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DATA MINING & MATRICES

Pauli Miettinen ¢ Saskia Metzler ¢ Sanjar Karaev

w SVD, PCA, CUR, NMF, ICA, ...

w 6 credits

w [heoretical & hands-on
assignments

w First lecture: tomorrow at
high noon in room 029,

building E1 5 (MPI-SWS)
w hitp://bit.ly/dmm15



http://bit.ly/dmm15

K 1] U 835 € 0 ¥V 08 & @ i

EF g #al % 21 TOVTX AT &&
0 §EE U $Ux S 4«7 Tosigian Vlae xXTVA
ITe 2 F Scidx 81 CETXTIUE Lo B4XU
Edkd FHET w ATedxe £9 LSTU4& S<4&F $O0STF
TR0 A*S EEJA% T PEPEATRERENYTD ¢ 2V
Exibﬁ % X q;t:fasn¢¢asa¢ oS

Y
L E LR RiBagcl
T! 8 TX\Te
L. nadd\ "-a -

%Stu

#XETn Ocis LF\ v TEETHD
VO AXE V ~ SS8TES NS
- Oa?ﬁ& L RVIYTFXETO
fft TYdaig ln 4 .T4S4den &

A B ng ¥ tiaﬂ lTSAOHTO% e ﬁ!OS*I!!LL S
+ NH8d 5 by QE&RFTTOL 1T BLATEBRLIETTSE
VLPUEL & VePUSAAVIXFRE 44T Exlbnoade
ONVPUET @ AYPAGFACLOTITT davxo EE0En&TaoT
ATTHOU < o XL14A0nd*dd XICETFLERSVHASLE
#0100+ &Y UVUnidVE#TEL VEXRTEEnEe [E T

eTAGPSEE ot [THFHTS v 4ddcecbaTis0Punx
asSib 4t n SLsaarlrs rg 1mmasdasnndgs484vs



A womb?

Wall of uterus

- mater = mother

pregnant animal

« matrix

« matrix = womb, also
source, origin

* Since 1550s: place or
medium where something
Is developed

* Since 1640s: embedding or
enclosing mass
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Matrices in data mining

Bread Butter Beer

Anna 1 1 0
Bob 1 1 1
Charlie 0 1 1

Customer transactions

Avatar The Matrix Up
Alice 4
Bob 3 2
Charlie 5

Incomplete rating matrix

DMM, summer 2015
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Data Matrix Mining
Book 1 5 0 3
Book 2 0 0 {
Book 3 4 6 5

Document-term matrix

Jan Jun Sep

Saarbrucken 1 11 10
Helsinki 6.5 10.9 8.7
Cape Town \ 157 7.8 8.7

Cities and monthly temperatures

Pauli Miettinen



Matrix decompositions In
data mining

- A common goal in data mining is to find
regularities (or patterns) in the data

« Often, to summarize the data

* A matrix decomposition presents the data as
a sum of “simple” elements, i.e. patterns

- but there’s also other uses... stay tuned!
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Intuition for Matrix
Multiplication

+ Matrix AB is a sum of kK matrices ab,”
obtained by multiplying the /-th column of A
with the /-th row of B

]
O

C = Zle azbz-

DMM, summer 2015 Pauli Miettinen



“The SVD Is the Swiss Army knife of
matrix decompositions”

— Diane O’Leary, 2006



Full

Truncated
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Why is SVD important?

* It gives us the dimensions of the fundamental

subspaces
* It lets us compute various norms
- It tells about sensitivity of linear systems

* It gives us optimal solutions to least-squares linear

systems
* It gives us the least-error rank-k decomposition

* Every matrix has one

DMM, summer 2015 Pauli Miettinen
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The z-scores

* The z-scores are attributes whose values are
transformed by

» centering them to 0 by removing the
(column) mean from each value

- normalizing the magnitudes by dividing every
value with the (column) standard deviation

/) _ A—U
X_a
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Issues with the rank-
selection methods

- Require computing the full SVD first or
otherwise computationally heavy

entropy-basec

- Require subjective evaluation

scree

* Based on arbitrary thresholds

Guttman-Kaiser
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Example use of SVD

