
Epilogue 
Wrap-Up



DMM, summer 2015 Pauli Miettinen

Recap of the Course
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Data Mining & Matrices

☛ SVD, PCA, CUR, NMF, ICA, … 
☛ 6 credits 
☛ Theoretical & hands-on 

assignments 
☛ First lecture: tomorrow at 

high noon in room 029, 
building E1 5 (MPI-SWS) 

☛ http://bit.ly/dmm15

Pauli Miettinen ◆ Saskia Metzler ◆ Sanjar Karaev

http://bit.ly/dmm15
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A womb?
• mater = mother 

• matrix = pregnant animal 

• matrix = womb, also 
               source, origin  

• Since 1550s: place or 
medium where something 
is developed 

• Since 1640s: embedding or 
enclosing mass

5

A womb
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Matrices in data mining

6

Objects and attributes

Anna, Bob, and Charlie went shopping
Anna bought butter and bread
Bob bought butter, bread, and beer
Charlie bought bread and beer

0

@

Bread Butter Beer

Anna 1 1 0
Bob 1 1 1
Charlie 0 1 1

1

A

Customer transactions

0

@

Data Matrix Mining

Book 1 5 0 3
Book 2 0 0 7
Book 3 4 6 5

1

A

Document-term matrix

0

@

Avatar The Matrix Up

Alice 4 2
Bob 3 2
Charlie 5 3

1

A

Incomplete rating matrix

0

@

Jan Jun Sep

Saarbrücken 1 11 10
Helsinki 6.5 10.9 8.7
Cape Town 15.7 7.8 8.7

1

A

Cities and monthly temperatures

Many di↵erent kinds of data fit this object-attribute viewpoint.

14 / 27
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Matrix decompositions in 
data mining

• A common goal in data mining is to find 
regularities (or patterns) in the data 

• Often, to summarize the data 

• A matrix decomposition presents the data as 
a sum of “simple” elements, i.e. patterns 

• but there’s also other uses… stay tuned!

7



DMM, summer 2015 Pauli Miettinen

Intuition for Matrix 
Multiplication

• Matrix AB is a sum of k matrices albl
T 

obtained by multiplying the l-th column of A 
with the l-th row of B

8

��

C =
Pk

�=1 ��bT
�



– Diane O’Leary, 2006

“The SVD is the Swiss Army knife of 
matrix decompositions”
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SVD

10

≈A U V
T

⌅

=A U V
T

⌅Full

Truncated
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Why is SVD important?
• It gives us the dimensions of the fundamental 

subspaces 

• It lets us compute various norms  

• It tells about sensitivity of linear systems  

• It gives us optimal solutions to least-squares linear 
systems  

• It gives us the least-error rank-k decomposition  

• Every matrix has one 

11
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The z-scores
• The z-scores are attributes whose values are 

transformed by 

• centering them to 0 by removing the 
(column) mean from each value 

• normalizing the magnitudes by dividing every 
value with the (column) standard deviation 

12

X0 = X��
�
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Issues with the rank-
selection methods

• Require computing the full SVD first or 
otherwise computationally heavy 
  

• Require subjective evaluation 
  

• Based on arbitrary thresholds 

13

scree entropy-based random flipsGuttman–Kaiser

scree random flips

Guttman–Kaiser entropy-based
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Example use of SVD
• Data: people’s ratings on 

different wines 

• Scatterplot of first two LSV 

• SVD doesn’t know what 
the data is 

• Conclusion: winelovers like 
red and white alike, others 
are more biased

14

3.2. Interpreting an SVD 55
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Figure 3.2. The first two factors for a dataset ranking wines.

plan, and medical insurance. It might turn out that all of these correlate
strongly with income, but it might not, and the differences in correlation
may provide insight into the contribution of a more general concept such as
‘prosperity’ to happiness. The survey data can be put into a matrix with
one row for each respondent, and one column for the response each question.
An SVD of this matrix can help to find the latent factors behind the explicit
factors that each question and response is addressing.

