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Table 6.3
Highest-scoring items in a 10-term factorization of the term × author × journal tensor from

five years of SIAM publication data.

# Terms Authors Journals
1 graphs, problem, algorithms,

approximation, algorithm,
complexity, optimal, trees,
problems, bounds

Kao MY, Peleg D, Motwani R,
Cole R, Devroye L, Goldberg
LA, Buhrman H, Makino K, He
X, Even G

SIAM J Comput,
SIAM J Discrete
Math

2 method, equations, methods,
problems, numerical,
multigrid, finite, element,
solution, systems

Chan TF, Saad Y, Golub GH,
Vassilevski PS, Manteuffel TA,
Tuma M, Mccormick SF, Russo
G, Puppo G, Benzi M

SIAM J Sci Comput

3 finite, methods, equations,
method, element, problems,
numerical, error, analysis,
equation

Du Q, Shen J, Ainsworth M,
Mccormick SF, Wang JP,
Manteuffel TA, Schwab C,
Ewing RE, Widlund OB,
Babuska I

SIAM J Numer Anal

4 control, systems, optimal,
problems, stochastic, linear,
nonlinear, stabilization,
equations, equation

Zhou XY, Kushner HJ, Kunisch
K, Ito K, Tang SJ, Raymond
JP, Ulbrich S, Borkar VS,
Altman E, Budhiraja A

SIAM J Control
Optim

5 equations, solutions, problem,
equation, boundary,
nonlinear, system, stability,
model, systems

Wei JC, Chen XF, Frid H, Yang
T, Krauskopf B, Hohage T, Seo
JK, Krylov NV, Nishihara K,
Friedman A

SIAM J Math Anal

6 matrices, matrix, problems,
systems, algorithm, linear,
method, symmetric, problem,
sparse

Higham NJ, Guo CH, Tisseur
F, Zhang ZY, Johnson CR, Lin
WW, Mehrmann V, Gu M, Zha
HY, Golub GH

SIAM J Matrix Anal
Appl

7 optimization, problems,
programming, methods,
method, algorithm, nonlinear,
point, semidefinite,
convergence

Qi LQ, Tseng P, Roos C, Sun
DF, Kunisch K, Ng KF,
Jeyakumar V, Qi HD,
Fukushima M, Kojima M

SIAM J Optim

8 model, nonlinear, equations,
solutions, dynamics, waves,
diffusion, system, analysis,
phase

Venakides S, Knessl C, Sherratt
JA, Ermentrout GB, Scherzer
O, Haider MA, Kaper TJ, Ward
MJ, Tier C, Warne DP

SIAM J Appl Math

9 equations, flow, model,
problem, theory, asymptotic,
models, method, analysis,
singular

Klar A, Ammari H, Wegener R,
Schuss Z, Stevens A, Velazquez
JJL, Miura RM, Movchan AB,
Fannjiang A, Ryzhik L

SIAM J Appl Math

10 education, introduction,
health, analysis, problems,
matrix, method, methods,
control, programming

Flaherty J, Trefethen N,
Schnabel B, [None], Moon G,
Shor PW, Babuska IM, Sauter
SA, Van Dooren P, Adjei S

SIAM Rev

7. Conclusions and future work. We have developed an alternating Poisson
regression fitting algorithm, CP-APR, for PTF for sparse count data. When such data
is generated via a Poisson process, we show that methods based on KL divergence
such as CP-APR recover the true CP model more reliably than methods based on LS.
Indeed, in classical statistics, it is well-known that the randomness observed in sparse
count data is better explained and analyzed by the Poisson model (KL divergence)
than a Gaussian one (LS error).

Our algorithm can be considered an extension of the Lee–Seung method for KL
divergence with multiple inner iterations (similar to [19] for LS). Allowing for multiple
inner iterations has the benefit of accelerating convergence. Moreover, being very
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Chi, E.C. & Kolda, T.G., 2012. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM Journal on Matrix Analysis and Applications, 33(4), pp.1272–1299.



