Introduction to Tensors

28 October 2015

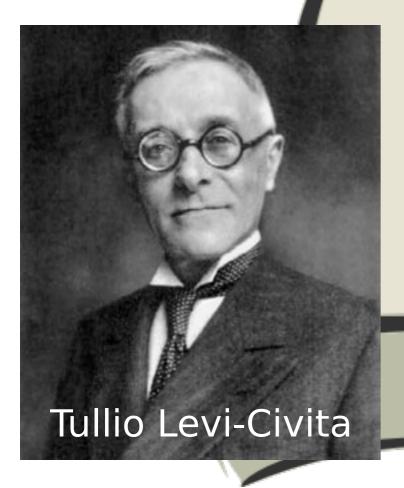
Introduction to Tensors

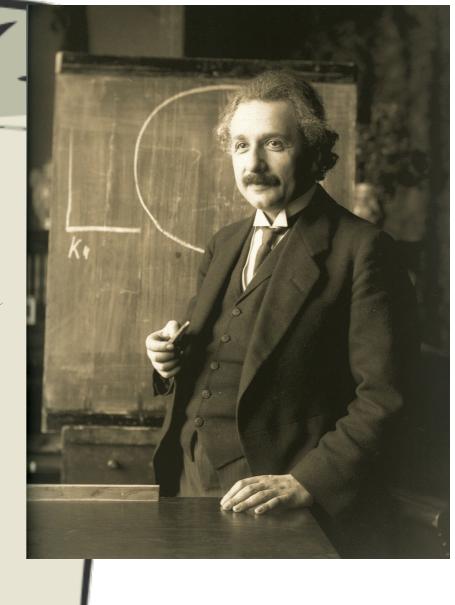
- What is a ... tensor?
- Basic Operations
- CP Decompositions and the Tensor Rank
- The Tucker Decomposition
- Matricization and Computing the CP and Tucker

Dear Tullio,

I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of us have to make our way laboriously on foot.

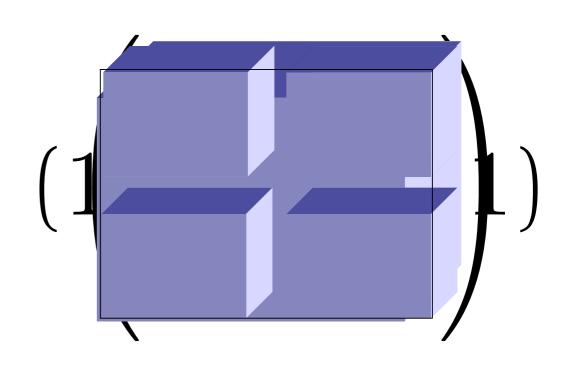
Cheers, Albert





What is a ... tensor?

- A tensor is a multi-way extension of a matrix
 - A multi-dimensional array
 - A multi-linear map
- In particular, the following are all tensors:
 - Scalars
 - Vectors
 - Matrices