For datasets of modest size, where the attributes exhibit strong correla-
tions, this can work well. For example, Figure 3.2 is derived from a dataset in
which 78 people were asked to rank 14 wines, from 1 to 14, although many did
not carry out a strict ranking. So the attributes in this dataset are wines, and
the entries are indications of how much each wine was liked by each person.
The figure shows a plot along the first two axes of the transformed space,
corresponding to the two most important factors. Some further analysis is
required, but the first (most important) factor turns out to be liking for wine
– those respondents at the left end of the plot are those who like wine, that
is who had many low numbers in their ‘ranking’, while those at the right end
liked wine less across the board. This factor corresponds to something which
could have been seen in the data relatively easily since it correlates strongly
with the sum of the ‘rankings’. For example, the outlier at the right end
corresponds to someone who rated every wine 14.

The second factor turns out to indicate preference for red versus white
wine – those respondents at the top of the plot prefer red wine over white,

© 2007 by Taylor and Francis Group, LLC

red

white

likes wine doesn’t like
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SVD gives directions of 
largest variances

• The singular vectors give the 
directions of the largest variances 

• First singular vector points to 
the direction of the largest 
variance 

• Second to the second-largest 

• Spans a hyperplane with the 
first 

• The projection distance to these 
hyperplanes is minimal over all 
hyperplanes (Eckart–Young)

15

IR&DM, WS'11/12 IX.1&2-17 January 2012

Example

34

CHAPTER 8. DIMENSIONALITY REDUCTION 173

X1
X2

X3

(a) Original Basis: 3D

u1

u3

u2

(b) Optimal Basis: 3D

Figure 8.1: Iris Data: Optimal Basis

U matrix is an orthogonal matrix, whose columns, the basis vectors, are orthonormal,
i.e., they are pairwise orthogonal and have unit length

uTi uj =

{
1 if i = j

0 if i ̸= j
(8.5)

Since U is orthogonal, this means that its inverse equals its transpose

U−1 = UT (8.6)

which implies that UTU = I, where I is the d × d identity matrix.
Multiplying (8.3) on both sides by UT yields the expression for computing the

coordinates of x in the new basis

UT x = UTUa

a = UT x (8.7)

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.
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variance uTΣΣΣu. Since we know that u1, the dominant eigenvector of ΣΣΣ maximizes the
projected variance, we have

MSE(u1) = var(D)− uT1 ΣΣΣu1 = var(D)− uT1 λ1u1 = var(D)− λ1

Thus, the principal component u1 which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

X1
X2

X3

u1

Figure 8.2: Best 1D or Line Approximation

Example 8.3: Figure 8.2 shows the first principal component, i.e., the best one di-
mensional approximation, for the three dimensional Iris dataset shown in Figure 8.1a.
The covariance matrix for this dataset is given as

ΣΣΣ =

⎛

⎜⎝
0.681 −0.039 1.265
−0.039 0.187 −0.320
1.265 −0.320 3.092

⎞

⎟⎠

The largest eigenvalue is λ1 = 3.662, and the corresponding dominant eigenvector
is u1 = (−0.390, 0.089,−0.916)T . The unit vector u1 thus maximizes the projected
variance, which is given as J(u1) = α = λ1 = 3.662. Figure 8.2 plots the principal
component u1. It also shows the error vectors ϵi , as thin gray line segments.

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.
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X1
X2

X3

u1

u2

(a) Optimal 2D Basis

X1
X2

X3

(b) Non-Optimal 2D Basis

Figure 8.3: Best 2D Approximation

Example 8.4: For the Iris dataset from Example 8.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors

u1 =

⎛

⎜⎝
−0.390
0.089
−0.916

⎞

⎟⎠ u2 =

⎛

⎜⎝
−0.639
−0.742
0.200

⎞

⎟⎠

The projection matrix is given as

P2 = U2U
T
2 =

⎛

⎜⎝
| |
u1 u2
| |

⎞

⎟⎠

(
— uT1 —
— uT2 —

)

= u1u
T
1 + u2u

T
2

=

⎛

⎜⎝
0.152 −0.035 0.357
−0.035 0.008 −0.082
0.357 −0.082 0.839

⎞

⎟⎠+

⎛

⎜⎝
0.408 0.474 −0.128
0.474 0.551 −0.148
−0.128 −0.148 0.04

⎞

⎟⎠

=

⎛

⎜⎝
0.560 0.439 0.229
0.439 0.558 −0.230
0.229 −0.230 0.879

⎞

⎟⎠

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.
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Very general idea for 
solving SVD

