Chapter 5
Independent Component Analysis
Part I: Introduction and applications
Motivation
Cocktail party problem

Did you see that...

Have you heard...

So, yesterday this guy...

I said, darling...

Can we “tune in” on one speaker, i.e. separate the different speaker “signals”?
Cocktail party problem

• Assume we have two microphones recording two speakers
 • We observe $x_1(t)$ and $x_2(t)$ where t is time
• Assume what the speakers say is statistically independent
 • Real signals are $s_1(t)$ and $s_2(t)$
 • $x_j(t) = a_{1j}s_1(t) + a_{2j}s_2(t) \Rightarrow x = sA$
Cocktail party examples

Original signals

s_1

s_2

Observed signals

x_1

x_2

Hyvärinen & Oja 2000

DMM, summer 2017
Cocktail party question

- **Problem:** can we reconstruct the original signal and mixing coefficients knowing only the mixed signals?
 - i.e. can we build A and s knowing only x?
 - If we know x and A, the problem is easy
 - But how to find A?
The Definition
ICA definition

• Setting. Let $x_j \in \mathbb{R}$, $j = 1, \ldots, n$ be observed random variables. Assume there exists n latent random variables $s_i \in \mathbb{R}$ and latent coefficients a_{ij} such that $x_j = \sum_i a_{ij} s_i$ for all j.

• $x = sA$ and for T observations, $X = SA$ where X and S have T rows

• Problem. Find A and s given x
ICA assumptions
(important slide!)

• Original signals s_i are mutually statistically independent

• At most one original signal s_i is normally distributed

• The mixing matrix A is square and invertible
 • This is not necessary but simplifies the theory
ICA is identifiable

• Under the above assumptions, we can estimate \mathbf{A} and \mathbf{s} up to
 • signs and scales of components
 • ordering of components
• In many applications this is good enough
 • And we can impose extra constraints for better stability
Constraints

• The input variables must have zero mean
 • Center the columns of X if needed
• Often, columns of S are fixed to unit variance
 • The factors are pushed to A
Statistical independency

- Two random variables x and y are **uncorrelated** if $\mathbb{E}[xy] = \mathbb{E}[x]\mathbb{E}[y]$
- Knowing $\mathbb{E}[x]$ tells us nothing of $\mathbb{E}[xy]$
- Recall: **covariance** $\text{cov}(x, y) = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$
- R.v.’s x and y are **statistically independent** if for any transformation f_1 and f_2

 $\mathbb{E}[f_1(x)f_2(y)] = \mathbb{E}[f_1(x)]\mathbb{E}[f_2(y)]$
Example of independency

• Let x and y be s.t. $\Pr((x, y) = (a, b)) = 1/4$ for $(a, b) \in \{(0,1), (0,-1), (1,0), (-1,0)\}$

• $\text{cov}(x, y) = E[xy] – E[x]E[y] = 0 – 0 \cdot 0 = 0$

• Let $x \mapsto x^2$ and $y \mapsto y^2$

 • $E[x^2y^2] – E[x^2]E[y^2] = 0 – 0.5 \cdot 0.5 = –0.25$

 $\Rightarrow x$ and y are uncorrelated but not independent
Independency is strong

- IBAN account numbers and account holder’s ability to pay bills are probably uncorrelated
 - First 8 numbers (after DExx) are the bank and branch identifier
- But they might still be dependent
 - First 8 numbers (after DExx) are the bank and branch identifier
Whitening the signal

- **Whitening** is a transformation of random variables x_i to new variables y_i s.t.
 $E[y_i y_j] = 0$ if $i \neq j$ and $E[y_i y_i] = 1$

- Zero mean is assumed

- Thus, y_i are uncorrelated with unit variance

- Compare to z-scores
Computing the whitening

• Decorrelation can be computed in many ways
 • ZCA whitening, Cholesky whitening, PCA whitening

• We will use the SVD

• Let X have x_i as its columns and observations as its rows and let $X = U \Sigma V^T$ be its SVD
 • Columns of U give the whitened variables
ICA and SVD

• SVD (or PCA) cannot solve ICA
 • Essentially: they find uncorrelated but not necessarily independent components

• Whitening gives us $XV\Sigma^{-1} = SAV\Sigma^{-1} = SB$
 • B is new mixing matrix

• Whitening is a standard pre-processing technique in ICA
Why Gaussians are forbidden?

• Let s_1 and s_2 be original independent components whose joint distribution is Gaussian

$$p(s_1, s_2) = \frac{1}{2\pi} \exp \left\{-\frac{s_1^2 + s_2^2}{2}\right\} = \frac{1}{2\pi} \exp \left\{-\frac{\|s\|^2}{2}\right\}$$

• Let A be orthogonal

- $x = sA$ is Gaussian with covariance matrix equal to identity and $p(x_1, x_2) = \frac{1}{2\pi} \exp \left\{-\frac{\|s\|^2}{2}\right\}$

• No A in the pdf, the original and mixed distributions are identical
More on Gaussians

• Two uncorrelated Gaussians are necessarily independent

• With Gaussian distributions, we loose the strength of the independency

• Equivalently, the joint distribution of independent Gaussians is rotationally invariant

• But we can do ICA with at most one Gaussian distribution
ICA and other matrix factorizations

• ICA does not reduce the rank of the matrix
 • But we can apply the whitening first
• ICA does not have noise in the model
 • Some components express noise (c.f. SVD)
 • Noise is often Gaussian, and hence, if one factor is Gaussian, it is considered the noise
Interpreting an ICA
Factor interpretation