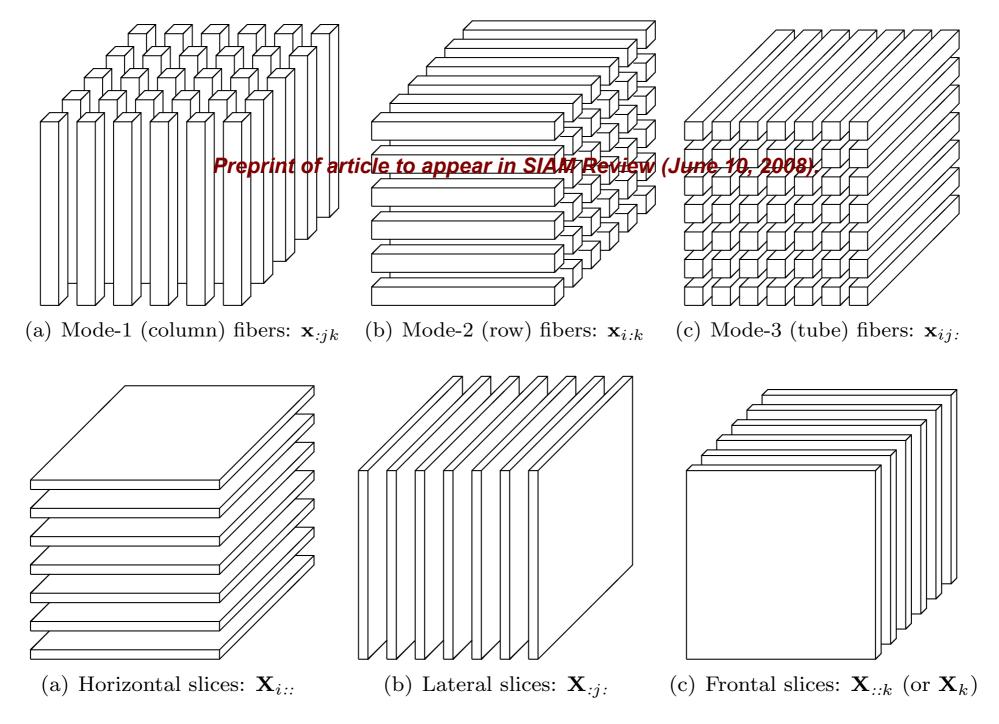
Why Tensors?

- Tensors can be used when matrices are not enough
- A matrix can represent a binary relation
 - A tensor can represent an n-ary relation
 - E.g. subject–predicate–object data
 - A tensor can represent a set of binary relations
 - Or other matrices
- A matrix can represent a matrix
 - A tensor can represent a series/set of matrices
 - But using tensors for time series should be approached with care

Terminology

- Tensor is N-way array
 - E.g. a matrix is a 2-way array
- Other sources use:
 - N-dimensional
 - But is a 3-dimensional vector a 1-dimensional tensor?
 - rank-N
 - But we have a different use for the word rank
- A 3-way tensor can be N-by-M-by-K dimensional
- A 3-way tensor has three modes
 - Columns, rows, and tubes

Fibres and Slices



Basic Operations

- Tensors require extensions to the standard linear algebra operations for matrices
- But before tensor operations, a recap on vectors and matrices

Basic Operations on Vectors

- A **transpose** v^T transposes a row vector into a column vector and vice versa
- If \mathbf{v} , $\mathbf{w} \in \mathbb{R}^n$, $\mathbf{v} + \mathbf{w}$ is a vector with $(\mathbf{v} + \mathbf{w})_i = v_i + w_i$
- For vector \mathbf{v} and scalar α , $(\alpha \mathbf{v})_i = \alpha \mathbf{v}_i$
- A dot product of two vectors \mathbf{v} , $\mathbf{w} \in \mathbb{R}^n$ is $\mathbf{v} \cdot \mathbf{w} = \sum_i v_i w_i$
 - A.k.a. scalar product or inner product
 - Alternative notations: $\langle \mathbf{v}, \mathbf{w} \rangle$, $\mathbf{v}^T \mathbf{w}$ (for column vectors), $\mathbf{v} \mathbf{w}^T$ (for row vectors)

Basic Operations on Matrices

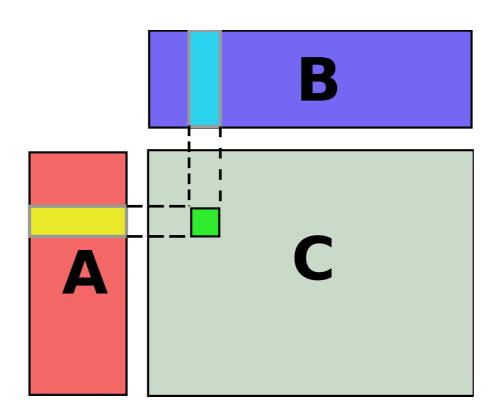
- Matrix **transpose** \mathbf{A}^T has the rows of \mathbf{A} as its columns
- If $\bf A$ and $\bf B$ are n-by-m matrices, then $\bf A+\bf B$ is an n-by-m matrix with $(\bf A+\bf B)_{ij}=m_{ij}+n_{ij}$
- If $\bf A$ is n-by-k and $\bf B$ is k-by-m, then $\bf AB$ is an n-by-m matrix with

$$(\mathbf{AB})_{ij} = \sum_{\ell=1}^{k} a_{i\ell} b_{\ell j}$$

• **Vector outer product vw^T** (for column vectors) is the matrix product of n-by-1 and 1-by-m matrices

