Information extraction

7. Relation extraction II

Simon Razniewski
Winter semester 2019/20
Announcements

• Results assignment 5 online

• Evaluation on cleaned data → scores moderately higher than on provided data

• Many great solutions

• Caution
 • Make sure code runs
 • 6 passed assignments → All assignments are exam-relevant 😊
Design, implementation, comments:

1. Extracting Date of Birth: function extractDoB
 - Design
 Given our restricted domain of Wikipedia abstracts, it was surprisingly straightforward to achieve an f1 score of ~80% just by extracting the very first date in the abstract.
 - Implementation
 The function uses a regex (dateMatcher regex ref: https://stackoverflow.com/questions/51122413/) in order to extract the date and returns it in the right format.
 - Comments
 This method is admittedly crude, and it can be further improved by using either text extracted in parentheses right after the entity mention and/or look for the keyword 'born' followed by the date.

2. Extracting Nationality: function extractNationality
 - Design
 It was observed that most entities are mentioned with their nationalities such as 'Wayne A. Hendrickson (born April 25, 1941, New York City) is an American biophysicist and University professor at Columbia.' which was matched.
 In case that returns no candidate, the verb 'born' is looked for in the abstract and when found, it's prepositional objects are extracted. Those objects that are in fact dates such as 'born in __1955__' are discarded and the rest are returned.
 - Implementation
 Dependency parsing and ner using spacy.
 - Comments
 Most nationalities appearing are of demonyms, and the expected nationality (loosely) are country names, a dict of demonym-country has been constructed using data provided in the following link: https://github.com/knowitall/chunkedextractor/blob/master/src/main/resources/edu/knowitall/chunkedextractor/demonyms.csv. Credits: Jesujoba ALABI for having discussed it on the IE1920 forum.
3. Extracting alma mater: function extractAlmaMater
 - Design
 The function looks for the following patterns:
 studied <something> at <alma_mater>
 attended <alma_mater>
 [was] obtained/received/awarded/gained/earned/completed/graduated/educated <something> from/at <alma_mater>
 and just extracts the alma maters if 'alma_mater' is at least one among 'university', 'school', 'college', 'academy', or 'gymnasium'.
 - Implementation
 POS tagging, dependency parsing and ner using spacy.

4. Extracting places of work: function extractWorkPlace
 - Design
 This turned out to be quite the challenge with a morass of exceptions. Hence the function takes an overly simplifying approach of extracting all of the organizations mentioned in the abstract apart from alma maters and returns.

5. Extracting awards: extractAwards
 - Design
 Looks for verbs 'won' and 'awarded' and returns the objects.
 In order to improve recall, this function makes the assumption that most awards mentioned in the abstract probably belong to the entity in question and hence extracts all of them using a regex that matches 'prize', 'award', 'medal' and returns. The first rule compensates for all those awards that don't get matched by the regex such as 'Spinozapremie'.
 - Implementation
 Dependency parsing, ner, regex matching

General comments
There seems to be an upper bound on the scores as the ground truth itself is quite noisy.
It is observed that for this restricted domain, given enough time, manual pattern matching can indeed return good enough results, there aren't too many exceptions to warrant a statistical models.
Outline

1. Problem
2. Manual patterns
3. Supervised learning
 1. Feature-based
 2. TACRED and BERT
4. Semi- and unsupervised extraction
 1. Iterative pattern learning (DIPRE)
 2. Distant supervision
 • CINEX
5. Evaluation
6. OpenIE
 1. PATTY
 2. Quasimodo
7. Negation
How not to design an IE algorithm

Task: Find Simpson pets

Corpus:

Algorithm: Regex: "Snowball (II|IV)*"

Output: {Snowball I, Snowball II, Snowball IV}

Is this algorithm good?
How to design an IE algorithm

Task: Find Simpson pets

Corpus:

Take only a sample of the corpus

Lisa decides to play music on her saxophone for Coltrane, but the noise frightens him and he commits suicide. As Gil swerves to avoid hitting Snowball V, his car hits a tree and bursts into flames. Since the cat is unhurt, Lisa takes it as a sign of good luck and adopts her. [...]
How to design an IE algorithm

Task: Find Simpson pets

Corpus:

Gold Standard:
{Coltrane, Snowball I, ...}

Consider only the sample corpus.

Manually make a gold standard
How to design an IE algorithm

Task: Find Simpson pets

Corpus:

Gold Standard:
{Coltrane, Snowball I, ...}

Algorithm

Output: {...}

Evaluator

improve

Precision/Recall
Def: Problem of imbalanced classes

Population: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}
Gold Standard: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}\}
Output: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}
Precision: \frac{99}{100} = 99\%
Recall: \frac{99}{99} = 100\%

If there are very few negatives, just outputting all elements gives great scores.