- Most natural interpretation in many applications
- Columns of S give the independent components
 - People in cocktail party
- Rows of A explain how the components are mixed
 - Placement of the microphones
Geometric interpretation

• Independent components are not (necessarily) orthogonal

• They are not axes, per se

• We can still treat the columns of A as coordinates in some space and plot the first two rows (say)

• But two points that are close in the plot might not be close in reality
Component interpretation

• The rank-1 components can be studied to understand how the columns of \mathbf{S} are used to create the data
 • But their ordering is not fixed
• If one column has Gaussian histogram, it can be considered to be noise
 • Columns of \mathbf{S} can be ordered based on how non-Gaussian they are (more on that next week)
Applications of ICA
Blind source separation from ECG data

- Electrocardiograms (ECG) have many types of noise and artefacts
 - Electrode movement, muscle movement, etc.
 - Might confuse the interpretation
- ICA can be used to clean the data
ECG example #1

Fig. 5. Demonstration of ECG artefact removal by ICA (a) 10s of EEG data, with channels 1 and 2 contaminated with noise. (b) Corresponding ICA components. (c) Corrected ECG signals by removing the third component in (b).

Table 3. The Values of $|\text{Kurt}|$ and Var for each of the 3 ICA components

<table>
<thead>
<tr>
<th>Index</th>
<th>ICA1</th>
<th>ICA2</th>
<th>ICA3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.89</td>
<td>13.37</td>
<td>1.61</td>
</tr>
<tr>
<td>Var</td>
<td>0.1</td>
<td>0.12</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 5(a) shows a 10s portion of ECG data. It can be clearly seen that both channel 1 and channel 2 are contaminated with noise. Fig. 5(b) shows the corresponding components derived by ICA. The noise in the original ECG is separated as ICA component 3, whose $|\text{Kurt}|$ value is 1.61 (Table 3). Fig. 5(c) shows the 'corrected' ECG by removing the noise component of ICA, again the third component in Fig. 5(b).

In this case, the noise source is also clearly identifiable and it can be removed from the original signal. Note also that the third QRS complex is of abnormal shape and timing. This is possibly an ectopic beat [25], not identified as artefact or noise by the ICA algorithm, and is consequently not removed.

He, Clifford & Tarassenko 2006
ECG example #2

Example 5: Artefacts in 3 channels (Subject 1, time period: 840 − 850)

Fig. 8. Demonstration of ECG artefact removal by ICA (a) 10s of ECG data, with artefacts in all 3 channels (7s − 8s), (b) Corresponding ICA components. (c) Corrected ECG signals by removing the third component in (b).

Table 6. The Values of $|\text{Kurt}|$ and Var for each of the 3 ICA components

<table>
<thead>
<tr>
<th>Index</th>
<th>ICA1</th>
<th>ICA2</th>
<th>ICA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\text{Kurt}</td>
<td>$</td>
<td>14.71</td>
</tr>
<tr>
<td>Var</td>
<td>0.11</td>
<td>0.06</td>
<td>8.01</td>
</tr>
</tbody>
</table>

Fig. 8(a) shows a 10s portion of ECG data. It can be clearly seen that there is an artefact just after 7s which affects all 3 channels. Fig. 8(b) shows the corresponding components derived by ICA. The artefacts are also isolated to ICA component 3, the Var value being 8.01 (Table 6). Fig. 8(c) shows the 'corrected' ECG by removing the artefacts component of ICA.

In the case of an artefact affecting all 3 channels at the same time, it can be effectively detected and removed from the original signal.

He, Clifford & Tarassenko 2006
Detecting suspicious messages

- Assume an inmate tries to communicate with criminals outside the prison
 - His communication is statistically monitored and he wants to “fly under the radar”
 - No encryption and no “hot” terms
- Plan: replace hot terms with random terms
 - “Put the file inside the cake” ~ “Put the asparagus inside the cake”
 - These discussions can be identified as they have anomalous term frequencies

Skillicorn chapter 7.5.1
DMM, summer 2017
Pauli Miettinen

30
Suspicous message example #1

Scatterplot of first three rows of A

Figure 7.1. 3-dimensional plot from an ICA of messages with correlated unusual word use. The messages of interest are circled.

ICA finds messages with correlated unusual word use
Suspicious message example #2

Scatterplot of first three rows of \mathbf{A}

Figure 7.2. 3-dimensional plot from an ICA of messages with correlated ordinary word use. The messages of interest are circled.

ICA doesn’t identify messages with usual word use
Figure 7.3. 3-dimensional plot from an ICA of messages with unusual word use. The messages of interest are circled.

ICA doesn’t identify messages with uncorrelated unusual word use
Direction of causality

- Assume we observe x_1 and x_2 and we know one is the cause and the other the effect
 - Which one is which?

- Assume linear regression model
 - Either $x_2 = b_1x_1 + e_1$ or $x_1 = b_2x_2 + e_2$
 - If x_1 and x_2 are Gaussian, both models will be equally good
Causality and ICA

- If \(x_1 \) and \(x_2 \) are non-Gaussian, we have
 - Model 1: \(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ b_1 & 1 \end{pmatrix} \begin{pmatrix} s \\ e_1 \end{pmatrix} \)
 - Model 2: \(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} s \\ e_2 \end{pmatrix} \)

- We can solve ICA on the data and decide if mixing matrix \(A \) is closer to model 1 or model 2
Summary (so far)

• ICA lets us to separate independent, non-Gaussian factors
 • Will not do noise removal or dimensionality reduction (or feature selection) per se
 • Orthogonal to SVD
 • Pun perhaps intended
• Next week: How to compute ICA? Stay tuned!