TiDA, winter 2017–18 Pauli Miettinen 2at each channel, and the signal from a single channel is
represented in both time and frequency domains. Then, the
wavelet-transformed data are arranged as a three-way array
with modes time samples ! frequency ! channels and
analyzed using a PARAFAC model. This study demon-
strates that factors in the first, second, and third component
matrices represent the temporal, spectral, and spatial
signatures of the EEG data, respectively. PARAFAC models
with nonnegativity constraints have later been used in
another study on ERP to find the underlying structure of
brain dynamics [66]. A toolbox called ERPWAVELAB [67]
running under Matlab has been released for multichannel
time-frequency analysis of brain activity using EEG and
MEG data. Estienne et al. [5] use another multiway model,
i.e., Tucker3, to study the effect of a new drug on brain
activities. In addition to these studies on EEG/ERP analysis,
multiway methods have also been used in the analysis of
fMRI data [68] and in extracting the connection between
EEG and fMRI [69].

These studies have motivated the application of multi-
way models for understanding the structure of epileptic
seizures [21], [22], [70]. Similar to the three-way array
constructed in [3], multichannel ictal EEG data are arranged
as a third-order tensor with modes time samples !
frequency ! channels using the power of wavelet coeffi-
cients in [70] and [21] and using pure wavelet coefficients in
[22]. Components extracted by multiway models are used to
explore the signatures of a seizure in the frequency and time
domains as well as localize the seizure origin. Artifacts can
also be identified using the extracted signatures by a
PARAFAC model, and Acar et al. [21] propose to remove
these artifacts by multilinear subspace analysis. In Fig. 8, we
illustrate how a PARAFAC model can be used to extract
artifacts and localize epileptic seizures (an example taken
from [21]). We rearrange multichannel ictal EEG data as a
third-order tensor X with modes: time samples, frequency,
and channels and then model the tensor using a two-
component PARAFAC model; in other words, we decom-
pose the tensor as a sum of two rank-one tensors. The first

rank-one tensor captures the characteristics of an eye-
artifact. a1, b1, and c1 correspond to the temporal, spectral,
and spatial signatures of an eye artifact, respectively. On the
other hand, the second rank-one tensor has different
characteristics such as continuous activity during the ictal
period, high-frequency content, and localization around
electrodes T4 and T6. The activity with these signatures in
time, frequency, and electrode domains indeed corresponds
to a seizure, and the component in the channel mode ðc2Þ
can be used to localize the seizure.

4.3 Social Network Analysis/Text Mining

Multiway data analysis has also often been employed in
extracting relationships in social networks. The aim of
social network analysis is to study and discover hidden
structures in social networks, for instance, extracting
communication patterns among people or within organiza-
tions. In [4], chatroom communications data have been
arranged as a three-way array with modes: users !
keywords ! time windows and the performance of multi-
way models in capturing the underlying user group
structure has been compared with that of two-way models.
Another recent study [71] assesses the performance of
collective and centralized tensor analysis approaches again
on chatroom communications data. Not only chatroom but
also email communications have been analyzed using
multiway models [72].

In the context of web link analysis, Kolda et al. [60] and
[73] combine hyperlink and anchor text information and
rearrange web graph data as a sparse third-order tensor with
modes: webpages ! webpages ! anchor text. Web graph is
then analyzed using an algorithm improved to fit a
PARAFAC model to large and sparse data sets efficiently
in order to capture the groupings of webpages and identify
the main topics. Furthermore, with a goal of improving
personalized web searches, click-through data have also
been analyzed using a multiway analysis method called
CubeSVD [50], which is indeed the same as HOSVD. In this
study, click-through data are arranged as a three-way array

ACAR AND YENER: UNSUPERVISED MULTIWAY DATA ANALYSIS: A LITERATURE SURVEY 15

Fig. 7. Modeling of a fluorescence data set using a three-component PARAFAC model. ai, bi, and ci correspond to the ith component in samples,
emission, and excitation modes. We also illustrate the vector outer product of bi and ci, which shows the fluorescence landscape of each analyte
used in the preparation of the samples.