• SVD is unique 

• If U and V are orthogonal s.t. UTAV = Σ, then 
UΣVT is the SVD of A  

• Idea: find orthogonal U and V s.t. UTAV is as desired 

• Iterative process: find orthogonal U1, U2, … and 
set U = U1U2U3…  

• Still orthogonal

16
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Householder reflections
• A Householder reflection is n-by-n matrix  
 

• If we set v = x – ||x||2e1, then Px = ||x||2e1  

• e1 = (1, 0, 0, …, 0)T  

• Note: PA = A – (βv)(vTA) where β = 2/(vTv)   

• We never have to compute matrix P 

17

P = � � ���T where � =
2

�T�
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Givens rotations
• Householder is too crude to give identity 

• Givens rotations are rank-2 corrections to 
the identity of form

18

G(�, k,�) =

0
BBBBBBBBBB@

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(�) · · · sin(�) · · · 0
...

...
. . .

...
...

0 · · · � sin(�) · · · cos(�) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

1
CCCCCCCCCCA

i k

i

k
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Non-negative matrix 
factorization

19

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

A

=

1

0

1

1

1

0

1

1

1

0

1

0

0

0

1

1

W H

Forcing the factors to be non-negative can, and often will,  
improve the interpretability of the factorization



DMM, summer 2015 Pauli Miettinen

Some comments on NMF
• NMF is not unique 

• If X is nonnegative and with nonnegative 
inverse, then WXX–1H is equivalent valid 
decomposition 

• Computing NMF (and non-negative rank) is 
NP-hard 

• This was open until 2008

20
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NMF example: faces

21

Row of original

= ×

NMF
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General idea for solving 
NMF

• NMF is not convex, but it is biconvex  

• If W is fixed,                      is convex 

• Start from random W and repeat  

• Fix W and update H  

• Fix H and update W  

• until the error doesn’t decrease anymore

22

1
2 kA �WHk2F



DMM, summer 2015 Pauli Miettinen

The NMF-ALS algorithm

1. W ← random(n, k) 

2. repeat  

2.1. H ← [W+A]+  

2.2. W ← [AH+]+  

3. until convergence

23
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The NMF gradient descent 
algorithm

1. W ← random(n, k) 

2. H ← random(k, m) 

3. repeat  

3.1.   

3.2.   

4. until convergence

24

H H � �H
�ƒ
�H

W  W � �W
�ƒ
�W
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The NMF multiplicative 
updates algorithm

1. W ← random(n, k) 

2. H ← random(k, m) 

3. repeat  

3.1.    

3.2.    

4. until convergence

25

h�j  h�j
(WTA)�j

(WTWH)�j+�

��j  ��j
(AHT )�j

(WHHT )�j+�
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Geometry of NMF
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Hoyer’s sparse NMF

• Hoyer (2004) considers the following sparsity 
function for n-dimensional vector x  
 

• sparsity(x) = 1 iff nnz(x) = 1 

• sparsity(x) = 0 iff |xi| = |xj| for all i, j 

27

Hoyer 2004

sp�rsity(�) =

p
n �
�P

� |��|
�
/
«P

� �
2
�p

n � 1

http://www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf
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Semi-orthogonal NMF
• In semi-orthogonal NMF we restrict H to row-

orthogonal:  
minimize ||A – WH||F s.t. HHT = I and W and H are 
nonnegative 

• Solutions are unique (up to permutations) 

• The problem is “equivalent” to k-means 

• In the sense that the optimal solutions have 
the same value

28
Ding et al. 2006

http://users.cis.fiu.edu/~taoli/tenure/p126-DLPH-KDD05.pdf
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NMF and clustering
• In k-means, we minimize  

• μj is the centroid of the jth cluster Cj  

• G is n-by-k cluster assignment matrix  

• Gĳ = 1 if i ∈ Cj and 0 otherwise 

• Equivalently:  

• M is k-by-m containing the centroids as its rows

29

kA � GMk2F
Type of NMF if  

A is nonnegative!