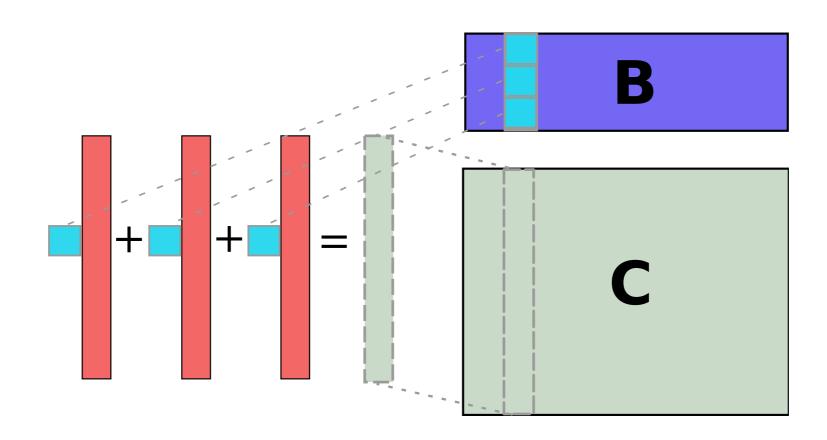
Intuition for Matrix Multiplication

• Element $(\mathbf{AB})_{ij}$ is the inner product of row i of \mathbf{A} and column j of \mathbf{B}



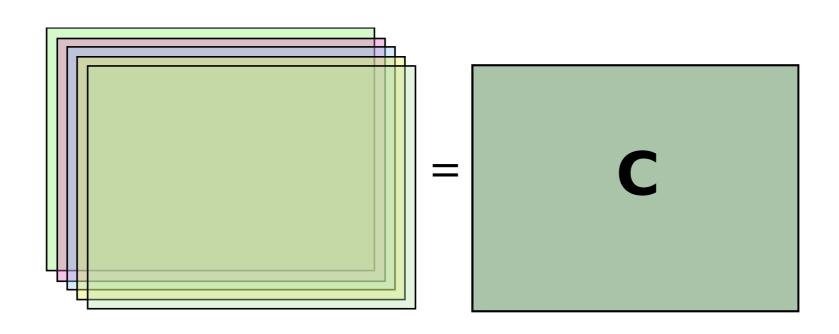
Intuition for Matrix Multiplication

 Column j of AB is the linear combination of columns of A with the coefficients coming from column j of B



Intuition for Matrix Multiplication

Matrix **AB** is a sum of k matrices **a**_l**b**_l^T
 obtained by multiplying the *l*-th column of **A** with the *l*-th row of **B**



Tensor Basic Operations

 A multi-way vector outer product is a tensor where each element is the product of corresponding elements in vectors:

$$(\boldsymbol{a} \circ \boldsymbol{b} \circ \boldsymbol{c})_{ijk} = a_i b_j c_k$$

- **Tensor sum** of two same-sized tensors is their element-wise sum $(\mathcal{X} + \mathcal{Y})_{ijk} = x_{ijk} + y_{ijk}$
- A tensor inner product of two same-sized tensors is the sum of the element-wise products of their values:

$$\langle \mathcal{X}, \mathcal{Y} \rangle = \sum_{i=1}^{I} \sum_{j=1}^{J} \cdots \sum_{z=1}^{Z} x_{ij...z} y_{ij...z}$$

Norms and Distances

The Frobenius norm of a matrix M is

$$||\mathbf{M}||_F = (\Sigma_{i,j} m_{ij}^2)^{1/2}$$

- Can be used as a distance between two matrices: $d(\mathbf{M}, \mathbf{N}) = ||\mathbf{M} \mathbf{N}||_F$
- Similar Frobenius distance on tensors is