: 11 '
- Data: people’s ratings on
A E

different wines

-0.2

- Scatterplot of first two LSV

-0.1

3\
D

« SVD doesn’t know what oy eatees, "

the data is o o |

+ Conclusion: winelovers like |

oo

%
)

doesn’t like
>

| I I I I I
0.25 0.2 0.15 0.1 0.05 0 -0.05
U1

red and white alike, others

I I I
-0.1 -0.15 -0.2

|
-0.25

Figure 3.2. The first two factors for a dataset ranking wines.

are more biased
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SVD gives directions of
largest variances

- The singular vectors give the
directions of the largest variances

 First singular vector points to
the direction of the largest

variance

- Second to the second-largest

- Spans a hyperplane with the
first

- The projection distance to these

hyperplanes is minimal over all
hyperplanes (Eckart-Young)
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Very general idea for
solving SVD

» SVD Is unique

* If U and V are orthogonal s.t. U'AV = £, then
UZV' is the SVD of A

* |dea: find orthogonal U and V s.t. U'AV is as desired

* lterative process: find orthogonal U,, U>, ... and
set U = U1U2U3---

» Still orthogonal
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Householder reflections

A Householder reflection is n-by-n matrix
2

viv

P=I—Bvv' where B=

* If we set v = x - ||x]||.e:, then Px = ||x]||.e:1
e, =(1,0,0,..0)

» Note: PA = A - (Bv)(v'A) where B = 2/(v'v)
* We never have to compute matrix P

DMM, summer 2015 Pauli Miettinen
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Givens rotations

- Householder is too crude to give identity

* Givens rotations are rank-2 corrections to

the identity of form

(1 . 0
6 -: coé(e)
G(i,k,8)=] : 5
O ..+ —sin(6)
0 o

/
DMM, summer 2015 Pauli Miettinen
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Non-negative matrix
factorization

1 1 1 1 1 1 0 1 1 1 1 1
0 1 0 1 0 — 0 1 0 1 0 1 0
0 1 0 1 0 0 1

DMM, summer 2015

Forcing the factors to be non-negative can, and often will,

improve the interpretability of the factorization

Pauli Miettinen
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Some commments on NMF

* NMF Is not unique

* If X Is nonnegative and with nonnegative
inverse, then WXX1H is equivalent valid
decomposition

« Computing NMF (and non-negative rank) is
NP-hard

- This was open until 2008

DMM, summer 2015 Pauli Miettinen 20
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NMF example
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General idea for solving
NMF

* NMF is not convex, but it is biconvex
+ If W is fixed, 3 ||[A — WH]||Z is convex
+ Start from random W and repeat
* Fix W and update H
* Fix H and update W

* until the error doesn’t decrease anymore

DMM, summer 2015 Pauli Miettinen
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The NMF-ALS algorithm

1. W < random(n, k)
2. repeat
2.1. H« [WTA]+
2.2. W« [AH "]+

3. until convergence

DMM, summer 2015 Pauli Miettinen
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The NMF gradient descent
algorithm

1. W < random(n, k)

2. H < random(k, m)
3. repeat
3.1. H— H— EH 35 L/
32. W — W—gy
4. until convergence

DMM, summer 2015 Pauli Miettinen
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The NMF multiplicative
updates algorithm

1. W < random(n, k)

2. H < random(k, m)

3. repeat
e h. (WTA);
3.1. hy hlj(WTWH)ij+£
(AH');

3.2. Wi

(_ W..
Y (WHH");+¢

4. until convergence

DMM, summer 2015 Pauli Miettinen
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Geometry of NMF

NMF factors

Data points
Convex cone
Projections

mmmmmmm 2015 Pauli Miettinen



Hovyer’s sparse NMF

- Hoyer (2004) considers the following sparsity
function for n-dimensional vector x