The problem of imbalanced classes appears when only very few of the items of the population are not in the gold standard. An approach that outputs the entire population has a very high precision and a perfect recall. (Example: Citizenship on en-Wikipedia)

The negatives are the elements of the population that are not in the gold standard.
Def: Confusion Matrix

Population: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}

Gold Standard: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}\}

Output: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}

The confusion matrix for the output of an algorithm looks as follows:

<table>
<thead>
<tr>
<th>Gold standard</th>
<th>Positive</th>
<th>Negative</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>True Positives</td>
<td>False Positives</td>
<td>Predicted Positives</td>
</tr>
<tr>
<td>Negative</td>
<td>False Negatives</td>
<td>True Negatives</td>
<td>Predicted Negatives</td>
</tr>
<tr>
<td>\sum</td>
<td>(Gold) Positives</td>
<td>(Gold) Negatives</td>
<td>\sum</td>
</tr>
</tbody>
</table>

Items of the population that are not in the gold standard

Items of the population that are not output

"Negative" because it was not output, "True" because that was correct.
Def: Confusion Matrix

Population: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}

Gold Standard: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}\}

Output: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}

The **confusion matrix** for the output of an algorithm looks as follows:

<table>
<thead>
<tr>
<th>Gold standard</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>1</td>
</tr>
</tbody>
</table>

1 item was output as positive, but was negative in the gold standard.

Precision = true positives / predicted positives = \(\frac{99}{100} = 99\%\)

Recall = true positives / gold positives = \(\frac{99}{99} = 100\%\)
Confusion with confusion matrixes

A confusion matrix does not always make sense in an information extraction scenario:

- Population: \{H, Ho, Hom, ..., o, om, ome, ..., r Sim, r Simps, ...\}
- Gold Standard: \{Homer\}
- Output: \{Homer\}

<table>
<thead>
<tr>
<th>Gold standard</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Positive</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0</td>
</tr>
</tbody>
</table>

A confusion matrix makes sense only when the population is limited (e.g., in classification tasks)!
Our problem

Population: \{Snowball_1, ..., Snowball_99, Snowball_100\}
Gold Standard: \{Snowball_1, ..., Snowball_99\}
Output: \{Snowball_1, ..., Snowball_99, Snowball_100\}

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The problem is that the algorithm did not catch the negatives, it has a “low recall” on the negatives.
Def: True Negative Rate & FPR

Population: \{\text{Snowball}_1, \ldots, \text{Snowball}_99, \text{Snowball}_100\}
Gold Standard: \{\text{Snowball}_1, \ldots, \text{Snowball}_99\}
Output: \{\text{Snowball}_1, \ldots, \text{Snowball}_99, \text{Snowball}_100\}

The true negative rate (also: TNR, specificity, selectivity) is the ratio of negatives that are output as negatives (= the recall on the negatives):

$$\text{TNR} = \frac{\text{true negatives}}{\text{gold negatives}} = \frac{0}{1} = 0\%$$

<table>
<thead>
<tr>
<th>Output</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The False Positive Rate (also: FPR, fall-out) is 1 - TNR.
TNR & Precision

Population: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}
Gold Standard: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}\}
Output: \{\text{Snowball}_1, \ldots, \text{Snowball}_{99}, \text{Snowball}_{100}\}

Precision: \frac{99}{100} = 99\% \quad \text{TNR: } \frac{0}{1} = 0\%
Recall: \frac{99}{99} = 100\%

TNR and precision both measure the “correctness” of the output.

Precision:
- measures wrt. the output
- suffers from imbalanced classes
- works if population is infinite (e.g., set of all extractable entities)

TNR:
- measures wrt. the population
- guards against imbalance
- works if population is limited (e.g., in classification)
Def: ROC

The **ROC** (receiver operating characteristic) curve plots recall against the FPR for different thresholds of the algorithm. It guards against imbalanced classes, and is applicable when the population is finite.

![Graph showing ROC curve and annotations](image)
Def: ROC

The ROC (receiver operating characteristic) curve plots recall against the FPR for different thresholds of the algorithm. It guards against imbalanced classes, and is applicable when the population is finite.

If an algorithm has no threshold to tune, we can always simulate a curve...

What we want...

...by randomly adding items from the population to the output

...and randomly removing items from the output

Random baseline
Def: AUC

The AUC (area under curve) is the area under the ROC curve. It corresponds to the probability that the classifier ranks a random positive item over a random negative item. (It’s kind of the F1 for a limited population and a varying threshold.)