Pk
j=1

P
�2Cj
���� � �j
��2
2 =
Pk

j=1

Pn
�=1G�j
���� � �j
��2
2
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Orthogonal tri-factor NMF
• We can find NMF where both W and H are 

(column/row) orthogonal 

• Often too restrictive; cannot handle different 
scales 

• In orthogonal nonnegative tri-factorization 
we add third non-negative matrix S: 
minimize ||A – WSH||F s.t. WTW = I, HHT = I, and 
all matrices are non-negative

30
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Generalized KL-divergence 
and matrix factorizations

• The standard KL-divergence requires P and Q 
be probability distributions (e.g. ∑i P(i) = 1) 

• The generalized KL-divergence (or  
I-divergence) removes this requirement: 

• In NMF, P = A and Q = WH : 

31

DGKL(PkQ) =
P

�

Ä
P(�) ln P(�)

Q(�) � P(�) + Q(�)
ä

DGKL(AkWH) =
P

�,j

⇣
A�j ln

A�j
(WH)�j

� A�j + (WH)�j
⌘
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NMF for GKL
• The update rules for multiplicative GKL NMF 

algorithm are  
 
 

• The columns of W are normalized to sum to 
unity after every iteration

32

W�k  W�k

Pm
j=1(A�j /(WH)�j)HkjPm

j=1Hkj

Hkj  Hkj

Pn
�=1W�k(A�j /(WH)�j)Pn

�=1W�k
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pLSI generative process

• Pick a document according 
to P(d) 

• Select a topic according to 
P(z | d) 

• Select a word according to 
P(w | z)

33

IRDM  WS 2007 4-85

Aspect Model: Probabilistic LSI (pLSI)

documents d latent concepts z
(aspects)

terms w
(words)

TRADE

economic

imports

embargo

¦ � 
z

zwPdzPdwP ]|[]|[]|[
d and w 
conditionally
independent
given z
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The CX decomposition
• In the CX decomposition we are given a 

matrix A and a rank k, and we need to select 
k columns of A into matrix C and build 
matrix X s.t. we minimize ||A – CX||ξ  

• ξ is either F or 2  

• A.k.a. column subset selection problem 
(CSSP)

34
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Related idea: RRQR
• The rank-revealing QR (RRQR) factorization 

of matrix A is 
 
 
that satisfies

35

A� = QR = Q
Å
R11 R12
0 R22

ã

�k(A)

p1(k,m)
�min(R11)  �k(A)

�k+1(A) �m�x(R22)  p2(k,m)�k+1(A)

Permutation matrix

n-by-n orthogonal

n-by-m
kth singular value of A

Some polynomial on k and m

k-by-k upper-triangular w/ positive diagonal 

k-by-(m–k) 

(n–k)-by-(m–k) 



DMM, summer 2015 Pauli Miettinen

0

0.5

1

1.5

0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Geometry of NNCX
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The CUR decomposition

• In the CUR decomposition we are given 
matrix A and integers c and r, and our task is 
to select c columns of A to matrix C and r 
rows to matrix R, and build c-by-r matrix U 
minimizing ||A – CUR||F  

• Often c = r = k 

37
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ICA definition
• Setting. Let xj∈ℝ, j=1,…,n be observed 

random variables. Assume there exists n 
latent random variables si ∈ ℝ and latent 
coefficients aĳ such that xj = ∑i aĳsi for all j. 

• x = sA and for T observations, X = SA 
where X and S have T rows 

• Problem. Find A and s given x 

38
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ICA assumptions 
(important slide!)

• Original signals si are mutually statistically 
independent  

• At most one original signal si is normally 
distributed 

• The mixing matrix A is square and invertible 

• This is not necessary but simplifies the 
theory

39
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Computing ICA: Central 
limit theorem

• Average of i.i.d. variables converges to normal 
distribution 

•                                                        as n → ∞ 

• Hence (X1 + X2)/2 is “more Gaussian” than X1 or X2 
alone  

• For i.i.d. zero-centered non-Gaussian X1 and X2  

• Hence, we can try to find components s that are 
“maximally non-Gaussian”

41

p
n
Ä�1

n
Pn

�=1 X�
�
� �
ä d! N(0,�2)
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FastICA for one IC
• Noticing that ||w||2 = 1 by constraint and 

taking infinite step update, we get 
w ← E[(zwT)3z] – 3w  

• Again set w ← w/||w|| after every update 

• Expectation has naturally to be estimated 

• No theoretical guarantees but works in 
practice  

42
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Multiple components
• So far we have found only one component 

• To find more, remember that vectors wi are 
orthogonal (whitening!) 

