Chapter 5
Independent Component Analysis

Part II: Algorithms
ICA definition

• Given n observations of m random variables in matrix X, find n observations of m independent components in S and m-by-m invertible mixing matrix A s.t. $X = SA$

• Components are statistically independent

• At most one is Gaussian

• We can assume A is orthogonal (by whitening X)
Maximal non-Gaussian
Central limit theorem

- Average of i.i.d. variables converges to normal distribution
- \[\sqrt{n} \left(\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) - \mu \right) \xrightarrow{d} N(0, \sigma^2) \] as \(n \to \infty \)
- Hence \((X_1 + X_2)/2 \) is “more Gaussian” than \(X_1 \) or \(X_2 \) alone
 - For i.i.d. zero-centered non-Gaussian \(X_1 \) and \(X_2 \)
 - Hence, we can try to find components \(s \) that are “maximally non-Gaussian”
Re-writing ICA

• Recall, in ICA $\mathbf{x} = \mathbf{sA} \iff \mathbf{s} = \mathbf{xA}^{-1}$

 • Hence, s_j is a linear combination of x_i

• Approximate $s_j \approx y = \mathbf{xb}^T$ (\mathbf{b} to be determined)

 • Now $y = \mathbf{sAb}^T$ so y is a lin. comb. of \mathbf{s}

• Let $\mathbf{q}^T = \mathbf{Ab}^T$ and write $y = \mathbf{xb}^T = \mathbf{sq}^T$
More re-writings

• Now \(s_j \approx y = xb^T = sq^T \)

• If \(b^T \) is a column of \(A^{-1} \), \(s_j = y \) and \(q_j = 1 \) and \(q \) is 0 elsewhere

• CLT: \(sq^T \) is least Gaussian when \(q \) looks correct
 • We don’t know \(s \), so we can’t vary \(q \)
 • But we can vary \(b \) and study \(xb^T \)

• **Approach:** find \(b \) s.t. \(xb^T \) is least Gaussian
Kurtosis

• One way to measure how Gaussian a random variable is is its **kurtosis**

 • \(\text{kurt}(y) = E[(y - \mu)^4] - 3(E[(y - \mu)^2])^2 \)

 • \(E[y] = \mu \)

 • Normalized version of the fourth central moment \(E[(y - \mu)^4] \)

 • If \(y \sim N(\mu, \sigma^2) \), \(\text{kurt}(y) = 0 \), most other distributions have non-zero kurtosis (positive or negative)
Computing with kurtosis

• If x and y are independent random variables:
 • $\text{kurt}(x + y) = \text{kurt}(x) + \text{kurt}(y)$
 • Homework

• If α is a constant:
 • $\text{kurt}(\alpha x) = \alpha^4 \text{kurt}(x)$
 • $E[(\alpha x)^4] - 3(E[(\alpha x)^2])^2 = \alpha^4 E[x^4] - \alpha^4 3(E[x^2])^2$
Sub- and super-Gaussian distributions

- Distributions with negative kurtosis are **sub-Gaussian** (or **platykurtic**)
 - Flatter than Gaussian
- Distributions with positive kurtosis are **super-Gaussian** (or **leptokurtic**)
 - Spikier than Gaussian
Examples

![Standard symmetric PDFs](https://en.wikipedia.org/wiki/Kurtosis#/media/File:Standard_symmetric_pdf.png)
Negentropy

• Another measure of non-Gaussianity
• Entropy of discrete r.v. X is $H(X) = -\sum_i \Pr[X=i] \log \Pr[X=i]$
• The differential entropy of continuous random vector \mathbf{x} with density $f(\mathbf{x})$ is $H(\mathbf{x}) = -\int f(\mathbf{x}) \log f(\mathbf{x}) \, d\mathbf{x}$
 • Gaussian \mathbf{x} has the largest entropy over all random variables of equal variance
• Negentropy is $J(\mathbf{x}) = H(\mathbf{x}_{\text{Gauss}}) - H(\mathbf{x})$
 • $\mathbf{x}_{\text{Gauss}}$ is a Gaussian r.v. of the same covariance matrix as \mathbf{x}
Approximating negentropy

• Computing the negentropy requires estimating the (unknown) pdfs

• It can be approximated as

\[J(y) \approx \sum_i k_i (E[G_i(y)] - E[G_i(v)])^2 \]

• \(v \sim N(0, 1) \), \(k_i \) are positive constants and \(G_i \) are some non-quadratic functions

• With only one function \(G(y) = y^4 \), this is kurtosis

• One choice: \(G_1(y) = \log(\cosh(ay))/a \), \(G_2(y) = -\exp(-y^2/2) \)
Back to optimization (using kurtosis)

• Recall: with two components
\[y = xb^T = sq^T = q_1s_1 + q_2s_2 \]

• \(s_i \) have unit variance

• We want to find \(\pm b = \text{argmax } |\text{kurt}(xb^T)| \)

• We can’t determine the sign

• We want \(y \) to be either \(s_1 \) or \(s_2 \), hence
\[E[y^2] = q_1^2 + q_2^2 = 1 \]
Whitening, again

• Generally, $||q||^2 = 1$

• Recall: $Z = U = XV\Sigma^{-1}$ is the whitened version of X

• Target becomes $\pm w = \arg\max |\text{kurt}(zw^T)|$

• Now $||q||^2_2 = (wU^T)(Uw^T) = ||w||^2_2$

• Hence we have constraint $||w||^2 = 1$
Gradient-based algorithm

• Gradient with kurtosis is

\[\frac{\partial \text{kurt}(zw^T)}{\partial w} = 4 \text{sign}(\text{kurt}(zw^T))(E[(zw^T)^3 z] - 3w \|w\|_2^2) \]