/n— (2 \Xf\)/\/ZiX?
Jn—1
* sparsity(x) = 1 iff nnz(x) = 1

sparsity(x) =

- sparsity(x) = 0 iff |x;| = |x;| for all j, j

Hoyer 2004
DMM, summer 2015 Pauli Miettinen
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http://www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf

Semi-orthogonal NMF

- In semi-orthogonal NMF we restrict H to row-
orthogonal:
minimize ||A — WHI||r s.t. HH' =1and W and H are
nonnegative

» Solutions are unique (up to permutations)
* The problem is “equivalent” to k-means

* |In the sense that the optimal solutions have
the same value

Ding et al. 2006
DMM, summer 2015 Pauli Miettinen

28


http://users.cis.fiu.edu/~taoli/tenure/p126-DLPH-KDD05.pdf

NMF and clustering

* |In k-means, we minimize
k 2 k n 2
Zj=1 ZieCj Hai _”jHZ = Zj=1 2= Gy ”ai _”J'HZ
* M; Is the centroid of the jth cluster C;

* G Is n-by-k cluster assignment matrix

* G;=1if/ € Cjand 0 otherwise
4 Type of NMF if

- Equivalently: [|A —

A Is nonnegative!

* M is k-by-m containing the centroids as its rows

DMM, summer 2015 Pauli Miettinen

29



Orthogonal tri-factor NMF

* We can find NMF where both W and H are
(column/row) orthogonal

« Often too restrictive: cannot handle different

scales

* In orthogonal nonnegative tri-factorization
we add third non-negative matrix S:
minimize ||JA - WSH||rs.t. W' W =1, HH' =1, and

all matrices are non-negative

DMM, summer 2015 Pauli Miettinen
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Generalized KL-divergence
and matrix factorizations

- The standard KL-divergence requires P and Q
be probability distributions (e.q. > P(i) = 1)

* The generalized KL-divergence (or

I-divergence) removes this requirement:

Dekt(PIIQ) = 33 (P() In 2D — P()) + Q())
* In NMF, P=A and QO = WH :

Dok (AIWH) = 3, (AyIn iy — Ay + (WH); )

mmmmmmm 2015 Pauli Miettinen 31



NMF for GKL

* The update rules for multiplicative GKL NMF

algorithm are
> Wik(Aj/(WH);)

H¢ — H;
kj kj Zln:]_ Wik
> (Ay/(WH)j)Hy;
Wi — W == ST HL
j=1 "1k

* The columns of W are normalized to sum to
unity after every iteration

DMM, summer 2015 Pauli Miettinen
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PLSI generative process

* Pick a document according
to P(d)

- Select a topic according to
P(z | d)

- Select a word according to

N
P ( w | 4 ) documents d latent concepts z  terms w

DMM, summer 2015 Pauli Miettinen



The CX decomposition

* In the CX decomposition we are given a
matrix A and a rank k, and we need to select
k columns of A into matrix C and build

matrix X s.t. we minimize ||A - CX||e
- EIs either F or 2

* A.k.a. column subset selection problem
(CSSP)

DMM, summer 2015 Pauli Miettinen
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Related idea: RRQR

* The rank-revealing QR (RRQR) factorization
k-by-k upper-triangular w/ positive diagonal

of matrix A Is

n-by-n orthogonal M
R R
ATl = QR = 0( ' o )
N

that satisfies
ok(A)

<Omin(R11) < 0k(A)
p1(k, m)
<0k+1(A) <Omax(R22) < pa(k, M)0is1(A)

Some polynomial on k and m

DMM, summer 2015 Pauli Miettinen 35




Geometry of NNCX

Columnsnotin €. Y\
Convex ne 05
Projections
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The CUR decomposition

* In the CUR decomposition we are given
matrix A and integers ¢ and r, and our task is
to select ¢ columns of A to matrix C and r
rows to matrix R, and build c-by-r matrix U
minimizing |[|A — CUR||F

« Oftenc=r=%k

DMM, summer 2015 Pauli Miettinen
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ICA definition

* Setting. Let x;eR, j=1,...,n be observed
random variables. Assume there exists n
latent random variables s; € R and latent
coefficients a; such that x; = >, ajs; for all J.

e X = SA and for T observations, X = SA
where X and S have T rows

* Problem. Find A and s given x

DMM, summer 2015 Pauli Miettinen
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ICA assumptions
(important slide!)