(AUC measure for PR curves also exists, but has no corresponding probabilistic interpretation)
Def: Micro vs. Macro averaging

- 3 relations (A, B, C)

- Predictions:
 - 10x A (90% correct)
 - 10x B (90% correct)
 - 100x C (10% correct)

- Micro-avg. precision: \[
\frac{10 \times 0.9 + 10 \times 0.9 + 100 \times 0.1}{10 + 10 + 100} = 0.23
\]

- Macro-avg. precision: \[
\frac{0.9 + 0.9 + 0.1}{3} = 0.63
\]

- Recall and F1 analogous

→ Macro gives tail equal importance
Evaluation of Semi-supervised and Unsupervised Relation Extraction

• Since its intended to extract totally new statements
 • Gold set is difficult to prepare
 • Can’t compute precision (don’t know which ones are correct)
 • Can’t compute recall (don’t know which ones were missed)

• Instead, we can approximate precision (only)
 • Draw a random sample of statements from output, check precision manually
 \[\hat{p} = \frac{\# \text{ of correctly extracted relations in the sample}}{\text{Total \# of extracted relations in the sample}} \]

• Can also compute precision at different levels of recall.
 • Precision for top 1000 new relations, top 10,000 new relations, top 100,000
 • In each case taking a random sample of that set

• But no realistic way to evaluate recall
Baselines and yardsticks

- Method: Precision 0.63, recall 0.47, ???

- Baselines
 - Random!
 - Most frequent class!
 - Naive heuristics
 - Trigger word lookup, first noun, 5th word, etc.

- Yardsticks
 - Existing systems
 - Human performance (agreement)
 - (in certain tasks e.g. in vision not a yardstick anymore)
Error analysis (1/3)

- Method: P 0.63 R 0.47
- Baseline: P 0.55 R 0.30
- Humans: P 0.85 R 0.90

- What went wrong?
 - Sample a few errors (false positives and false negatives)
 - Define categories of errors
 - Sample a larger set of errors
 - Count frequencies of error categories
 - Possibly iterate

- Severity of errors?

- Important for
 - Yourself to improve
 - The next one continuing your concrete work
 - Others to understand potential and limits of your approach

- Error meta-categories
 - Limit of effort (effort-performance-derivative/extrapolation?)
 - Limits of methodology
 - Limit of data/metric (next)
Error analysis (2/3) – Question the data

- Data too often with issues
 - Typing assignment: Vocabulary mismatch
 - Relation extraction assignment: Nationalities that are not nationalities

- Semiautomatic data:
 - Systematic errors

- Crowdsourced data:
 - Random noise
 - ...

- ...
Error analysis (3/3) – Question the rules

- Evaluation metric design not trivial
 - Machine translation and summarization: BLEU
 - Named entity recognition, OpenIE: Partial matches?
 - Typing: Metrics aware of error severity?
 - Disambiguation: Plausible vs. semantically impossible mismatches
How to get gold data?

- **Self-annotation**
 - Alone or in a team of few researchers, colleagues
 - Confirmation bias
 - Generally discouraged

- **Creative reuse of existing data**
 - E.g., Wikipedia text links for entity disambiguation
 - Synchronous edits of Wikidata relation and texts
 - Usually still shaky/biased

- **Paid annotators**
 - Can be known local personnel
 - More often, anonymous online crowdsourcing
 - De-facto standard nowadays
Crowdsourcing

- Prominent platforms: Amazon Mechanical Turk, Prolific
- Typical pay ~10$/hour
 - In cases total spending 10k+€ for research datasets
- Requires to-the-point instructions
 - Traditional expert annotations guidelines sometimes >100 pages
 - Complex or open-ended annotation tasks difficult
 - Wherever possible, break into smaller tasks
- Quality assurance:
 - Worker education/background
 - Worker reputation
 - Honeypot/test question-based filtering
 - Redundancy (majority opinion on task)
- Creating good crowd tasks takes iterations and effort!
Relation definitions for has nationality and lived in

Has nationality: The highlighted location must be either a country where the person has citizenship or an adjective for a country such as "American" or "French". If someone holds a national office or plays for a national sports team, this implies has nationality. A person's nationality by itself does not imply the lived in or was born in relations.

Lived in: Means a person spent time in the highlighted location for more than a visit. You can assume a lived in relation for the country of national officials. Otherwise, working in a location does not imply that a person has a lived in relation. lived in does not imply has nationality or was born in.

Practice sentence 1 of 5 (select all relations that apply):
- "Vice President Joe Biden met today with Turkish Prime Minister Ahmet Davutoğlu"

Yes No
- has nationality
- lived in

Submit

Figure 3: Tutorial page that teaches guidelines for nationality and lived in. The worker answers practice sentences with immediate feedback that teach each relation.
Example benchmark dataset: KnowledgeNet

- Text: Wikipedia abstracts
- 15 common person relations
- 9000 exhaustively annotated sentences
- Interannotator agreement
 - Relation classification: 96%
 - Entity disambiguation: 93%
- In-house annotators
- ~2 minutes/annotator/sentence for one property
 - 22% mention detection, 40% relation classification, 28% entity disambiguation
- 2 annotators, in case of disagreement third annotator

→ Total effort ~ 600 annotator hours

[Mesquita et al., EMNLP 2019
(a) Interface to detect mentions of an entity type.

(b) Interface to classify facts.