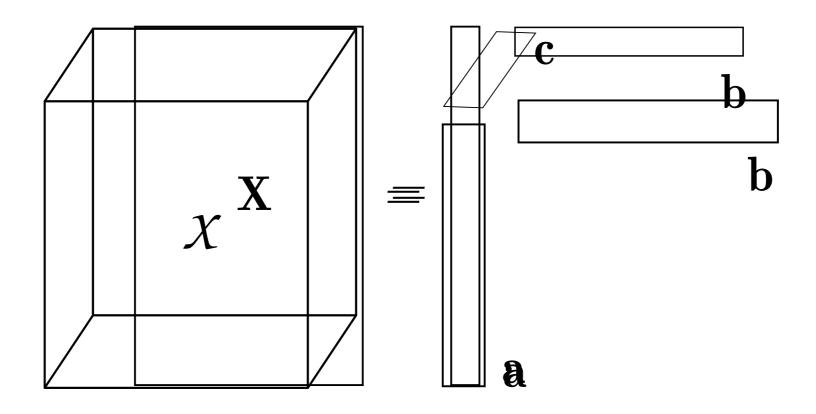
$$d(\mathcal{X},\mathcal{Y}) = \left(\sum_{i,j,k} (x_{ijk} - y_{ijk})^2\right)^{1/2}$$

• Equivalently $\sqrt{\langle \mathcal{X} - \mathcal{Y}, \mathcal{X} - \mathcal{Y} \rangle}$

CP Decomposition and Tensor Rank

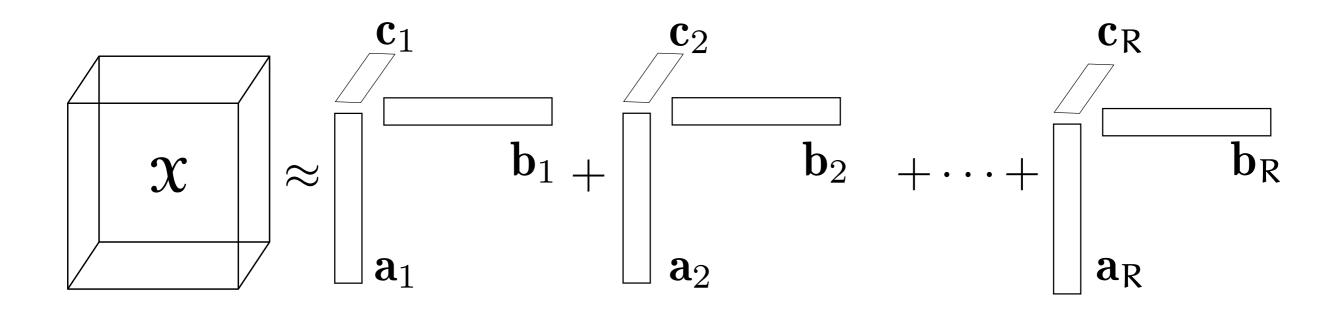
- A matrix decomposition represents the given matrix as a product of two (or more) factor matrices
- The rank of a matrix M is the
 - Number of linearly independent rows (row rank)
 - Number of linearly independent columns (column rank)
 - Number of rank-1 matrices needed to be summed to get **M** (Schein rank)
 - A rank-1 matrix is an outer product of two vectors we generalize
 - They all are equivalent

Rank-1 Tensors



 $X \equiv a \circ b \circ c$

The CP Tensor Decomposition



$$x_{ijk} \approx \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$$

More on CP

- The size of the CP decomposition is the number of rank-1 tensors involved
- The factorization can also be written using N factor matrices (for order-N tensor)
 - All column vectors are collected in one matrix, all row vectors in other, all tube vectors in third, etc.