* Original signals s; are mutually statistically

independent

- At most one original signal s; is normally
distributed

* The mixing matrix A Is square and invertible

- This Is not necessary but simplifies the
theory

DMM, summer 2015 Pauli Miettinen 39
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Computing ICA: Central
limit theorem

- Average of I.1.d. variables converges to normal
distribution

. ‘/ﬁ((%Zlei)_U) A N(0, 0%)as n » o

« Hence (X7 + X5)/2 is “more Gaussian” than X; or X5
alone

« For i.i.d. zero-centered non-Gaussian X; and X5

- Hence, we can try to find components s that are
“maximally non-Gaussian”

DMM, summer 2015 Pauli Miettinen 41



FastiCA for one IC

» Noticing that ||w||? = 1 by constraint and
taking infinite step update, we get

w < E[(zw')3z] - 3w
- Again set w « w/||w|| after every update

- Expectation has naturally to be estimated

* No theoretical guarantees but works In
practice

DMM, summer 2015 Pauli Miettinen
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Multiple components

- So far we have found only one component

* To find more, remember that vectors w; are

orthogonal (whitening!)
- General idea:
* Find one vector w
- Find second that is orthogonal to the first one

- Find third that is orthogonal to the two previous ones,
etc.

DMM, summer 2015 Pauli Miettinen
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Putting it all together

 Start with random B and 7y, choose learning rates 6 and
5Y

* |terate until convergence
* y <« Bx and normalize y to unit variance
* ¥i« (1 -96,)yi1 + 6yEl-tanh(y))y; + (1 - tanh()/i)z)]
* If v; > 0, use super-Gaussian g; o/w sub-Gaussian g

- B<B+65+5:9(y) y:)B

DMM, summer 2015 Pauli Miettinen 44



Graph Laplacians

- The Laplacian matrix L of a graph is the adjacency matrix
subtracted from the degree matrix

(Zj;él ai,j, —di2 e+ —Qai,n \
—as 1 Z > Az, e —Qo n
L=A—A= J#
\ —0an,1 —0n,?2 e Zj;én an,;j )

- The Laplacian is symmetric and positive semi-definite
- Undirected graphs
- Has n real, non-negative, orthogonal eigenvalues

M= A =2A3=2...2A,=20

DMM, summer 2015 Pauli Miettinen
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Graph cuts using matrices

< W(C, V\C)/ -

RatioCut = Z
i=1 ‘Cl‘

L W(C, V\C) /&€

NormalizedCut = Z
= vol(C)

DMM, summer 2015 Pauli Miettinen
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Spectral clustering
pseudo-code

Assume connected graph

Algorithm 16.1: Spectral Clustering Algorithm

SPECTRAL CLUSTERING (D, k):
Compute the similarity matrix A € R™**" Q"“““

if ratio cut then B < L

else if normalized cut then B < L® or L*

Solve Bu; = \u; fort =n,...,n—k+ 1, where A\, < Ay 1 < -+ < A1
U «+ (un Up—-1 - un—k—l—l)

Y < normalize rows of U using (16.19)

C «+ {C4,...,Ct} via K-means on Y

NN O Ok N =

DMM, summer 2015 Pauli Miettinen

47



Definition of the BMF

Boolean Matrix Factorization (BMF)

The (exact) Boolean matrix factorization of a binary matrix
A € {0,1}™*" expresses it as a Boolean product of two factor matrices,

B c {0,1}™* and C € {0,1}**". Thatis A= BX C .

e Typically (in data mining), k is given, and we try to find B and C to

get as close to A as possible
@ Normally the optimization function is the squared Frobenius norm of
the residual, |A — (BX C)||2
» Equivalently, |A&® (B X C)| where

* |A| is the sum of values of A (number of 1s for binary matrices)
* P is the element-wise exclusive-or (1+1=0)