(c) Interface to link a mention to a Wikidata entity.
Instructive pipeline implementations

• Mention detection, coreference resolution, relation classification, entity linking
• Human performance as comparison

<table>
<thead>
<tr>
<th>System</th>
<th>Text evaluation</th>
<th>Link evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>Baseline 1</td>
<td>0.44</td>
<td>0.64</td>
</tr>
<tr>
<td>Baseline 2</td>
<td>0.49</td>
<td>0.64</td>
</tr>
<tr>
<td>Baseline 3</td>
<td>0.47</td>
<td>0.66</td>
</tr>
<tr>
<td>Baseline 4</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>Baseline 5</td>
<td>0.68</td>
<td>0.70</td>
</tr>
<tr>
<td>Human</td>
<td>0.88</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Stanford TAC KBP + coreference + entity types + ...
+ BERT

Text spans of S and O match vs. KB links match
Outline

1. Problem
2. Manual patterns
3. Supervised learning
 1. Feature-based
 2. TACRED and BERT
4. Semi- and unsupervised extraction
 1. Iterative pattern learning (DIPRE)
 2. Distant supervision
 • CINEX
5. Evaluation
6. OpenIE
 1. PATTY
 2. Quasimodo
7. Negation
Motivation: Open information extraction

• So far assumed a limited set of fixed relations

• Presumably designed by humans (“ontology engineers”)

• Lessons from DB/KR Research
 • Declarative KR is expensive & difficult
 • Formal semantics is at odds with
 • Broad scope
 • Distributed authorship
 • A “universal ontology” is impossible
 • Global consistency is like world peace
 • Micro ontologies--scale? Interconnections?
Open vs. Traditional IE

Input:
- **Traditional IE:** Corpus + O(R) hand-labeled data
- **Open IE:** Corpus

Relations:
- **Traditional IE:** Specified in advance
- **Open IE:** Discovered automatically

Extractor:
- **Traditional IE:** Relation-specific
- **Open IE:** Relation-independent

How is Open IE Possible?
Semantic Tractability Hypothesis

∃ easy-to-understand subset of English

- Characterized relations/arguments syntactically [Banko et al. ACL ’08]
- Characterization is compact, domain independent
- Covers 80–95% of binary relations in sample corpus

<table>
<thead>
<tr>
<th>Relative Frequency</th>
<th>Category</th>
<th>Simplified Lexico-Syntactic Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.8</td>
<td>Verb</td>
<td>E_1 Verb E_2 X established Y</td>
</tr>
<tr>
<td>22.8</td>
<td>Noun+Prep</td>
<td>E_1 NP Prep E_2 X settlement with Y</td>
</tr>
<tr>
<td>16.0</td>
<td>Verb+Prep</td>
<td>E_1 Verb Prep E_2 X moved to Y</td>
</tr>
<tr>
<td>9.4</td>
<td>Infinitive</td>
<td>E_1 to Verb E_2 X plans to acquire Y</td>
</tr>
<tr>
<td>5.2</td>
<td>Modifier</td>
<td>E_1 Verb E_2 Noun X is Y winner</td>
</tr>
</tbody>
</table>

(simplified!)
Reverb [Fader et al., 2011]

Identify Relations from Verbs.

1. Find longest phrase matching a simple syntactic constraint:

\[
V \mid VP \mid VW*P
\]

\[
V = \text{verb particle? adv?}
\]

\[
W = (\text{noun} \mid \text{adj} \mid \text{adv} \mid \text{pron} \mid \text{det})
\]

\[
P = (\text{prep} \mid \text{particle} \mid \text{inf. marker})
\]
Sample Reverb relations

invented \hspace{1cm} acquired by \hspace{1cm} has a PhD in

denied \hspace{1cm} voted for \hspace{1cm} inhibits tumor growth in

inherited \hspace{1cm} born in \hspace{1cm} mastered the art of

downloaded \hspace{1cm} aspired to \hspace{1cm} is the patron saint of

expelled \hspace{1cm} Arrived from \hspace{1cm} wrote the book on
Challenges (1)

- Larry Page, the CEO of Google, talks about multi-screen opportunities offered by Google.

- After winning the Superbowl, the Giants are now the top dogs of the NFL.

- Ahmadinejad was elected as the new President of Iran.

- Relation arguments can be overly specific

 ("The great R. Feynman"; “worked jointly with”; “F. Dyson")
Challenges (2)

"John refused to visit Vegas."

(John, refused to visit, Vegas)

"Early astronomers believed that the earth is the center of the universe."

[(earth, is the center of, universe) Attribution: early astronomers]

"If she wins California, Hillary will be the nominated presidential candidate."