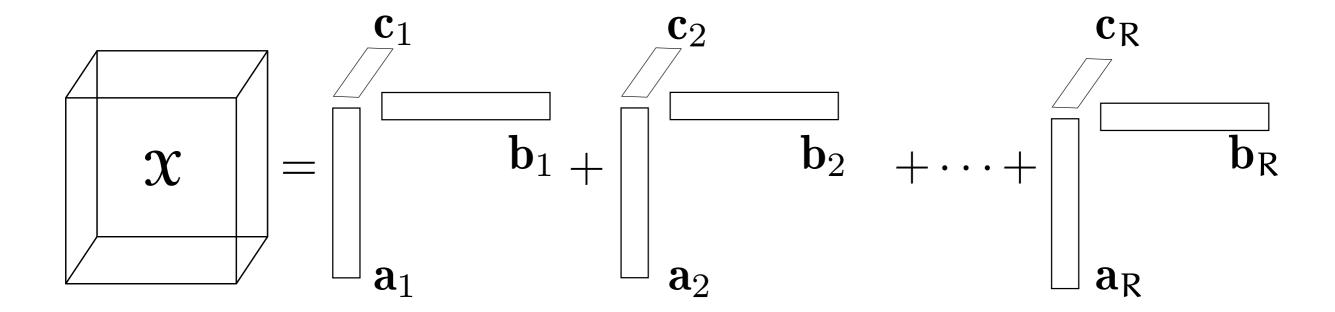
CANDECOM, PARAFAC, 10.2008).

Name	Proposed by
Polyadic Form of a Tensor	Hitchcock, 1927 [105]
PARAFAC (Parallel Factors)	Harshman, 1970 [90]
CANDECOMP or CAND (Canonical decomposition)	Carroll and Chang, 1970 [38]
Topographic Components Model	Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC)	Kiers, 2000 [122]

Table 3.1: Some of the many names for the CP decomposition.

Tensor Rank

- The rank of a tensor is the minimum number of rank-1 tensors needed to represent the tensor exactly
 - The CP decomposition of size R
 - Generalizes the matrix Schein rank



The Tucker Decompositions

- The CP decomposition requires the factors to have the same number of columns
- In Tucker decompositions, different number of columns can be mixed using a core tensor
 - This enables very different looking decompositions

Tensor-Vector Multiplication

- Vectors can be multiplied with tensors along specific modes
 - For n-th mode multiplication, the tensor's dimensionality in mode n must agree with the vector's dimensions
- The *n*-mode vector product is denoted $\mathcal{X} \bar{\mathbf{x}}_n \mathbf{v}$
 - The result is of order N-1
 - $(\mathcal{X}\bar{\mathbf{x}}_n\mathbf{v})_{i_1...i_{n-1}i_{n+1}...i_N} = \sum_{i_n=1}^{I_n} x_{i_1i_2...i_N} v_{i_n}$
 - Inner product between mode-n fibres and vector v

Tensor-Vector Multiplication Example

Given tensor \mathcal{T} and vector \mathbf{v} ,

$$\boldsymbol{T}_1 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \boldsymbol{T}_2 = \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix} \qquad \boldsymbol{v} = \begin{pmatrix} 2 & 1 \end{pmatrix}$$

Computing $\mathcal{Y} = \mathcal{T}\bar{x}_3 \mathbf{V}$ gives

$$\mathcal{Y} = \begin{pmatrix} 7 & 13 \\ 10 & 16 \end{pmatrix}$$

Tensor-Matrix Multiplication

- Let X be an N-way tensor of size $I_1 \times I_2 \times ... \times I_N$, and let U be a matrix of size $J \times I_n$
 - The *n*-mode matrix product of X with U, X $\times_n U$ is of size $I_1 \times I_2 \times ... \times I_{n-1} \times J \times I_{n+1} \times ... \times I_N$
 - $(\mathcal{X} \times_n \mathbf{U})_{i_1 \dots i_{n-1} j i_{n+1} \dots i_N} = \sum_{i_n=1}^{I_n} x_{i_1 i_2 \dots i_N} u_{j i_n}$
 - Each mode-*n* fibre is multiplied by the matrix *U*
 - In terms of unfold tensors:

$$\mathcal{Y} = \mathcal{X} \times_n \mathbf{U} \iff \mathbf{Y}_{(n)} = \mathbf{U}\mathbf{X}_{(n)}$$