» [ he alternative definition i1s more “combinatorial’ in flavour

11/38



BMF and (quasi-)biclique covers

@ A biclique is a complete
bipartite graph
» Each left-hand-side verted is
connected to each
right-hand-side vertex

@ Each rank-1 binary matrix
defines a biclique (subgraph)
» If v €{0,1}™ and
uc {0,1}", then vu' is a
biclique between v; € V and
u; € U for which v; = u; =1

@ Exact BMF corresponds to
covering each edge of the graph
with at least one biclique

» In approximate BMF,
quasi-bicliques cover most
edges

20 /38



BMF and the Set Basis problem

@ In the Set Basis problem, we
are given a set system (U, S),
and our task is to find collection
C C 2Y such that we can cover
each set S € § with a union of

| some sets of C

s r TN » Foreach S € S, thereis
/ \\ Cs C C such that

5= UCECS C

@ A set basis corresponds to exact
BMF

» The size of the smallest set
basis Is the Boolean rank

O = =
—_ =
= = O

@ N.B.: this is the same problem
as covering with bicliques

22 /38
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Can we find the original
pattern?

DMM, summer 2015 Pauli Miettinen

52



Planted partition model

* Let G(¢, P) be a random graph distribution where
o:V->{1,... k} partition the vertices to k classes
and P=(pj) Is a k-by-k matrix with p; € [0,1].
Include edge (/, j) with probability pee)-

- Example: planted clique. Let ¢(v) = 1 iff vis in the
clique. Set p1; = 1 and p; = p elsewhere

* Problem. Given a sample G’ from G(¢, P), find a
partition ¢’ s.t. ¢’(v) = ¢’(u) Iff p(v) = ¢o(u)

DMM, summer 2015 Pauli Miettinen
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Planted partition results

* Now if ||g, — g.]| Is large enough when ¢(v) # ¢@(u), we
can find ¢

- Depends on the above error bounds
- With more complicated error bounds we get:

- If s is the size of a planted clique, then there is a
constant c s.t. for sufficiently large n we can recover ¢
with probability 1 -6 if

1—p n  log(n/é)
p >C(52 T S )
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Maximum clique as rank
minimization

- Maximum n-vertex clique in graph G = (V, E)

can be found with the following program

min rank(X) A clique is a rank-1 submatrix

st ), ) Xj=n?

eVvjeVv
xij=0 if{Lj}¢Eandi#j
X=xT
Xe[0,1]"*Y

DMM, summer 2015 Pauli Miettinen 55




Nuclear norm relaxation

* The rank minimization problem is NP-hard

« We can relax it to nuclear norm minimization:

min || X]| ,
)| \
S.t. LLXU 2@ « can be replaced with 1
eV jev

xij=0 if{Lj}¢Eandi#j
- The maximum clique is a valid solution and the unique
optimizer under certain conditions

- When this is the case, we can find the clique

DMM, summer 2015 Pauli Miettinen
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Destructive noise models
for bicliques

- So far we’'ve added each edge independently with
probability p

» Erd6és-Rényi random graph model
- We can also follow the preferential attachment model
- Barabasi-Albert random graph model
- Some vertices have big changes on neighbors, others less

* If the noise follows the B-A model, it can’t have large
bicligues = easy

DMM, summer 2015 Pauli Miettinen
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Results

» Erd6s-Rényi: The minimum size of the
original bicligue ¢ = log(NM)

» Barabasi-Albert: log N « Z <« VN

DMM, summer 2015 Pauli Miettinen
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Format & basic info

- Written exam
- 28 July 2015 from 12:00-14:00
- Times are sharp!

- Lecture hall 001, building E1 3

DMM, summer 2015 Pauli Miettinen
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What you can and cannot
bring

« You can (must) bring

« writing equipments & student ID

« one (1) Ad-sized “cheat sheet” paper
* You cannot bring (use)

- electronic devices (incl. phones and pocket
calculators and electric pencil sharpeners)

- any other notes than the cheat sheet (incl. lecture
slides, assignments, etc.)