• \(E[(zw^T)^2] = \|w\|^2 \) for whitened data

• We can optimize this using standard gradient methods

• To satisfy the constraint \(\|w\|^2 = 1 \), we divide \(w \) with its norm after every update
FastICA for one IC and kurtosis

- Noticing that $||\mathbf{w}||^2 = 1$ by constraint and taking infinite step update, we get

 $\mathbf{w} \leftarrow E[(\mathbf{z}\mathbf{w}^T)^3 \mathbf{z}] - 3\mathbf{w}$

- Again set $\mathbf{w} \leftarrow \mathbf{w}/||\mathbf{w}||$ after every update

- Expectation has naturally to be estimated

- No theoretical guarantees but works in practice
FastICA with approximations of negentropy

• Let g be the derivative of a function used to approximate the negentropy

 • $g_1(x) = G_1'(x) = \tanh(ax)$

• The general fixed-point update rule is

 $$w \leftarrow E[g(zw^T)z] - E[g'(zw^T)]w$$
Multiple components

• So far we have found only one component

 • To find more, remember that vectors w_i are orthogonal (columns of invertible A)

• General idea:

 • Find one vector w

 • Find second that is orthogonal to the first one

 • Find third that is orthogonal to the two previous ones, etc.
Symmetric orthogonalization

• We can compute w_i's in parallel
 • Update w_i's independently
 • Run orthogonalization after every update step
 • $W \leftarrow (WW^T)^{-1/2}W$
 • Iterate until convergence
Maximum Likelihood
Maximum-likelihood algorithms

• **Idea:** We are given observations \mathbf{X} that are drawn from some parameterized family of distributions $D(\Theta)$

• The **likelihood** of \mathbf{X} given Θ, $L(\Theta; \mathbf{X}) = p_D(\mathbf{X}; \Theta)$, where $p_D(\cdot; \Theta)$ is the probability density function of D with parameters Θ

• In **maximum-likelihood estimation** (MLE) we try to find Θ that maximizes the likelihood given \mathbf{X}
ICA as MLE

• If $p_x(x)$ is the pdf of $x = sA$, then

$$p_x(x) = p_s(s) |\text{det } B| = |\text{det } B| \prod_i p_i(s_i) = |\text{det } B| \prod_i p_i(xb_i^T)$$

• here $B = A^{-1}$

• In general, if x is r.v. with pdf $p_x(x)$ and $y = Bx$, then $p_y(y) = p_x(Bx)|\text{det } B|$

• For T observations x_1, x_2, \ldots, x_T the log-likelihood of B given X is

$$\log L(B; X) = \sum_{t=1}^T \sum_{i=1}^m \log p_i(x_t b_i^T) + T \log |\text{det } B|$$
Problems with MLE

• The likelihood is expressed as a function of B

• But we also need to estimate the pdfs $p_i()$

 • Non-parametric problem, infinite number of different pdfs

• Very hard problem…
If we know the pdfs

- Sometimes we know the pdfs of the components
 - We only need to estimate their parameters and B
- Sometimes we know only that the pdfs are super-Gaussian (for example)
 - We can use $\log p_i(s_i) = -\log \cosh(s_i)$
 - Requires normalization
\(-\log \cosh(x) \approx -\lvert x \rvert\)
Nothing on the pdfs is known

• We might not know whether the pdfs of the components are sub- or super-Gaussian
 • It is enough to estimate which one they are!
• For super-Gaussian,
 \[\log p_i^+(s_i) = \alpha_1 - 2\log \cosh(s_i) \]
• For sub-Gaussian,
 \[\log p_i^-(s_i) = \alpha_2 - (s_i^2/2 - \log \cosh(s_i)) \]

\(\alpha_i\) are only needed to make these logs of pdfs – not in optimization
Log-likelihood gradient

- The gradient is \(\frac{\partial \log L}{\partial B} = (B^T)^{-1} + \sum_{t=1}^{T} g(x_t B^T) x_t \)
 - Here \(g(y) = (g_i(y_i))_{i=1}^{n} \) with \(g_i(y_i) = \log p_i(y_i) \)’ = \(p_i'(y_i)/p_i(y_i) \)
 - This gives us \(B \leftarrow B + \delta((B^T)^{-1} + \sum_t g(x_t B^T) x_t) \)
 - Multiplying from right with \(B^T B \) and defining \(y_t = x_t B^T \) gives \(B \leftarrow B + \delta(I + \sum_t g(y_t) y_t) B \)
 - So-called infomax algorithm

Step size
Setting $g()$

- We compute $E[-\tanh(s_i)s_i + (1 - \tanh(s_i)^2)]$
 - If positive, set $g(y) = -2\tanh(y)$
 - If negative (or zero), set $g(y) = \tanh(y) - y$
- Use current estimates of s_i
Putting it all together

• Start with random B and γ, choose learning rates δ and δ_γ

• Iterate until convergence

 • $y \leftarrow Bx$ and normalize y to unit variance

 • $\gamma_i \leftarrow (1 - \delta_\gamma)\gamma_{i-1} + \delta_\gamma E[-\tanh(y_i)y_i + (1 - \tanh(y_i)^2)]$

 • if $\gamma_i > 0$, use super-Gaussian g; o/w sub-Gaussian g

 • $B \leftarrow B + \delta(I + \sum_t g(y_t)^T y_t)B$
ICA summary

• ICA can recover independent source signals
 • if they are non-Gaussian
• Does not reduce rank
• Many applications, special case of blind source separation
 • Standard algorithmic technique is to maximize non-Gaussianity of the recovered components
ICA literature