Tensor-Matrix Multiplication Example

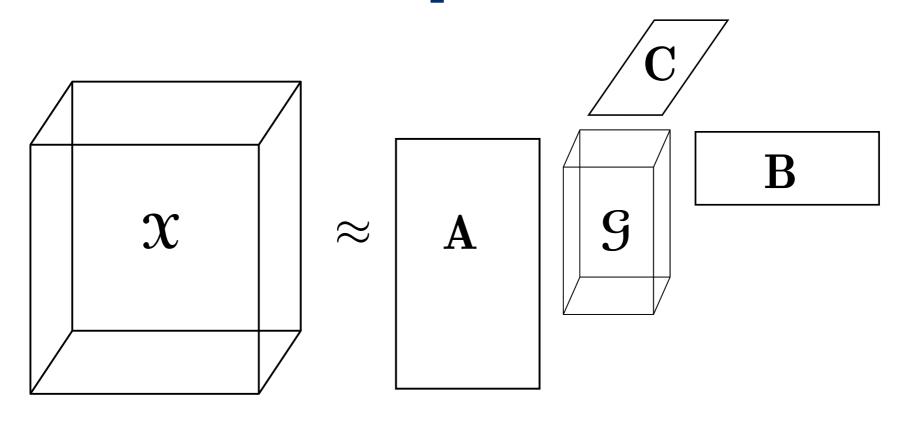
Given tensor \mathcal{T} and matrix \mathbf{M} ,

$$T_1 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} T_2 = \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix} M = \begin{pmatrix} 10 & 0 \\ 0 & 100 \\ 1 & 1 \end{pmatrix}$$

Computing $\mathcal{Y} = \mathcal{T} \times_1 \mathbf{M}$ gives

$$\mathbf{Y}_1 = \begin{pmatrix} 10 & 30 \\ 200 & 400 \\ 3 & 7 \end{pmatrix} \qquad \mathbf{Y}_2 = \begin{pmatrix} 50 & 60 \\ 600 & 800 \\ 11 & 15 \end{pmatrix}$$

The Tucker3 Tensor Decomposition



$$x_{ijk} \approx \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr}$$

Tucker3 Decomposition

- The Tucker3 tensor decomposition decomposes the tensor into three factor matrices A, B, and C, and a core tensor G
 - A has P, B has Q, and C has R columns and G is P-by-Q-by-R
- Many degrees of freedom: often A, B, and C are required to be orthogonal
- If P=Q=R and core tensor G is hyper-diagonal, then Tucker3 decomposition reduces to CP decomposition

Tensor Matricization and New Matrix Products

- Tensor matricization unfolds an N-way tensor into a matrix
 - Mode-n matricization arranges the mode-n fibers as columns of a matrix, denoted $\mathbf{X}_{(n)}$
 - As many rows as is the dimensionality of the nth mode
 - As many columns as is the product of the dimensions of the other modes
- If \mathcal{X} is an N-way tensor of size $I_1 \times I_2 \times ... \times I_N$, then $\mathbf{X}_{(n)}$ maps element $x_{i_1,i_2,...,i_N}$ into (i_N,j) where

$$j = 1 + \sum_{k=1}^{N} (i_k - 1)J_k[k \neq n] \text{ with } J_k = \prod_{m=1}^{k-1} I_m[m \neq n]$$

Matricization Example

$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{X}_{(1)} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

$$\mathbf{X}_{(2)} = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\mathbf{X}_{(3)} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

Another matricization example

$$\mathbf{X}_1 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \qquad \mathbf{X}_2 = \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix}$$

$$\mathbf{X}_{(1)} = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \end{pmatrix}$$

$$\mathbf{X}_{(2)} = \begin{pmatrix} 1 & 2 & 5 & 6 \\ 3 & 4 & 7 & 8 \end{pmatrix}$$

$$\mathbf{X}_{(3)} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}$$

Hadamard Matrix Product

- The element-wise matrix product
- Two matrices of size n-by-m, resulting matrix of size n-by-m

$$\mathbf{A} * \mathbf{B} = \begin{pmatrix} a_{1,1}b_{1,1} & a_{1,2}b_{1,2} & \cdots & a_{1,m}b_{1,m} \\ a_{2,1}b_{2,1} & a_{2,2}b_{2,2} & \cdots & a_{2,m}b_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}b_{n,1} & a_{n,2}b_{n,2} & \cdots & a_{n,m}b_{n,m} \end{pmatrix}$$