[(Hillary, will be nominated, presidential candidate) Modifier: if she wins California]
System evolution

- 2007 Textrunner
 - CRF and self-training
- 2010 ReVerb
 - POS-based patterns
- 2012: OLLIE
 - Dependency-parse based
- 2013: ClausIE
 - Sentence restructuring before dependency parsing
- 2014 OpenIE 4.0
 - SRL-based extraction
- 2016 OpenIE 5.0
 - Compound noun phrases, numbers
- 2017 MinIE
 - Minimizing extractions by removal of minor qualifiers etc.

Increasing precision, recall, expressiveness
Textrunner

Inference and tuple correction:

(X, born in, 1941) (Y, born in, 1941)
(X, citizen of, US) (Y, citizen of, US) \(P(X = Y) \) determined by shared relations
(X, friend of, Joe) (Y, friend of, Joe)

(1, R1, 2) (1, R2, 2)
(2, R1, 4) (2, R2, 4) \(P(R1 = R2) \) determined by shared argument pairs
(4, R1, 8) (4, R2, 8)
Learning Open Patterns:

1) Extract the high confidence tuples from ReVerb.
2) For each tuple, find all sentences in the corpus containing the words in the tuple.
3) Using a dependency parser specify the patterns corresponding to each ReVerb tuple selected.
Number of Relations

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARPA MR Domains</td>
<td><50</td>
</tr>
<tr>
<td>NYU, Yago</td>
<td><100</td>
</tr>
<tr>
<td>NELL</td>
<td>~500</td>
</tr>
<tr>
<td>DBpedia 3.2</td>
<td>940</td>
</tr>
<tr>
<td>PropBank</td>
<td>3,600</td>
</tr>
<tr>
<td>VerbNet</td>
<td>5,000</td>
</tr>
<tr>
<td>Wikipedia Infoboxes, f > 10</td>
<td>~5,000</td>
</tr>
<tr>
<td>TextRunner (phrases)</td>
<td>100,000+</td>
</tr>
<tr>
<td>ReVerb (phrases)</td>
<td>1,000,000+</td>
</tr>
</tbody>
</table>
https://openie.allenai.org/

- Saarland
- Einstein
- Kangaroo
- ...
Semantic role labelling

Can we figure out that these have the same meaning?
 • XYZ corporation bought the stock.
 • They sold the stock to XYZ corporation.
 • The stock was bought by XYZ corporation.
 • The purchase of the stock by XYZ corporation...
 • The stock purchase by XYZ corporation...

• How do we represent this commonality?
A Shallow Semantic Representation: Semantic Roles

Predicates (bought, sold, purchase) represent an event semantic roles express the abstract role that arguments of a predicate can take in the event.

More specific

- buyer
- thief
- thrower
- transporter

More general

- acquirer
- agent
- mover
Thematic roles

- **Buyer** and **Thrower** have something in common!
 - Volitional actors
 - Often animate
 - Direct causal responsibility for their events
- Thematic roles are a way to capture this semantic commonality between Buyers and Thrower.
- They are both **AGENTS**.
- The **Bought Thing** and **Thrown Thing** are **THEMES**.
 - prototypically inanimate objects affected in some way by the action
- One of the oldest linguistic models
 - Indian grammarian Panini between the 7th and 4th centuries BCE
Thematic roles

- **A typical set:**

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The volitional causer of an event</td>
<td>The waiter spilled the soup.</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>The experiencer of an event</td>
<td>John has a headache.</td>
</tr>
<tr>
<td>FORCE</td>
<td>The non-volitional causer of the event</td>
<td>The wind blows debris from the mall into our yards.</td>
</tr>
<tr>
<td>THEME</td>
<td>The participant most directly affected by an event</td>
<td>Only after Benjamin Franklin broke the ice...</td>
</tr>
<tr>
<td>RESULT</td>
<td>The end product of an event</td>
<td>The city built a regulation-size baseball diamond...</td>
</tr>
<tr>
<td>CONTENT</td>
<td>The proposition or content of a propositional event</td>
<td>Mona asked “You met Mary Ann at a supermarket?”</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>An instrument used in an event</td>
<td>He poached catfish, stunning them with a shocking device...</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>The beneficiary of an event</td>
<td>Whenever Ann Callahan makes hotel reservations for her boss...</td>
</tr>
<tr>
<td>SOURCE</td>
<td>The origin of the object of a transfer event</td>
<td>I flew in from Boston.</td>
</tr>
<tr>
<td>GOAL</td>
<td>The destination of an object of a transfer event</td>
<td>I drove to Portland.</td>
</tr>
</tbody>
</table>
agree.01
Arg0: Agreeer
Arg1: Proposition
Arg2: Other entity agreeing

Ex1: [Arg0 The group] agreed [Arg1 it wouldn’t make an offer].
Ex2: [ArgM-TMP Usually] [Arg0 John] agrees [Arg2 with Mary]
[Arg1 on everything].

fall.01
Arg1: Logical subject, patient, thing falling
Arg2: Extent, amount fallen
Arg3: start point
Arg4: end point, end state of arg1
Ex1: [Arg1 Sales] fell [Arg4 to $25 million] [Arg3 from $27 million].
Ex2: [Arg1 The average junk bond] fell [Arg2 by 4.2%].
Advantage of a ProbBank Labeling

- **increase.01** “go up incrementally”
 Arg0: causer of increase
- Arg1: thing increasing
- Arg2: amount increased by, EXT, or MNR
 Arg3: start point
- Arg4: end point

• This allow to see the **commonalities** in these 3 sentences:

 [Arg0 Big Fruit Co.] increased [Arg1 the price of bananas].
 [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co.]
 [Arg1 The price of bananas] increased [Arg2 5%].
QA-SRL [Ido Dagan et al.]