Acar, E. & Yener, B., 2009. Unsupervised Multiway Data Analysis: A Literature Survey. IEEE Transactions on Knowledge and Data Engineering, 21(1), pp.6–20.
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The one-two plane of the group stimulus space for 12 nations (data due to Wish). 
Dimensions one and two were interpreted by Wish as political alignment (communist- 
noncommunist) and economic development (economically developed-underdeveloped) 
respectively. 

different in philosophy from the approach discussed here. Kruskal has two 
approaches. The first assumes each subject to have a different monotone 
function (relating distances to similarity or dissimilarity judgments) but 
constrains them to have identically the same configuration (no degrees of 
freedom for weighting of dimensions or the like are allowed). The second 
assumes all subjects to have the same monotone function, but allows each 
his own idiosyncratic configuration. These two represent two extremes of a 
continuum (or, perhaps, of two continua) of which there are, of course, many 
intermediate points. McGee's approach covers at least some of these inter- 
mediate points. McGee allows for either the case in which each subject has 
his own monotone function, or all are constrained to have the same. He then 
introduces a parameter that monitors the degree to which the configurations 
for different subjects are constrained to be similar. At one extreme, these 
configurations must be identical; at the other there is no constraint at all 
on how similar they must be. At intermediate values of this parameter, they 

Carroll, J.D. & Chang, J.-J., 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35(3), pp.
283–319.



TiDA, winter 2017–18 Pauli Miettinen 4

J .  DOUGLAS CARROLL AND J IH - J IE  CHANG 301 

must be "intermediately" similar. ]VIcGee's approach, however, says nothing 
explicitly about how these configurations may depart from identity (the 
criterion of departure is simply a "sum of squared coordiante differences" 
criterion, which monitors degree, but not direction of departure from identity). 

The Tucker-Messick procedure, which has already been touched on, 
also makes no explicit assumption about communality of dimensions among 
different subjects. We shall discuss this in more detail at a later point. For 
the moment, let us consider the work of two other investigators, both of 
whom have dealt with essentially the same model as the present authors. 

Horan [1969] is the first author to publicly propose the model we have 
assumed here. Horan devised a method to solve for what we call the "group 
stimulus space" (he calls it the "normal attribute space") under the assump- 
tions of our model. Horan's method is based on the observation that, if the 
model stated in our equation (2) is correct then, 

(12) r,a(,~12 L~ik  J = ?J)~t X i t  ~ X,k,) 2 
i=1 i=1 

so that the root mean square of the distances (over individuals) will be ordinary 

WEST 

c .A 
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FR.~NCE 
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JA 'AN 
INDIA EAST 

FZOURE 12 
The one-three plane of the group stimulus space for the Wish d a t a  o n  12 nations. 

Wish interpreted dimension three as a geography dimension (East-West). 
Carroll, J.D. & Chang, J.-J., 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35(3), pp.
283–319.
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The oneotwo plane of the subject space for the Wish nation data. D, H and M stand 
for  "dove", "hawk" and "moderate" (as determined by subjects' self report) vis ~ vis 
attitudes on Vietnam war. 45 degree line divides "doves" from "hawks", with "moderates" 
on both sides. 

Euclidean distances in a space with coordinates y~ given by 
y .  , /~  (13) 

where 

(14) w., = m ,-1 

Thus, Horan shows, if the data are sufficiently strong to estimate ratio 
scaled distances, averaging the data via root mean squares will produce 
distances between points in a space which includes all the requisite dimen- 
sions. The individual spaces will then be related to this "common space" 
by at most a linear transformation. 

The problem with this, from our point of view, is that there is nothing 
in Horan's averaging procedure to guarantee that  the "common space" 
as derived from it wiU be described in terms of the correct orientation of 
axes. Since his procedure reduces al] the distances to a common set of Euclid- 
ean distances, and then applies a scaling procedure to produce a space from 
these distances, the rotationally invariant property of Euclidean distances 

Carroll, J.D. & Chang, J.-J., 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35(3), pp.
283–319.
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2. Solve for the core tensor as follows

Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N . (15)

5 TensorFaces: Multilinear Analysis of Facial Images

As we stated earlier, image formation depends on scene geometry, viewpoint, and il-
lumination conditions. Multilinear algebra offers a natural approach to the analysis of
the multifactor structure of image ensembles and to addressing the difficult problem of
disentangling the constituent factors or modes.