Kronecker Matrix Product

- Element-per-matrix product
- n-by-m and j-by-k matrices \boldsymbol{A} and \boldsymbol{B} give nj-by-mk matrix $\boldsymbol{A} \otimes \boldsymbol{B}$

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \cdots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \cdots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \cdots & a_{n,m}\mathbf{B} \end{pmatrix}$$

Khatri-Rao Matrix Product

- Element-per-column product
 - Number of columns must match
- n-by-m and k-by-m matrices \boldsymbol{A} and \boldsymbol{B} give nk-by-m matrix $\boldsymbol{A} \odot \boldsymbol{B}$

$$\mathbf{A} \circ \mathbf{B} = \begin{pmatrix} a_{1,1} \mathbf{b}_1 & a_{1,2} \mathbf{b}_2 & \cdots & a_{1,m} \mathbf{b}_m \\ a_{2,1} \mathbf{b}_1 & a_{2,2} \mathbf{b}_2 & \cdots & a_{2,m} \mathbf{b}_m \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} \mathbf{b}_1 & a_{n,2} \mathbf{b}_2 & \cdots & a_{n,m} \mathbf{b}_m \end{pmatrix}$$

Some identities

$$(A \otimes B)(C \otimes D) = AC \otimes BD$$

$$(A \otimes B)^{+} = A^{+} \otimes B^{+}$$

$$A \otimes B \otimes C = (A \otimes B) \otimes C = A \otimes (B \otimes C)$$

$$(A \otimes B)^{T}(A \otimes B) = A^{T}A * B^{T}B$$

$$(A \otimes B)^{+} = ((A^{T}A) * (B^{T}B))^{+}(A \otimes B)^{T}$$

A⁺ is the Moore-Penrose pseudo-inverse

Matricization for Solving Decompositions

- Using matricization and Khatri–Rao, we can re-write the CP decomposition
 - One equation per mode

$$X_{(1)} = A(C \odot B)^{T}$$

$$X_{(2)} = B(C \odot A)^{T}$$

$$X_{(3)} = C(B \odot A)^{T}$$

Solving CP: The ALS Approach

- 1. Fix **B** and **C** and solve **A**
- 2.Solve **B** and **C** similarly
- 3. Repeat until convergence

$$\min_{\boldsymbol{A}} \|\boldsymbol{X}_{(1)} - \boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^T\|_F$$

$$\mathbf{A} = \mathbf{X}_{(1)} ((\mathbf{C} \odot \mathbf{B})^T)^+$$

$$\mathbf{A} = \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})(\mathbf{C}^{\mathsf{T}}\mathbf{C} * \mathbf{B}^{\mathsf{T}}\mathbf{B})^{+}$$

R-by-R matrix

Solving Tucker3

- ALS-style methods are typically used
 - The matricized forms are

$$X_{(1)} = AG_{(1)}(C \otimes B)^{T}$$

$$X_{(2)} = BG_{(2)}(C \otimes A)^{T}$$

$$X_{(3)} = CG_{(3)}(B \otimes A)^{T}$$

• If factor matrices are orthogonal, we can get G as $G = X \times_1 \mathbf{A}^T \times_2 \mathbf{B}^T \times_3 \mathbf{C}^T$

Wrap-up

- Tensors generalize matrices
- Many matrix concepts generalize as well
 - But some don't
 - And some behave very differently
- We've only started with the basic of tensors...

Suggested Reading

- Skillicorn, D., 2007. Understanding Complex Datasets: Data Mining with Matrix Decompositions, Chapman & Hall/CRC, Boca Raton. Chapter 9
- Kolda, T.G. & Bader, B.W., 2009. Tensor decompositions and applications. *SIAM Review* 51(3), pp. 455–500.