• General idea: 

• Find one vector w  

• Find second that is orthogonal to the first one 

• Find third that is orthogonal to the two previous ones, 
etc. 

43
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Putting it all together
• Start with random B and γ, choose learning rates δ and 
δγ   

• Iterate until convergence 

• y ← Bx and normalize y to unit variance 

• γi ← (1 – δγ)γi–1 + δγE[–tanh(yi)yi + (1 – tanh(yi)
2)] 

• if γi > 0, use super-Gaussian g; o/w sub-Gaussian g 

• B ← B + δ(I + ∑t g(yt)
Tyt)B

44
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Graph Laplacians
• The Laplacian matrix L of a graph is the adjacency matrix 

subtracted from the degree matrix 
 
 
 

• The Laplacian is symmetric and positive semi-definite 

• Undirected graphs 

• Has n real, non-negative, orthogonal eigenvalues  
λ1 ≥ λ2 ≥ λ3 ≥ … ≥ λn ≥ 0

45

L = � � A =

0
BBB@

P
j 6=1 �1,j ��1,2 · · · ��1,n
��2,1
P

j 6=2 �2,j · · · ��2,n
...

...
. . .

...
��n,1 ��n,2 · · ·

P
j 6=n �n,j

1
CCCA
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Graph cuts using matrices

46

RatioCut =
kX

�=1

W(C�, V \ C�)
|C�|

=
kX

�=1

cT� Lc�

kc�k2

NormalizedCut =
kX

�=1

W(C�, V \ C�)
�o�(C�)

=
kX

�=1

cT� Lc�

cT� �c�
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Spectral clustering 
pseudo-code

47

CHAPTER 16. SPECTRAL AND GRAPH CLUSTERING 451

where λi =
cTi Lci
cTi ∆ci

is the eigenvalue corresponding to the i-th eigenvector ci of the

asymmetric Laplacian matrix La. To minimize the normalized cut objective we
therefore choose the k smallest eigenvalues of La, namely, 0 = λn ≤ · · · ≤ λn−k+1.

To derive the clustering, for La, we can use the corresponding eigenvectors
un, · · · ,un−k+1, with ci = ui representing the real-valued cluster indicator vectors.
However, note that for La, we have cn = un = 1√

n
1. Furthermore, for the normal-

ized symmetric Laplacian Ls, the real-valued cluster indicator vectors are given as
ci = ∆−1/2ui, which again implies that cn = 1√

n
1. This means that the eigenvector

un corresponding to the smallest eigenvalue λn = 0 does not contain any useful
information for clustering.

16.2.2 Spectral Clustering Algorithm

Algorithm 16.1: Spectral Clustering Algorithm

Spectral Clustering (D, k):
Compute the similarity matrix A ∈ Rn×n

1

if ratio cut then B← L2

else if normalized cut then B← Ls or La
3

Solve Bui = λiui for i = n, . . . , n− k + 1, where λn ≤ λn−1 ≤ · · · ≤ λn−k+14

U←
(
un un−1 · · · un−k+1

)
5

Y ← normalize rows of U using (16.19)6

C ← {C1, . . . , Ck} via K-means on Y7

Algorithm 16.1 gives the pseudo-code for the spectral clustering approach. We
assume that the underlying graph is connected. The method takes a dataset D as
input, and computes the similarity matrix A. Alternatively, the matrix A may be
directly input as well. Depending on the objective function, we choose the corre-
sponding matrix B. For instance, for normalized cut B is chosen to be either Ls

or La, whereas for ratio cut we choose B = L. Next, we compute the k smallest
eigenvalues and eigenvectors of B. However, the main problem we face is that the
eigenvectors ui are not binary, and thus it is not immediately clear how we can as-
sign points to clusters. One solution to this problem is to treat the n× k matrix of
eigenvectors as a new data matrix

U =

⎛

⎝
| | |
un un−1 · · · un−k+1

| | |

⎞

⎠ =

⎛

⎜⎜⎝

un,1 un−1,1 · · · un−k+1,1

un2 un−1,2 · · · un−k+1,2

| | · · · |
un,n un−1,n · · · un−k+1,n

⎞

⎟⎟⎠ (16.18)

Assume connected graph

Sparsify if needed



Definition of the BMF

Boolean Matrix Factorization (BMF)

The (exact) Boolean matrix factorization of a binary matrix
A 2 {0, 1}m⇥n expresses it as a Boolean product of two factor matrices,
B 2 {0, 1}m⇥k and C 2 {0, 1}k⇥n. That is A = B ⇥ C .