(a)

(b)

Fig. 3. The facial image database (28 subjects × 45 images per subject). (a) The 28 subjects shown
in expression 2 (smile), viewpoint 3 (frontal), and illumination 2 (frontal). (b) The full image set
for subject 1. Left to right, the three panels show images captured in illuminations 1, 2, and 3.
Within each panel, images of expressions 1, 2, and 3 are shown horizontally while images from
viewpoints 1, 2, 3, 4, and 5 are shown vertically. The image of subject 1 in (a) is the image situated
at the center of (b).

Vasilescu, M.A.O. & Terzopoulos, D., 2002. Multilinear Analysis of Image Ensembles: TensorFaces. In 7th European Conference on Computer Vision. Springer Berlin Heidelberg, pp. 447–
460.
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(a)

people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(b) (c) (d)

Fig. 4. Some of the basis vectors resulting from the multilinear analysis of the facial image data
tensor D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix
Upixels, and are the principal axes of variation across all images. (b,c,d) A partial visualization of
the product Z ×5 Upixels, in which the core tensor Z transforms the eigenvectors Upixels to yield a
5-mode, 28 × 5 × 3 × 3 × 7943 tensor of eigenmodes which capture the variability across modes
(rather than images). Some of the first few eigenmodes are shown in the three arrays. The labels at
the top of each array indicate the names of the horizontal and vertical modes depicted in that array.
Note that the basis vector at the top left of each panel is the average over all people, viewpoints,
illuminations, and expressions (the first column of eigenmodes (people mode) is shared by the
three arrays).

The advantage of multilinear analysis is that the core tensor Z can transform the
eigenimages present in the matrix Upixels into eigenmodes, which represent the principal
axes of variation across the various modes (people, viewpoints, illuminations, expres-
sions) and represents how the various factors interact with each other to create an image.
This is accomplished by simply forming the product Z ×5 Upixels. By contrast, PCA ba-
sis vectors or eigenimages represent only the principal axes of variation across images.
To demonstrate, Fig. 4 illustrates in part the results of the multilinear analysis of the
facial image tensor D. Fig. 4(a) shows the first 10 PCA eigenimages contained in Upixels.

Vasilescu, M.A.O. & Terzopoulos, D., 2002. Multilinear Analysis of Image Ensembles: TensorFaces. In 7th European Conference on Computer Vision. Springer Berlin Heidelberg, pp. 447–
460.
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Fig. 4(b) illustrates some of the eigenmodes in the product Z ×5 Upixels. A few of the
lower-order eigenmodes are shown in the three arrays. The labels at the top of each array
indicate the names of the horizontal and vertical modes depicted by the array. Note that
the basis vector at the top left of each panel is the average over all people, viewpoints,
illuminations, and expressions, and that the first column of eigenmodes (people mode)
is shared by the three arrays.

PCA is well suited to parsimonious representation, since it orders the basis vectors
according to their significance. The standard PCA compression scheme is to truncate the
higher order eigenvectors associated with this representation. Our multilinear analysis
enables an analogous compression scheme, but it offers much greater control. It allows
the strategic truncation of higher-order eigenmodes depending on the task at hand and
the modalities that should be represented most faithfully.

illumination basis 1 illumination basis 2 illumination basis 3
people↓ expressions→ people↓ expressions→ people↓ expressions→

...
...

...

(a) (b) (c)

Fig. 5. Some of the eigenvectors in the 28×3×3×7943 tensor Z×2Uviews ×5Upixels for viewpoint
1. These eigenmodes are viewpoint specific.

Multilinear analysis subsumes mixtures of probabilistic PCA or view-based mod-
els [15,11] when one uses a different choice of basis functions. Starting with the eigen-
modes Z×5Upixels, we multiply the viewpoint parameter matrix Uviews to form the product
Z ×2 Uviews ×5 Upixels, which yields the principal axes of variation of the image ensem-
ble across the people mode, illumination mode, and expression mode for each of the
5 viewpoints. Fig. 5 shows the eigenvectors that span all the images in viewpoint 1.

Vasilescu, M.A.O. & Terzopoulos, D., 2002. Multilinear Analysis of Image Ensembles: TensorFaces. In 7th European Conference on Computer Vision. Springer Berlin Heidelberg, pp. 447–
460.