DMM, summer 2015 Pauli Miettinen
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Cheat sheet

* Must contain your name!
* A4d-sized paper, text can be on both sides
* Any content is OK (as long as its legal)

* Use your discretion what you think is
important or consider hard

- Can be made with computer or be hand-
written (or with typewriter)

DMM, summer 2015 Pauli Miettinen
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What i1s covered In the
exam?

- All lectures between 21 April to 21 July

- Lecture on 21 July Is a wrap-up, no new
contents

- All pen-and-paper and first two programming
assignments

- The chapters of books and articles cited In
the lecture slides

DMM, summer 2015 Pauli Miettinen

63



What kind of questions
are there in the exam?

* Simple mathematical proofs

* Similar to those in homework assignments
- Developing variations of presented algorithms

- “Explain how would you compute ABC decomposition with the following
constraints”

* Short texts or longer essays comparing different decomposition methods and/or
explaining their use cases and interpretations

« “What are the main differences between ABC and XYZ?"” “Given this-and-that kind
of data, how would you interpret its ABC decomposition?”

* Short questions about features and properties of decompositions and methods

- “Explain briefly the main idea behind algorithms computing ABC.” “True or false:
computing the optimal XYZ decomposition (w.r.t. the Frobenius norm) is NP-hard.”

DMM, summer 2015 Pauli Miettinen
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Exam checking day

* 31 July from 12:15 to 14:00

D5 rotunda (E1 4, 4th floor, left from
elevator)

- your only chance

DMM, summer 2015 Pauli Miettinen
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Re-Exam

- Open for everybody
- Bonus points count, better of two exams

* You must register via email by 7 August

12 noon

 Date & place TBD (late September)

DMM, summer 2015 Pauli Miettinen
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Follow-up seminar

- I'm planning for a follow-up seminar in next semester

- Topics involve deeper dive into new matrix (and
maybe tensor) factorization methods for data analysis

- Current plan (subject to change): Block seminar with
two days of presentations in January/early February

* Limited attendance with first-come-first-served basis
- Send me e-mall if you want to get notified as soon as

registration to the seminar is possible

DMM, summer 2015 Pauli Miettinen
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HiIWiI & MSc student
positions

| have positions for HiWis & MSc students on data
mining
« Matrices, tensors, and other stuff — tailored to taste

» This course Is important evaluation point

- | will not consider any application before | know the
results of this course

= If interested, apply in late August/early

September

DMM, summer 2015 Pauli Miettinen
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Ask Me Anything
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Johnson—Lindenstrauss lemma

* Finding the decomposition can be expensive
* Decompositions give only global guarantees

— Any pair of points can have very different distances

* Can we guarantee /ocal similarity?

! J Ohnson—Llndenstrauss lemma leen &> 0 and an 1nteger n, let ;'
i be a positive integer such that k > ko = O(¢*log n). For every set X }

| of points in R there exists F: RY — R* such that for all x;, x; € X ~J'

(1—¢) [[xi —%5]1> < IF(x1) — F(x)|1” < (1 + &) |[xi — x5



How to find the projections?
* We need to find an k-by-d matrix R = () such that

function x = Rx satisfies JLL

* Remarkably, 1f we select r;; ~ N(0,1), R satisties JL
with high probability
—That 1s, JL holds for all points of X with high probability
* Achlioptas has show that we can also select
Pr|r;=1]=1/2 and Pr[r;j=—1]=1/2 or
PI‘[I’lj — 1] — 1/6, PI‘[Vij — O] — 2/3, PI‘[I”ij — —1] =1/6

— Sparse matrix



Spurious correlations

Age of Miss America
correlates with

Murders by steam, hot vapours and hot objects

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
25 yrs 8 murders
23.75 yrs ¢ ¢
O
= =
@ 6 murders g_
g 22.5 yrs @
" (7]
=2 g
E 21.25 yrs 0y
8 4 murders &
o 3
<
20 yrs
18.75 yrs 2 murders
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Murders by steam -~ Age of Miss America

r = 0.8%5%2

tylervigen.com

http://www.tylervigen.com/spurious-correlations
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