Typically (in data mining), k is given, and we try to find B and C to
get as close to A as possible

Normally the optimization function is the squared Frobenius norm of
the residual, kA � (B ⇥ C )k2F

I Equivalently, |A � (B ⇥ C )| where
F |A| is the sum of values of A (number of 1s for binary matrices)

F � is the element-wise exclusive-or (1+1=0)

I The alternative definition is more “combinatorial” in flavour
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BMF and (quasi-)biclique covers

0

@
1 1 0
1 1 1
0 1 1

1

A

=

1

2

3

A

B

C

A biclique is a complete
bipartite graph

I Each left-hand-side verted is
connected to each
right-hand-side vertex

Each rank-1 binary matrix
defines a biclique (subgraph)

I If v 2 {0, 1}m and
u 2 {0, 1}n, then vuT is a
biclique between vi 2 V and
uj 2 U for which vi = uj = 1

Exact BMF corresponds to
covering each edge of the graph
with at least one biclique

I In approximate BMF,
quasi-bicliques cover most
edges
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BMF and the Set Basis problem

0

@
1 1 0
1 1 1
0 1 1

1

A

=

1 3

2

In the Set Basis problem, we
are given a set system (U,S),
and our task is to find collection
C ✓ 2U such that we can cover
each set S 2 S with a union of
some sets of C

I For each S 2 S, there is
CS ✓ C such that
S =

S
C2CS

C

A set basis corresponds to exact
BMF

I The size of the smallest set
basis is the Boolean rank

N.B.: this is the same problem
as covering with bicliques
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Example of ±PSC and Basis Usage

+ +

++

-

-

-
-

-

- 0
0
1
1
1
1
0
0
0
0

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a B

defines 
the sign

defines 
the sets

28 / 38



DMM, summer 2015 Pauli Miettinen

Can we find the original 
pattern?

52
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Planted partition model
• Let G(φ, P) be a random graph distribution where  
φ : V → {1,…,k} partition the vertices to k classes 
and P=(pĳ) is a k-by-k matrix with pĳ ∈ [0,1]. 
Include edge (i, j) with probability pφ(i)φ(j). 

• Example: planted clique. Let φ(v) = 1 iff v is in the 
clique. Set p11 = 1 and pĳ = p elsewhere 

• Problem. Given a sample G’ from G(φ, P), find a 
partition φ’ s.t. φ’(v) = φ’(u) iff φ(v) = φ(u)
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Planted partition results
• Now if ||gu – gv|| is large enough when φ(v) ≠ φ(u), we 

can find φ  

• Depends on the above error bounds 

• With more complicated error bounds we get: 

• If s is the size of a planted clique, then there is a 
constant c s.t. for sufficiently large n we can recover φ 
with probability 1 – δ if 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Maximum clique as rank 
minimization

• Maximum n-vertex clique in graph G = (V, E) 
can be found with the following program

55

min r�nk(X)

s.t.
X

�2V

X

j2V
��j � n2

��j = 0 if {�, j} /2 E and � 6= j

X = XT

X 2 [0,1]V⇥V

A clique is a rank-1 submatrix

of size n-by-n

Proper submatrix

Symmetric

No entry larger than 1
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Nuclear norm relaxation
• The rank minimization problem is NP-hard 

• We can relax it to nuclear norm minimization: 
 
 
 

• The maximum clique is a valid solution and the unique 
optimizer under certain conditions 

• When this is the case, we can find the clique
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min kXk�
s.t.
X

�2V

X

j2V
��j � n2

��j = 0 if {�, j} /2 E and � 6= j

← can be replaced with 1
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Destructive noise models 
for bicliques

• So far we’ve added each edge independently with 
probability p  

• Erdős–Rényi random graph model 

• We can also follow the preferential attachment model 

• Barabási–Albert random graph model 

• Some vertices have big changes on neighbors, others less 

• If the noise follows the B–A model, it can’t have large 
bicliques ⇒ easy
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Results

• Erdős–Rényi: The minimum size of the 
original biclique ζ = log(NM) 

• Barabási–Albert: log N ≪ ζ ≪ √N 
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On exam
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Format & basic info

• Written exam 

• 28 July 2015 from 12:00–14:00  

• Times are sharp! 