- Formulate roles as natural language questions

UCD *finished* the 2006 championship as Dublin champions, by *beating* St Vincents in the final.

Who finished something? - UCD
What did someone finish? - the 2006 championship
What did someone finish something as? - Dublin champions
How did someone finish something? - by beating St Vincents in the final

Who beat someone? - UCD
When did someone beat someone? - in the final
Who did someone beat? - St Vincents

→ Crowd workers write intuitive\(^1\) questions and answers

\(^1\)The PropBank annotation guide is 89 pages (Bonial et al., 2010), and the FrameNet guide is 119 pages (Ruppen-hofer et al., 2006). Our QA-driven annotation instructions are 5 pages.
Supervised Open IE

[Stanovsky et al., NAACL 2018
https://www.aclweb.org/anthology/N18-1081]

- Uses SRL annotations as target and training data

- Every set of (head, arg0, arg1) corresponds to a triple

- Trains a bi-LSTM to solve OpenIE via sequence labelling
Outline

1. Problem
2. Manual patterns
3. Supervised learning
 1. Feature-based
 2. TACRED and BERT
4. Semi- and unsupervised extraction
 1. Iterative pattern learning (DIPRE)
 2. Distant supervision
 • CINEX
5. Evaluation
6. OpenIE
 1. PATTY
 2. Quasimodo
7. Negation
PATTY

- Resource of 350k synsets of binary relations
- Taxonomical organization
- Key idea: exploit instance overlap/subsumption
- Wikipedia-extractions between two named entities in sentence
- Patterns combine terms, POS tags, types

- Pattern accuracy: 85%
- Subsumption accuracy: 75%
PATTY (2)

\[A = (\text{Schwarzenegger, California}), \]
\[80 \text{ occurrences} \]
Efficient support set overlap comparison

- n patterns $\rightarrow n^2$ comparisons?

<table>
<thead>
<tr>
<th>ID</th>
<th>Pattern Synset & Support Sets</th>
</tr>
</thead>
</table>
| P_1 | (Politician) was governor of (State)
A,80 B,75 C,70 |
| P_2 | (Politician) politician from (State)
A,80 B,75 C,70 D,66 E,64 |
| P_3 | (Person) daughter of (Person)
F,78 G,75 H,66 |
| P_4 | (Person) child of (Person)
I,88 J,87 F,78 G,75 K,64 |

Prefix tree allows quick retrieval of subsumed patterns
Outline

1. Problem
2. Manual patterns
3. Supervised learning
 1. Feature-based
 2. TACRED and BERT
4. Semi- and unsupervised extraction
 1. Iterative pattern learning (DIPRE)
 2. Distant supervision
 • CINEX
5. Evaluation
6. OpenIE
 1. PATTY
 2. Quasimodo
7. Negation
Quasimodo - Goal

- Mine Commonsense Knowledge (CSK) about:
 - Object properties
 - Human behavior
 - General concepts
- Focus on salient properties like
 - (bananas, are, edible)
 - (children, like, bananas)
- Avoid non salient properties like (from ConceptNet)
 - (elephant, CapableOf, visit the grocery store)
 - (dog, HasProperty, one among many animals)
Applications

- Chatbot
 - Me: Hi Pandora, what do you suggest for breakfast?
 - Her: What about bouillabaisse for a starter?

- (Visual) Question Answering
 - Q: What’s taller, the giraffe or the mountain?
 - A: The giraffe

- Visual content understanding

- Queries Interpretation
 - Jordan weather next week
Challenges

- Seldom expressed in assertions
- Non-encyclopedic (no Wikipedia)
- Noise and high bias on online content
- No way to prescribe limited fixed set of relations

Banana

From Wikipedia, the free encyclopedia

This article is about bananas generally. For the genus to which banana p...starchier bananas used in cooking, see Cooking banana. For other uses, a banana is an edible fruit – botanically a berry[1][2] – produced by several kinds of large herbaceous flowering plants in the genus Musa.[3] In some countries, bananas used for cooking may be called "plantains", distinguishing them from dessert bananas. The fruit is variable in size, color, and firmness, but is usually elongated and curved, with soft flesh rich in starch covered with a rind, which may be green, yellow, red, purple, or brown when ripe. The fruits grow in clusters hanging from the top of the plant. Almost all modern edible seedless (parthenocarp) bananas come from two wild species – Musa acuminata and Musa balbisiana. The scientific names of most cultivated bananas are Musa acuminata, Musa...
Previous Work

