if{,j}e(UxV)\E
- The maximum biclique is again the (unigque)
minimizer under certain conditions

* Problem is, when can we show the
conditions hold
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Results

- Adversary can add at most O(nm) edges

- No new vertex can touch too many vertices
In the biclique

- We can add edges i.1.d. as long as the
biclique is avN for some a depending on p
and the relation of n and m and |V| and |U]|
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Bicliques with
Destructive Noise

Ramon, Miettinen & Vreeken 2013
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http://people.mpi-inf.mpg.de/~pmiettin/papers/ramon13detecting.pdf

Can we find the original
pattern?
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Destructive noise

- So far we've only considered the case where new
edges are added

* New 1s in to the (bi-)adjacency matrix
* We observeA’=A UN

- But in reality the noise can also destroy existing
edges

* Now we have the original bicligue matrix A, noise

matrix N, and observed matrix A’ =A & N
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Rebuilding the biclique

* We consider the maximum-similarity/

minimum-dissimilarity quasi-biclique
* l.e. rank-1 binary B minimizing ||A’ - B||r
* Finding such B is NP-hard

» 2-approximation algorithms for minimum
dissimilarity

» PTAS for maximum similarity
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Noise models

- So far we’'ve added each edge independently with
probability p

» Erd6és-Rényi random graph model
- We can also follow the preferential attachment model
- Barabasi-Albert random graph model
- Some vertices have big changes on neighbors, others less

* If the noise follows the B-A model, it can’t have large
bicligues = easy
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Intimidating Math

Let dist(G, G) = max{|{U @ U|,|V o V|}
where AP B=(A\B)U(B\A)

If VX,Y: Pr[q(X,Y) < qU", V"] <exp{—|(X,Y)— (U, V"]|c}
then

Ve > VU, V' (min{|U'|,|V'|} > {): Pr(dist(G,G*) < &) >1— 61 — 02
with 0y = T(e, [U'|, V'], U], [V)T(e, N, M, [U"[, [V"])
where

T(e.a,b,c,d) = exp (e (log(a+1)+log(b+ 1) —min (¢, d)) cp.q)

1 —exp((log(a+ 1)+ log(b+ 1) — min(c,d))cp 4)
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Results

» Erd6s-Rényi: The minimum size of the
original bicligue ¢ = log(NM)

» Barabasi-Albert: log N « Z <« VN
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Example results

DMM, summer 2015

What the algorithm finds

What is the underlying structure
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Summary

- We can find planted cliques and bicliques (and
other patterns)

« Under certain conditions
» Spectral methods can be proven to work
 Nuclear norm relaxes rank

« Sometimes we might have to solve NP-hard
problems
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Next week:
Ask Me Anything

- Next week’s lecture: wrap up, random
thoughts, and Ask Me Anything

- Related to the course or not
- | don’t promise to answer to everything

* Questions sent beforehand by email have
higher changes of getting (sensible)
answers
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