• Lecture hall 001, building E1 3
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What you can and cannot 
bring

• You can (must) bring 

• writing equipments & student ID 

• one (1) A4-sized “cheat sheet” paper 

• You cannot bring (use) 

• electronic devices (incl. phones and pocket 
calculators and electric pencil sharpeners) 

• any other notes than the cheat sheet (incl. lecture 
slides, assignments, etc.)
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Cheat sheet
• Must contain your name!  

• A4-sized paper, text can be on both sides 

• Any content is OK (as long as its legal) 

• Use your discretion what you think is 
important or consider hard 

• Can be made with computer or be hand-
written (or with typewriter)
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What is covered in the 
exam?

• All lectures between 21 April to 21 July 

• Lecture on 21 July is a wrap-up, no new 
contents 

• All pen-and-paper and first two programming 
assignments 

• The chapters of books and articles cited in 
the lecture slides
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What kind of questions 
are there in the exam?

• Simple mathematical proofs 

• Similar to those in homework assignments 

• Developing variations of presented algorithms 

• “Explain how would you compute ABC decomposition with the following 
constraints” 

• Short texts or longer essays comparing different decomposition methods and/or 
explaining their use cases and interpretations 

• “What are the main differences between ABC and XYZ?” “Given this-and-that kind 
of data, how would you interpret its ABC decomposition?” 

• Short questions about features and properties of decompositions and methods  

• “Explain briefly the main idea behind algorithms computing ABC.” “True or false: 
computing the optimal XYZ decomposition (w.r.t. the Frobenius norm) is NP-hard.”

64



DMM, summer 2015 Pauli Miettinen

Exam checking day

• 31 July from 12:15 to 14:00 

• D5 rotunda (E1 4, 4th floor, left from 
elevator) 

• your only chance
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Re-Exam

• Open for everybody 

• Bonus points count, better of two exams 

• You must register via email by 7 August 
12 noon  

• Date & place TBD (late September)
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Advertisements
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Follow-up seminar
• I’m planning for a follow-up seminar in next semester 

• Topics involve deeper dive into new matrix (and 
maybe tensor) factorization methods for data analysis 

• Current plan (subject to change): Block seminar with 
two days of presentations in January/early February 

• Limited attendance with first-come-first-served basis 

• Send me e-mail if you want to get notified as soon as 
registration to the seminar is possible
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HiWi & MSc student 
positions

• I have positions for HiWis & MSc students on data 
mining 

• Matrices, tensors, and other stuff – tailored to taste 

• This course is important evaluation point 

• I will not consider any application before I know the 
results of this course  
⇒ If interested, apply in late August/early 
September
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Ask Me Anything
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Johnson–Lindenstrauss lemma
• Finding the decomposition can be expensive 
• Decompositions give only global guarantees 
–Any pair of points can have very different distances  

• Can we guarantee local similarity?

71

Johnson–Lindenstrauss lemma. Given ε > 0 and an integer n, let k 
be a positive integer such that k ≥ k0 = O(ε–2log n). For every set X 
of n points in ℝd there exists F: ℝd → ℝk such that for all xi, xj ∈ X 

(1 - ") kxi - xjk2 6 kF(xi)- F(xj)k2 6 (1 + ") kxi - xjk2
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How to find the projections?

72

• We need to find an k-by-d matrix R = (rij) such that 
function x ↦ Rx satisfies JL 

• Remarkably, if we select rij ~ N(0,1), R satisfies JL 
with high probability  
–That is, JL holds for all points of X with high probability 

• Achlioptas has show that we can also select  
Pr[rij = 1] = 1/2 and Pr[rij = –1] = 1/2 or  
Pr[rij = 1] = 1/6, Pr[rij = 0] = 2/3, Pr[rij = –1] = 1/6 
– Sparse matrix  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Spurious correlations

73
http://www.tylervigen.com/spurious-correlations
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