- Traditional Knowledge Bases
 - No commonsense
- ConceptNet
 - ~20 meta-relations ("is capable of", "can be used for", ...)
 - Manual, does not scale
- Webchild
 - ~20 relations, inspired by ConceptNet
 - Focus on possible properties, not salient ones
- TupleKB
 - OpenIE predicates
 - Still limited domain, science knowledge only
Quasimodo Pipeline
Candidate Gathering

- Main idea: Extract facts from questions
 - Asking certain questions conveys knowledge

Why are bananas yellow? Bananas are yellow!

- Harvest human curiosity, « wisdom of the crowds »
Candidate Gathering – Query Logs

- Indirect access to the query logs through autocompletion

<table>
<thead>
<tr>
<th>why do cats</th>
</tr>
</thead>
<tbody>
<tr>
<td>why do cats purr</td>
</tr>
<tr>
<td>why do cats like boxes</td>
</tr>
<tr>
<td>why do cats meow</td>
</tr>
<tr>
<td>why do cats knead</td>
</tr>
<tr>
<td>why do cats sleep so much</td>
</tr>
<tr>
<td>why do cats hate water</td>
</tr>
<tr>
<td>why do cats like catnip</td>
</tr>
<tr>
<td>why do cats lick you</td>
</tr>
<tr>
<td>why do cats have whiskers</td>
</tr>
</tbody>
</table>
Candidate Gathering – QA Forums

- Yahoo! Answers (research datasets)
- Answers.com (sitemap)
- Quora (semi-manually)
- Reddit (dump)

why-how questions
Candidate Gathering — Statistics

<table>
<thead>
<tr>
<th>Pattern</th>
<th>In Query Logs</th>
<th>In QA Forums</th>
</tr>
</thead>
<tbody>
<tr>
<td>how does</td>
<td>19.4%</td>
<td>7.5%</td>
</tr>
<tr>
<td>why is</td>
<td>15.8%</td>
<td>10.4%</td>
</tr>
<tr>
<td>how do</td>
<td>14.9%</td>
<td>38.07%</td>
</tr>
<tr>
<td>why do</td>
<td>10.6%</td>
<td>9.21%</td>
</tr>
<tr>
<td>how is</td>
<td>10.1%</td>
<td>4.31%</td>
</tr>
<tr>
<td>why does</td>
<td>8.97%</td>
<td>5.46%</td>
</tr>
<tr>
<td>why are</td>
<td>8.68%</td>
<td>5.12%</td>
</tr>
<tr>
<td>how are</td>
<td>5.51%</td>
<td>1.8%</td>
</tr>
<tr>
<td>how can</td>
<td>3.53%</td>
<td>10.95%</td>
</tr>
<tr>
<td>why can’t</td>
<td>1.77%</td>
<td>1.40%</td>
</tr>
<tr>
<td>why can</td>
<td>0.81%</td>
<td>0.36%</td>
</tr>
</tbody>
</table>
Candidate Gathering — Results

Questions to statements to tuples using OpenIE

Why are lions hunting zebras?

Q2S
Lions are hunting zebras

OpenIE
(lions, are hunting, zebras)

Normalize
(lion, hunt, zebras)
Corroboration

- Reduce noise with cooccurrence signals from:
 - Wikipedia and Simple Wikipedia
 - Answer snippets from search engines
 - Google Books
 - Image Tags from OpenImages and Flickr
 - Google’s Conceptual Captions dataset

Wildlife Photographer of the Year award goes to Yongqing Bao for image of Tibetan fox attacking marmot

- Train classifier from all signals on 700 manually annotated triples
Grouping

- Reduce redundancy
- Co-clustering method based on tri-factorization
- Compute clusters for SO pairs and clusters for P phrases and align them with each other when meaningful
- Number of (soft) clusters for SO pairs and for P phrases can be different

<table>
<thead>
<tr>
<th>P cluster</th>
<th>SO cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>make noise at, be loud at, croak in</td>
<td>fox-night, frog-night, donkey-night</td>
</tr>
<tr>
<td>sleep in, be bored in, talk in</td>
<td>student-class, student-lectures</td>
</tr>
</tbody>
</table>
Statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#S</th>
<th>#P</th>
<th>#P≥10</th>
<th>#SPO</th>
<th>#SPO/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConceptNet-full@en</td>
<td>842,532</td>
<td>39</td>
<td>39</td>
<td>1,334,425</td>
<td>1.6</td>
</tr>
<tr>
<td>ConceptNet-CSK@en</td>
<td>41,331</td>
<td>19</td>
<td>19</td>
<td>214,606</td>
<td>5.2</td>
</tr>
<tr>
<td>TupleKB</td>
<td>28,078</td>
<td>1,605</td>
<td>1,009</td>
<td>282,594</td>
<td>10.1</td>
</tr>
<tr>
<td>WebChild</td>
<td>55,036</td>
<td>20</td>
<td>20</td>
<td>13,323,132</td>
<td>242.1</td>
</tr>
<tr>
<td>Quasimodo</td>
<td>80,145</td>
<td>78,636</td>
<td>6084</td>
<td>2,262,109</td>
<td>28.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animals</th>
<th>#S</th>
<th>#SPO</th>
<th>#S</th>
<th>#SPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2,678</td>
<td>50</td>
<td>1,906</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1,841</td>
<td>50</td>
<td>1,495</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>16,052</td>
<td>38</td>
<td>5,321</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>27,223</td>
<td>50</td>
<td>26,257</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>39,710</td>
<td>50</td>
<td>18,212</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupations</th>
<th>#S</th>
<th>#SPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1,906</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1,495</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>5,321</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>26,257</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>18,212</td>
<td></td>
</tr>
</tbody>
</table>
Anecdotal Examples

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical knowledge from human</td>
<td>(car, slip on, ice)</td>
</tr>
<tr>
<td>Problems linked to a subject</td>
<td>(pen, can, leak)</td>
</tr>
<tr>
<td>Emotions linked to events</td>
<td>(divorce, can, hurt)</td>
</tr>
<tr>
<td>Human behaviors</td>
<td>(ghost, scare, people)</td>
</tr>
<tr>
<td>Visual assertions</td>
<td>(road, has_color, black)</td>
</tr>
<tr>
<td>Cultural knowledge (here U.S.)</td>
<td>(school, have, locker)</td>
</tr>
<tr>
<td>Comparative knowledge</td>
<td>(light, faster than, sound)</td>
</tr>
</tbody>
</table>
Precision

Sample from a list of common subjects (most popular animals and occupations)
Overview

We are evaluating the quality of computer-generated general knowledge. Your task is to evaluate the quality of the generated knowledge along three aspects: 1) Meaningfulness, 2) Correctness, 3) Importance.

Examples:
- Lion, hunts, zebras: Meaningful, correct, important
- Lion, has, shinbone: Meaningful, correct, not so important
- Lion, is, vegetarian: Meaningful, incorrect, not important
- Equity, causes, solution: Not meaningful, incorrect, not important

Fact: muscle - is used for - flexing arm

Is this statement meaningful? (required)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Gibberish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaningful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is this true for most muscle(s)? (required)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is this an important fact? (required)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Boring/obscure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recall

- Given a subject, ask crowd workers to give a statement starting with “<Subjects> …”, like “Elephants … are grey”
- Strict = exact match, Relaxed = partial match
Multiple Choice Question Answering

Where would I not want a fox?

- hen house, 🔴 england, 🔴 mountains,
- english hunt, 🔴 california

<table>
<thead>
<tr>
<th></th>
<th>KB</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Questions</td>
<td></td>
<td>10974/3659</td>
</tr>
<tr>
<td>(Train/Test)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>word2vec</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>Quasimodo</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>ConceptNet</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>TupleKB</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>WebChild</td>
<td>24.1</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Problem
2. Manual patterns
3. Supervised learning
 1. Feature-based
 2. TACRED and BERT
4. Semi- and unsupervised extraction
 1. Iterative pattern learning (DIPRE)
 2. Distant supervision
 • CINEX
5. Evaluation
6. OpenIE
 1. PATTY
 2. Quasimodo
7. Negation
References

• Papers:
 • Stanovsky and Dagan, Creating a Large Benchmark for Open Information Extraction, EMNLP 2016
 • Nakashole et al., PATTY: A Taxonomy of Relational Patterns with Semantic Types, EMNLP 2012
 • Romero et al., Salient Commonsense Properties from Query Logs and Question Answering Forums, CIKM 2019

• Slides
 • Adopted from Fabian Suchanek, Julien Romero and Oren Etzioni

• Code/APIs
 • OpenIE
 • https://www.textrazor.com/demo
 • https://gate.d5.mpi-inf.mpg.de/ClausIEGate/ClausIEGate/
 • https://github.com/dair-iitd/OpenIE-standalone

• Link collection on OpenIE
 • https://github.com/gkiril/oie-resources
Assignment 7

• Code your own open information extraction
• Evaluation on benchmark data from [Stanovsky and Dagan, EMNLP 2017]
• F1 on extractions (head word match for predicate)
Take home

- **Fixed relations**
 - Supervised learning data bottleneck, but performant
 - Iterative pattern learning and distant supervision as alternatives
 - BERT allows to bypass feature engineering

- **Evaluation**
 - Right metric for right problem
 - Evaluation of novel discoveries nontrivial
 - Error analysis

- **Much effort in** data preparation, labelling

- **Open information extraction**
 - Alternative requiring no decision on schema upfront